
Sparse Recovery Under Side
Constraints Using

Null Space Properties

Vom Fachbereich Mathematik
der Technischen Universität Darmstadt

zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

genehmigte

Dissertation

von

Frederic Matter, M. Sc.
aus München

Referent: Prof. Dr. Marc E. Pfetsch
Korreferent: Prof. Dr. Thorsten Theobald
Tag der Einreichung: 9. Februar 2022
Tag der mündlichen Prüfung: 29. April 2022

Darmstadt 2022

Acknowledgments

First and foremost, I would like to thank my supervisor Marc E. Pfetsch. He gave
me the great opportunity to work on this thesis within the topic on Compressed
Sensing. Whenever I had questions or problems, be it technical issues with SCIP(-
SDP) or of theoretical nature, he was available and spent much time discussing and
helping me. I am very grateful for all the discussion and the most valuable input,
from which I learned and profited a lot.

Furthermore, I would like to thank Thorsten Theobald. Having finished my Mas-
ter’s thesis under his great supervision, he referred me to Marc, when I came up with
the idea to do a PhD. I am very happy that we stayed in contact and I especially
very much enjoyed working together with him. Finally, I would like to thank him
for agreeing to act as a referee for this thesis.

Moreover, I would like to thank all of my colleagues within the “EXPRESS”
project for the great collaboration, especially Marius Pesavento for several fruitful
discussions.

Besides, I would like to thank Frank Aurzada and Marius Pesavento for agreeing
to to be part of the examination committee for my thesis.

I gratefully acknowledge the financial support of the Deutsche Forschungsgemein-
schaft (DFG) within the project “Exploiting Structure in Compressed Sensing Using
Side Constraints (EXPRESS)” in the priority programme SPP 1798. If not for the
funding, this thesis would not have been possible.

In that regard, I am very grateful to Dennis Gabriel, Ilhan Gören, Maximilian
Gläser, Oliver Habeck, Christine Herter, Christopher Hojny, Erik Jansen, Jasmin
Pabst and Andreas Schmitt for proofreading parts of this thesis and providing valu-
able feedback.

Something I enjoyed a lot is the great working atmosphere within the whole
Optimization group at TU Darmstadt. Thanks for all the great discussions and
various other activities, especially the stays at Kleinwalsertal. Special thanks go out
to Christopher Hojny for taking his time and helping me whenever I encountered
problems with SCIP, which happened quite often at the beginning. In particular,

iii

many thanks go to Oliver Habeck as well as Christine Herter for being such great
friends and office mates, with our shared love for “your mother”-jokes. Working
without you would definitely have been not half as enjoyable. We shared countless
fun coffee breaks with many cookies. Oliver revolutionized my eating habits by
creating Blitz-Friday. Christine always lent me an ear and cheered my up whenever
I needed it, especially in the last months. Also, thanks go to Andreas Schmitt for
many office chats and great laughs.

My family was always there for supporting and encouraging me whenever I needed
it most—and still is. Thank you for all the love you gave to me, and of course the
cakes.

Finally, my deepest gratitude goes out to Jasmin Pabst, for her neverending sup-
port, which now started almost ten years back. Especially in the last months, I
became quite unnerving and even occasionally intolerable, but she still kept me go-
ing. Without your caring support, I would most certainly not be finished by now,
and most likely also starved already long ago—one cannot simply eat Blitz-Pizza
everyday (unfortunately).

iv

Zusammenfassung

Ein Kernaspekt von Compressed Sensing ist die Rekonstruktion von Signalen mit-
hilfe von möglichst wenigen Messungen. Dies wird unter Ausnutzung der Tatsache
ermöglicht, dass sich die Signale in vielen Anwendungen durch lediglich wenige Kom-
ponenten beschreiben lassen. Solch ein Signal kann mathematisch durch einen soge-
nannten dünnbesetzten Vektor modelliert werden. Die Messungen des Signals lassen
sich mit einer Messmatrix darstellen, wobei die Anzahl an Zeilen der Messmatrix
gerade der Anzahl an Messungen entspricht. Dies führt auf ein lineares Gleichungs-
system, welches in der Regel unterbestimmt ist. Durch Rekonstruktionsbedingungen
an die Messmatrix, wie der sogenannten „Null Space Property“ (NSP), kann genau
charakterisiert werden, in welchen Fällen ein dünnbesetzter Vektor aus seinen Mes-
sungen erfolgreich rekonstruiert werden kann.

In der vorliegenden Arbeit untersuchen wir dieses mathematische Problem der Re-
konstruktion unter dem Aspekt, dass zusätzliche Informationen über die Struktur
des zu rekonstruierenden dünnbesetzten Vektors vorhanden ist. Solche Informatio-
nen können in Form von Nebenbedingungen beschrieben werden. Als einen zentra-
len Punkt weisen wir anhand von verschiedenen Beispielen empirisch nach, dass
schwächere Rekonstruktionsbedingungen in der Gegenwart von Nebenbedingungen
möglich sind und dass weniger Messungen zur Rekonstruktion benötigt werden.

Hierzu entwickeln wir zuerst ein allgemeines Framework, welches ein existierendes
Framework aus der Literatur um die Möglichkeit erweitert, vorhandene Nebenbe-
dingungen auszunutzen. Zur Charakterisierung der erfolgreichen Rekonstruktion in
diesem Framework formulieren wir eine neue allgemeine NSP. Weiterhin betrach-
ten wir auch den Fall, dass die Messungen durch Rauschen gestört sind oder die
zu rekonstruierenden Signale sich lediglich durch dünnbesetzte Vektoren approxi-
mieren lassen. Wir zeigen, dass eine Modifikation unserer allgemeinen NSP auch
diese Fälle umfasst und formulieren Schranken an den möglichen Fehler, der bei der
Rekonstruktion gemacht wird.

Das vorgestellte Framework vereinigt und verallgemeinert diverse in der Litera-
tur behandelten Spezialfälle, wie zum Beispiel die Rekonstruktion von dünnbesetz-
ten, nichtnegativen oder ganzzahligen Vektoren, dünnbesetzten Vektoren mit Block-

v

Struktur oder positiv semidefiniten Matrizen mit niedrigem Rang. Wir demonstrie-
ren, dass sich die bekannten Resultate für diese Spezialfälle aus unserem allgemeinen
Framework herleiten lassen. Des Weiteren betrachten wir auch noch weitere Spezi-
alfälle, die in der Literatur bisher nicht oder nur wenig untersucht wurden. Zuerst
erweitern wir eine mögliche Block-Struktur in Vektoren auf Matrizen. Hier gehen
wir auch explizit auf den Effekt von Nichtnegativität oder positiver Semidefinitheit
ein und zeigen anhand von Beispielen, dass durch Ausnutzung dieser Eigenschaf-
ten eine schwächere Rekonstruktionsbedingung nötig ist. Danach untersuchen wir
ganzzahlige Vektoren und schließlich behandeln wir komplexe Vektoren, bei denen
jeder Eintrag einen konstanten Betrag hat. Für die letztgenannte Nebenbedingung
präsentieren wir auch einen angepassten „Spatial Branch-and-Bound“ Algorithmus
zur Lösung des entstehenden Rekonstruktionsproblems.

Um den Effekt von Nichtnegativität näher zu analysieren, betrachten wir die
NSP für zufällige Messmatrizen. Wir leiten eine theoretische untere Schranke für die
Anzahl an nötigen Messungen her und vergleichen diese empirisch und numerisch mit
der bekannten Schranke im Falle von dünnbesetzten Vektoren ohne Nichtnegativität.
Dies demonstriert, dass unter Ausnutzung der Nichtnegativität weniger Messungen
zur Rekonstruktion nötig sind. Ebenfalls leiten wir eine solche Schranke für Matrizen
mit Block-Struktur her.

Anschließend behandeln wir dünnbesetzte Vektoren mit und ohne Nichtnegativi-
tät sowie mit und ohne Block-Struktur. Für diese Fälle formulieren wir das Pro-
blem, die jeweilige NSP für eine gegebene Messmatrix zu überprüfen, als gemischt-
ganzzahliges Optimierungsproblem. Der Effekt der Nichtnegativität zeigt sich hier-
bei darin, dass das zugehörige Optimierungsproblem zum Nachweisen der NSP
schneller gelöst werden kann. Empirisch weisen wir auch nach, dass in der Gegen-
wart von Nichtnegativität weniger Messungen, das heißt Zeilen in einer zufälligen
Messmatrix, nötig sind, um die NSP zu erfüllen.

Für die „Restricted Isometry Property“ (RIP), welche eine weitere Rekonstruk-
tionsbedingung für dünnbesetzte Vektoren darstellt, betrachten wir die Formulie-
rung als gemischt-ganzzahliges semidefinites Optimierungsproblem (MISDP). Dies
führt uns schließlich zu allgemeinen MISDPs. Wir entwickeln neue Techniken zur
Modifikation von MISDPs vor und während dem Lösen, um dadurch den Lösungs-
prozess zu beschleunigen. Anhand von numerischen Ergebnissen auf verschiedenen
Klassen von MISDPs sehen wir, dass dadurch eine signifikante Beschleunigung mög-
lich ist. Hierbei legen wir ein besonderes Augenmerk auf die MISDP Formulierung
der RIP.

vi

Abstract

A key aspect of Compressed Sensing is the reconstruction of signals with as few
measurements as possible. This can be achieved by exploiting that in many applica-
tions, signals can be described using only few components, which results in so-called
sparse vectors. The measurements of a signal can be represented with a measure-
ment matrix whose number of rows is exactly the number of measurements taken.
This leads to a linear equation system, which typically is underdetermined. In order
to characterize when a sparse vector can successfully be reconstructed from its mea-
surements, so-called reconstruction guarantees such as the “Null Space Property”
(NSP) can be employed.

This thesis examines sparse recovery in the case that additional structure is known
in the sparse vector that is to be recovered. As one key point, it is empirically
demonstrated that in the presence of side constraints weaker recovery guarantees
are possible and that fewer measurements suffice for successful recovery. To do so,
a general framework for sparse recovery is developed, which allows to incorporate
additional knowledge in form of side constraints and a novel general NSP is proposed,
which characterizes successful recovery in this framework. This framework subsumes
many specific settings and NSPs already considered in the literature.

For the case of sparse vectors, the influence of nonnegativity is analyzed by con-
sidering whether random measurement matrices satisfy the corresponding NSPs.
A lower bound for the number of measurements needed for successful recovery is
derived and empirically as well as numerically compared to the known bound for
sparse vectors without nonnegativity. Afterwards, the problem of testing whether a
given measurement matrix satisfies an NSP is considered. For the explicit cases of
sparse (nonnegative) vectors and block-sparse (nonnegative) vectors, the problem of
testing the corresponding NSP is formulated as a mixed-integer problem. Empirical
results demonstrate that for a random measurement matrix, fewer measurements are
needed in order to satisfy the corresponding NSP in the presence of nonnegativity.

Lastly, new presolving and propagation techniques for general mixed-integer
semidefinite programs (MISDPs) are developed, which allow for a significant im-
provement in the solution times, as a numerical evaluation on several classes of

vii

MISDPs reveals. In this computational study, a focus lies on the MISDP formulation
of the “Restricted Isometry Property” (RIP), which is another recovery guarantee
for sparse vectors.

viii

Contents

Acknowledgments iii

Zusammenfassung v

Abstract vii

Contents ix

1 Introduction 1
1.1 Sparse Recovery Under Linear Measurements 3
1.2 Outline and Contribution . 7
1.3 Notation and Preliminaries . 10

2 A General Framework for Recovery Using Null Space Properties 13
2.1 Components of the General Framework 15
2.2 Uniform Recovery in the General Framework 21
2.3 Stability and Robustness in the General Framework 29

2.3.1 Robust Recovery . 31
2.3.2 Stable Recovery . 37
2.3.3 Stability and Robustness for Some Special Cases 39

2.4 Individual Recovery . 44

3 Recovery Conditions for Special Cases 51
3.1 Block-Structured Vectors and Matrices 52

3.1.1 Block-Sparse (Positive Semidefinite) Matrices 55
3.1.2 Block-Sparse (Nonnegative) Vectors 59
3.1.3 Discussion of Block-Sparsity 61

3.2 Integrality Constraints on Sparse Vectors 66
3.3 Constant Modulus Constraints on Vectors 77

3.3.1 Constant Modulus Constraints in the General Framework 80
3.3.2 Solving Problems with Constant Modulus Constraints . . 84

ix

Contents

3.3.3 Numerical Experiments 90
3.4 Concluding Remarks and Outlook 94

4 Recovery Under Random Measurements 97
4.1 Recovery Under Random Measurements – An Overview 99
4.2 Analysis of Random Measurements for Sparse Nonnegative Vectors 106
4.3 Analysis of Random Measurements for Block-Sparse Matrices . . 115
4.4 Concluding Remarks and Outlook 120

5 Computing Recovery Conditions 123
5.1 A MIP Formulation for the NSP 124
5.2 An MISDP Formulation for the RIP 141
5.3 Special Components for the MISDP Formulation of the RIP . . . 145

6 Presolving for Mixed-Integer Semidefinite Optimization 151
6.1 Presolving and MISDPs – An Overview 154
6.2 Linear Inequalities Implied by the SDP Relaxation 159
6.3 Presolving Techniques Based on 2 by 2 Minors 161
6.4 Bound Tightening Based on SDP Constraints 165

6.4.1 Convergence of Bound Tightening 167
6.4.2 Computing Tightening Scalings 169

6.5 Coefficient Tightening Based on SDP Constraints 172
6.6 Computational Experiments . 173

6.6.1 Instances . 173
6.6.2 Settings . 178
6.6.3 Results for general MISDPs 179
6.6.4 Results for the RIP . 184

6.7 Concluding Remarks and Outlook 194

7 Conclusion and Outlook 197

Appendix 205
A Bounds for Sparse Nonnegative Vectors Under Random Measure-

ments . 205
B Computational Results for MISDP Presolving 213

Bibliography 219

List of Figures xi

List of Tables xiii

x

CHA PTER 1
Introduction

Our modern world demands the use of digital data and information in almost every
aspect of our everyday life. Transferring, measuring and reconstructing this data
or information is therefore an omnipresent task. For instance, in digital communi-
cation, signals or images frequently need to be reconstructed from measured data.
Measuring, or acquiring data in its simplest form amounts to a system of linear
equations Ax = b. Here, x ∈ Rn is the original n-dimensional signal, A ∈ Rm×n

is the measurement matrix and b ∈ Rm collects the m measurements taken of x
by A. Clearly, this system is underdetermined as long as m < n, so that if there
exists any solution, it is not unique. Consequently, recovering x cannot be expected.
Taking m > n measurements in order to hope for a unique solution is undesirable in
practice, simply because the dimension n of the original signal may be very large.
Hence, the measurement process can become costly and time-consuming, both of
which should typically be avoided. Thus, additional information on x is needed in
order to successfully recover x, that is, to have a unique solution of Ax = b, which
is equal to x even if m < n.

Almost two decades ago, the crucial observation was made that sparsity is ex-
actly such an additional information which makes reconstruction possible. Sparsity
means that the signal vector only has few nonzero components, that is, the vec-
tor x modeling the signal only has few nonzero entries. We call a vector s-sparse,
if it contains at most s nonzero components. In the following, we will speak of
signals and vectors interchangeably. The assumption that a signal is sparse or can
be approximated by a sparse signal, holds in many real world applications, possibly
after changing the representation of the signal, that is, after changing the basis.
Examples include the famous JPEG, MPEG and MP3 formats for image, video and
audio data, respectively. These formats compress the data by finding a sparse ap-

1

Chapter 1. Introduction

proximation in a suitable basis. Consequently, some information within the data
is lost in the compression process. However, this loss does not significantly affect
the quality of the data, but massively shrinks the necessary storage space. Utiliz-
ing such sparse or compressed representations of signals leads to the problem that
first measuring a signal and then effectively throwing away most of the information
when compressing the signal is clearly not necessary. Rather, measuring and com-
pressing the signal should be done as one step, such that directly the compressed
version of the signal should be acquired. This paradigm to simultaneously acquire
and compress the data is now known under the name Compressed Sensing (CS)
(or Compressive Sensing, Compressive Sampling) which started with the seminal
articles from Candès et al. [39] as well as Donoho [69].

CS has numerous applications, probably the most well-known is magnetic reso-
nance imaging (MRI) in medicine, see, e.g., Lustig et al. [166, 167]. In fact, MRI is
the motivation used by Candès et al. [39], considered as the initial paper on CS. In
MRI, the task is to produce high-quality images displaying the anatomy of parts of
the human body. Clearly, in order to diagnose diseases such as cancer, the pictures
should be as high-resolution as possible. Moreover, since the radiation used in an
MRI is harmful for the human body, the exposition to it should be as short as pos-
sible. Thus, CS techniques can be used to reduce the number of measurements that
need to be taken without influencing the quality of the resulting images, so that the
duration of the exposition to radiation can be shortened. Apart from this medical
application, CS has applications in radar frameworks, e.g., for detecting objects in
the surrounding environment and measuring their distance and speed, see Herman
and Strohmer [127], Potter et al. [204] and also Foucart and Rauhut [104] from which
the following high-level description is borrowed. In order to detect objects, a radar
pulse is sent out, which is scattered at these objects. The resulting scattered signal
is then measured at a receive antenna. Taking the delay of the received signal as
well as the Doppler effect into account, the distance and the speed of the objects can
be computed. In a finite-dimensional model, a known channel matrix can be used
to compute the received signal based on the sent signal, and a vector x can be used
to model the presence of objects with a certain speed and distance. This vector is
typically sparse, since only few objects are present in the surrounding environment.
Thus, the goal is to reconstruct a sparse vector based on linear measurements. More-
over, CS is frequently used to find sparse approximations of vectors in a predefined
basis, also called dictionary. As outlined before, this is heavily used in compression,
but also in data separation [202] and denoising of data [85], see also [35, 84] for an
overview. Besides, CS can be applied in order to correct errors in the transmission
of data [38].

2

1.1. Sparse Recovery Under Linear Measurements

For further information and more general introductions as well as applications of
CS, we refer to the books [88, 104, 248] as well as the papers [14, 40, 46, 99]. The
PhD thesis of Andreas Tillmann [235] collects several computational aspects of CS.
We provide further literature reviews for the specific topics considered in Chapters 3
and 5 as well as in Sections 4.1 and 6.1 at the beginning of the respective chapters.

Deepening knowledge in the usage of CS is the primary goal of the priority pro-
gramme SPP 1798 “Compressed Sensing in Information Processing (CoSIP)”, funded
by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) from
2015 to 2021. The subproject “Exploiting Structure in Compressed Sensing Using
Side Constraints (EXPRESS)” within the SPP 1798, which ran for the full period of
six years, deals with the question of how additional knowledge can be exploited in
the process of acquiring data. Such knowledge may be available for different aspects
of the recovery process. It can originate from specific structure within the measure-
ment matrix A, the original signal x or the measurements b. For instance, it may
be known that x ≥ 0 or that x has integral components. Moreover, the nonzero
entries in x can appear in blocks or groups, which amounts to knowledge on the
sparsity structure. Depending on the measurement process, the measurements can
exhibit structure as well, such as being magnitude-only, quantized, or restricted to
a finite alphabet (K-bit measurements). Lastly, specific properties of the underly-
ing measurement process, such as configurations of the arrays used for sensing, can
yield additional structure in the measurement matrix A. This knowledge can be
incorporated into the recovery problem in form of a side constraint. In the project
“EXPRESS”, new recovery guarantees as well as efficient algorithms for recovery in
the presence of side constraints are developed, with a specific focus on the applica-
tion to multi-antenna systems. This thesis emerged from the research that has been
done within the project “EXPRESS”, and solely deals with additional structure in x.
An overview over various results that have been obtained in this project is given in
the preprint by Ardah et al. [10].

1.1 Sparse Recovery Under Linear Measurements

In this thesis, we will focus on the sparse recovery problem, which consists of recon-
structing an unknown sparse vector x ∈ Rn given only its measurements b = Ax,
where A ∈ Rm×n is a known measurement matrix. This problem features two
important aspects: First, the choice of A, and second, the recovery process itself.

Concerning the choice of A, it is desirable to choose a measurement matrix which is
suitable to reconstruct different sparse vectors, not only a fixed one. This distinction
leads to the terms individual recovery (also called nonuniform recovery) and uniform
recovery. Individual recovery means the successful recovery of a single fixed s-sparse

3

Chapter 1. Introduction

vector x ∈ Rn from its measurements b = Ax ∈ Rm, whereas for uniform recovery,
all s-sparse vectors need to be successfully recovered from their measurements b
using the same measurement matrix A.

Most importantly, the recovery process should be efficient. An immediate idea
would be to find a vector with a minimal amount of nonzero components which
is compatible with the measurements. Let ∥x∥0 denote the number of nonzero
components of the vector x, then this leads to the so-called ℓ0-minimization problem

min {∥x∥0 : Ax = b}, (P0)

where A ∈ Rm×n is a measurement matrix and b ∈ Rm are given measurements.
However, Natarajan [185] shows that this problem is in general NP-hard, and even
producing approximate solutions is considered to be intractable, see Amaldi and
Kann [8]. Quite surprisingly it turns out that after replacing ∥·∥0 by the ℓ1-norm ∥·∥1
it is often still possible to successfully reconstruct sparse signals from their measure-
ments. Using ∥·∥1 leads the ℓ1-minimization problem

min {∥x∥1 : Ax = b}, (P1)

which is also known as basis pursuit. It probably appeared in the work by Chen
et al. [51] for the first time explicitly in sparse recovery, even if the general idea
of using ℓ1-minimization seems to be much older, see Donoho and Logan [72] and
Logan [161]. In fact, basis pursuit can be written as a linear program (LP) and thus
is efficiently solvable in polynomial time. Figure 1.1 shows the intuition behind basis
pursuit. For an underdetermined system of linear equations Ax = b, a solution with
minimal ℓ1- or ℓ2-norm is given by inflating the unit ball of the respective norm
until it first has contact with the affine space H = {x : Ax = b}. This contact
point displayed in Figures 1.1b and 1.1c, respectively, shows that the solution with
minimal ℓ1-norm is indeed sparse, whereas the solution with minimal ℓ2-norm does
not contain a nonzero entry. Moreover, Figure 1.1a also shows a sparse solution
with minimal ℓ0-norm.

Besides solving basis pursuit, there are also other algorithms and recovery schemes
that can be used for sparse recovery. Examples include greedy algorithms such
as orthogonal matching pursuit (OMP) or compressive sampling matching pur-
suit (CoSaMP) [186], or thresholding algorithms such as iterative hard thresholding
(IHT). Those will not be treated throughout this thesis, we will only consider basis
pursuit (P1). For more information on these algorithms, we refer to Foucart and
Rauhut [104, Section 3] as well as Tropp [239].

The most important question regarding ℓ1-minimization is when it is possible to
reconstruct sufficiently sparse vectors from their measurements using (P1), either

4

1.1. Sparse Recovery Under Linear Measurements

x1

x2

{x : ∥x∥0 = 1}

H

(a) The ℓ0-norm.

x1

x2

H

{x : ∥x∥1 = c}

(b) The ℓ1-norm.

x1

x2

{x : ∥x∥2 = c}

H

(c) The ℓ2-norm.

Figure 1.1. Geometric intuition for Basis Pursuit: The intersection of an affine
space H = {x : Ax = b} with the unit norm ball of the ℓ0-norm as well as
inflated unit norm balls of the ℓ1- and ℓ2-norm for some c > 0.

only a fixed sparse vector (individual recover), or all sufficiently sparse vectors (uni-
form recovery). In order to answer this question, recovery conditions have been pro-
posed in the literature. These impose conditions on the measurement matrix which
guarantee successful recovery. The historically first condition is the restricted isom-
etry property (RIP), introduced by Candès and Tao [38, 45]. As shown by Candès
and Tao [38], the RIP is a sufficient condition for uniform recovery. Another by now
well-known condition is the null space property (NSP). After appearing implicitly
in works by Donoho and Elad [70], Donoho and Huo [71], Elad and Bruckstein [86],
and Gribonval and Nielsen [123], the term NSP was first used by Cohen et al. [55].
In contrast to the RIP, the NSP characterizes uniform recovery, i.e., it is a neces-
sary and sufficient condition. Further recovery conditions include conditions on the
coherence [70, 123] or the spark [55, 70] of the measurement matrix. The latter
leads to a condition for uniform recovery using (P0) instead of (P1). For individual
recovery, there also exist specific conditions such as the exact recovery condition
(ERC) of Tropp [239] or conditions based on dual certificates of (P1). Since this
thesis is only concerned with the NSP and, to some extent, the RIP, we again refer
to Foucart and Rauhut [104] and the references therein for more details on other
recovery conditions.

Another important property is the stability and robustness of the recovery scheme.
In reality, most signals are not sparse, but only close (in some distance metric)
to sparse signals. Moreover, measurements are often corrupted by noise and thus
inaccurate. Hence, it is important to control the reconstruction error. This is
referred as stability and robustness of the recovery process. Basis pursuit can be
made stable and robust if the condition Ax = b is weakened to ∥Ax − b∥2 ≤ η,
where η ≥ 0 is a known bound for the measurement noise. This leads to the

5

Chapter 1. Introduction

following version of basis pursuit, called basis pursuit denoising :

min {∥x∥1 : ∥Ax− b∥2 ≤ η}. (P η
1)

In fact, the recovery conditions such as the NSP and the RIP can be adapted
accordingly to also give guarantees on the recovery error of uniform stable or robust
recovery. Candès et al. [39] extended the RIP to stable and robust recovery. The
term stable and robust NSP was seemingly first used by Foucart and Rauhut [104],
for conditions which appeared throughout the literature.

In the past decade, the classical CS problem of recovering sparse vectors was
extended by using different types of sparsity. For instance, block-sparsity groups
entries of a vector into blocks and demands that only few blocks contain nonzero
entries. Moreover, the recovery problem can be generalized from vectors to matrices,
which leads to low-rank matrix recovery, see, e.g., Recht et al. [210]. In [128], a block-
structure on matrices was introduced which generalizes block-sparse vectors. This
block-structure will be treated in more detail in Section 3.1. The NSP and other
recovery conditions have been adapted to these types of sparsity in the literature as
well, see Stojnic et al. [230] for block-sparse vectors, Oymak and Hassibi [192] for
low-rank matrices and [128] for block-sparse matrices.

These recovery conditions have a very similar structure, and their proofs use com-
parable arguments. This led to different frameworks, which have been proposed in
the literature to subsume the existing theory. Examples include the concept of de-
composable norms used by Negahban et al. [188] and Candès and Recht [44] as well
as atomic norms in Chandrasekaran et al. [49]. A very general setting that subsumes
most of the existing NSPs has been introduced by Juditsky et al. [137]. These frame-
works provide a convenient generalization of the explicit recovery conditions which
have been derived in the literature for different settings. However, it turns out that
they do not allow exploiting additional types of structure. For example, depending
on the applications, it may be known in advance that a signal is represented with
only a few nonnegative entries, or a positive semidefinite low-rank matrix. Such
side constraints can easily be added to ℓ1-minimization and its adaptions. If the
side constraint is convex, then the recovery problem stays tractable, at least in the-
ory. Clearly, not exploiting side constraints is always feasible, since, e.g., uniform
recovery of all sufficiently sparse vectors implies uniform recovery of all sufficiently
sparse nonnegative vectors. However, it is natural to believe that explicitly imposing
nonnegativity yields weaker recovery conditions and that fewer measurements are
needed for uniform or individual recovery as a result.

This thesis presents results on this topic by providing a general framework which
builds upon the framework by Juditsky et al. [137] and extends it to also incorporate
additional knowledge in the form of side constraints. As one main result, we present

6

1.2. Outline and Contribution

general null space properties for exact, stable and robust recovery. It will turn out
that the known recovery conditions in the presence of side constraints emerge as
special cases from the proposed generalization.

Apart from the clear focus on general null space properties, this thesis also shortly
deals with the RIP. It is known that the checking whether a given measurement
matrix satisfies the RIP can be formulated as a mixed-integer semidefinite program
(MISDP), see Gally and Pfetsch [111]. For solving the resulting MISDP, the software
SCIP-SDP [220] can be used. In the process of trying to find measurement matrices
satisfying the RIP, noticeable effort has been put into improving the performance of
SCIP-SDP by Marc E. Pfetsch and the author of this thesis. In particular, several
new presolving and propagation techniques have been implemented, and most of
the code has been touched and revised. This has led to version 4.0 of SCIP-SDP,
see also [25]. We refer to Section 6.1 for more information and an introduction to
SCIP-SDP.

1.2 Outline and Contribution

The main goal of this thesis is to analyze sparse recovery under additional side
constraints, as one of the main research topics in the project “EXPRESS” within the
SPP 1798. As described in the previous section, we solely consider ℓ1-minimization
and its variants in different settings, and are interested in deriving adjusted recovery
guarantees for the resulting recovery problem in these settings. Our primary focus
is on null space properties.

In Chapter 2, we extend the general framework for sparse recovery using a gen-
eralized version of ℓ1-minimization presented in [137] to also include additional side
constraints. We present a very general null space property, which characterizes uni-
form recovery of all sufficiently sparse elements, under some technical assumptions.
These assumptions encompass crucial properties which need to be satisfied in a spe-
cific setting in order to allow for successful sparse recovery, at least when using the
setup presented in this thesis. Moreover, we show that a minor strengthening of
the presented null space property allows for stable and robust recovery. Lastly, we
shortly mention the case of individual recovery. Throughout this chapter, we derive
four settings which are well-known in the literature from our proposed framework,
namely sparse vectors, sparse nonnegative vectors, low-rank matrices and low-rank
positive semidefinite matrices. We show that the results we obtain throughout that
chapter simplify to the known results from the literature. These settings serve as
running examples for illustration.

In order to show the generality of the framework, we treat three specific settings
in more detail in Chapter 3. First, we consider a block-structure on matrices, which

7

Chapter 1. Introduction

generalizes block-structured vectors. Afterwards, we investigate integral vectors.
Lastly, we turn our attention towards so-called constant modulus constraints. This
constraint on a complex vector demands that the absolute value of each entry is
either 0 or 1. All these three settings are derived from the framework in Chapter 2,
and the resulting recovery conditions in form of null space properties are presented.
For block-structured matrices and vectors, we discuss the strength of the null space
properties with and without an additional positive semidefiniteness or nonnegativity
constraint. In particular, we construct an infinite family of instances which satisfies
the NSP for block-sparse nonnegative vectors, but violates both the NSP for block-
sparse vectors and for sparse nonnegative vectors. For constant modulus constraints
we further present and evaluate a specific algorithm for solving the resulting recovery
problem, which takes the specific problem structure into account.

In Chapter 4, we turn our attention towards random measurement matrices. An-
alyzing the number of measurements needed for uniform recovery with and without
exploiting the side constraints is one possibility to quantify the impact of side con-
straints on the recovery. In case of (Gaussian) random measurement matrices, such
an analysis has already been conducted for sparse vectors with and without an
additional nonnegativity constraint. While the results for sparse vectors are non-
asymptotic, those for sparse nonnegative vectors only hold asymptotically for large
dimension and fixed ratio of dimension and number of measurements as well as num-
ber of measurements and sparsity. We extend the explicit analysis for sparse vectors
to the case of sparse nonnegative vectors in Section 4.2. As main result, we obtain a
non-asymptotic bound for the minimal number of measurements needed for uniform
recovery of all sufficiently sparse nonnegative vectors. Furthermore, we provide nu-
merical and empirical evidence that exploiting the nonnegativity allows for recovery
with fewer measurements. Analogously, we derive a bound for the minimal number
of measurements for the case of block-structured matrices in Section 4.3, which has
not been analyzed under random measurements in the literature before.

As a last step in the analysis of side constraints, Chapter 5 treats the question
of how to check recovery conditions. Section 5.1 provides a mixed-integer program-
ming (MIP) formulation to verify whether a given measurement matrix satisfies
the NSP for uniform recovery of sparse and sparse nonnegative vectors as well as
block-structured and block-structured nonnegative vectors, respectively. A short
numerical evaluation of the performance of these formulations shows that the null
space property for sparse nonnegative vectors is easier to verify compared to the
null space property for sparse vectors. Additionally, using these formulations, we
again substantiate the result from Chapter 4 by empirically demonstrating that a
(Gaussian) random measurement matrix satisfies the NSP for sparse nonnegative
vectors for fewer number of measurements than needed for satisfying the NSP for

8

1.2. Outline and Contribution

sparse vectors. Afterwards, we shift our attention to the RIP and introduce its
known formulation as MISDP in Section 5.2. For this formulation, we discuss sev-
eral components which can be exploited in the solution process in Section 5.3. A
numerical evaluation follows in Section 6.6.4, in the subsequent chapter.

Having the MISDP formulation of the RIP in mind, we consider presolving meth-
ods for MISDPs in Chapter 6. Presolving in general means to transform an instance
of an optimization problem into an equivalent one by exploiting structure in the
instance. The goal is to obtain an instance which is easier to solve. In contrast to
MIPs, presolving for MISDPs has not yet been treated extensively in the literature.
After giving a brief introduction to the solution approaches for MISDPs and existing
presolving techniques in Section 6.1, we introduce several new methods for presolv-
ing and propagation in MISDPs in Sections 6.2 to 6.5. The main contribution of this
chapter is a numerical evaluation of the presented presolving techniques for several
classes of MISDPs in Section 6.6. After this general evaluation, we focus on the
RIP and compare the effect of the presolving methods and the specialized methods
introduced in Section 5.3 in more detail.

Chapter 7 concludes the obtained results and mentions several remaining open
questions as well as natural extensions and problems building on the results which
have not been treated throughout this thesis.

Some of the work presented in this thesis are based on results from different
preprints and publications. Sections 2.1 to 2.2 as well as Section 3.1 have appeared
in joint work with Janin Heuer, Thorsten Theobald and Marc E. Pfetsch [128].
Moreover, the application and the solution algorithm in Section 3.3 appeared in [97],
which is joint work with Tobias Fischer, Ganapati Hegde, Marius Pesavento and
Marc E. Pfetsch. Lastly, Chapter 6 appeared in similar form in the preprint [174],
which is submitted for publication and is again joint work with Marc E. Pfetsch.

Remark 1.1. Within “EXPRESS”, the author was also involved in work on direction
finding in linear arrays [175], which is not mentioned in this thesis. Direction finding
means to estimate the directions from which a set of signals impinge on sensors
which form a linear array. Given a signal which is transmitted by the sources, the
output at the sensors can be computed using a so-called steering matrix. The used
array geometry, i.e., the relative positions of the sensors within the array, implies
that it may not be possible to uniquely identify every possible set of directions,
which leads to so-called ambiguous directions, which cannot be differentiated by the
linear array. Knowing such ambiguities beforehand is therefore of importance when
designing the sensor array. In [175], a mixed-integer programming formulation is
presented to compute a subset of all ambiguities a linear array geometry suffers from.
This formulation emerges by making use of the underlying combinatorial structure
within the steering matrix and a relation to roots of unity which sum to zero.

9

Chapter 1. Introduction

1.3 Notation and Preliminaries

In the following, we introduce notation that will be used frequently throughout this
thesis. We assume that the reader has basic knowledge of linear algebra, probabil-
ity theory and optimization. A good source for background in linear algebra and
matrix analysis is Horn and Johnson [130], whereas for probability theory we refer
to Ross [213] and basics in (convex and integer) optimization can be obtained from
Boyd and Vandenberghe [31] and Schrijver [218].

For an integer n ∈ N, we define [n] := {1, . . . , n} ⊂ Zn. The cardinality of
a set S ⊆ R is denoted by |S|, and S = R \ S denotes the complement of S.
For a vector x ∈ Rn, we frequently use the ℓq-norms ∥x∥q := (

∑n
i=1 |xi|q)1/q,

with 1 ≤ q < ∞, as well as the ℓ∞-norm ∥x∥∞ := max {|xi| : xi ∈ [n]}. The ℓq-
quasinorms are also defined for 0 < q < 1. Furthermore, the support of a vector
is denoted by supp(x), and we define ∥x∥0 := |supp(x)|. Note that ∥·∥0 satisfies
positive definiteness and the triangle inequality, but it is no norm, since it lacks
homogeneity. Nevertheless, it is commonly referred to as ℓ0-norm in the literature,
and we will use this name as well.

Let S ⊆ [n] be a subset of indices and let x ∈ Rn be a vector. Then, xS can
denote either the restriction of x to indices in S, so that x ∈ RS , or xS ∈ Rn as
well with (xS)i = 0 for all i /∈ S and (xS)i = xi for all i ∈ S. We will use the
notation xS for both cases, and depending on the context it should always be clear,
which definition applies. For two vectors x, y ∈ Rn, the term ⟨x, y⟩ = x⊤y denotes
the usual standard (Euclidean) inner product on Rn, where x⊤ is the transpose of x.

Let A ∈ Rm×n be a real m× n matrix. Its null space is defined as the set

null(A) := {v ∈ Rn : Av = 0}.

The transpose of A is denoted by A⊤. We frequently use the Frobenius norm ∥A∥F
and the nuclear norm ∥A∥∗, which are defined as

∥A∥F :=
(m∑

i=1

n∑
j=1

|Aij |2
) 1

2
=
(min{m,n}∑

k=1

σk(A)
2
) 1

2
,

∥A∥∗ :=

r∑
k=1

σk(A),

respectively, where σ1(A), . . . , σr(A) are the singular values of A. Consequently, the
nuclear norm is the ℓ1-norm of the vector of singular values. For A, B ∈ Rm×n, we

10

1.3. Notation and Preliminaries

use the (Frobenius) inner product

⟨A,B⟩F := tr
(
A⊤B

)
=

n∑
i,j=1

Aij Bij , (1.1)

where tr(X) :=
∑n

i=1Xii is the trace of the square matrix X ∈ Rn×n.
We denote the space of n×n real symmetric matrices with Sn. The matrix A ∈ Sn

is called positive semidefinite (psd), denoted A ⪰ 0, if x⊤Ax ≥ 0 for all x ∈ Rn, or,
equivalently, if all eigenvalues λ(A) of A are nonnegative. The notation A ⪯ 0 is used
if A is negative semidefinite, i.e., −A is psd. The space of (symmetric) psd matrices
is denoted by Sn+. The notations 1, 1 and I are used for the all-ones vector, the
all-ones matrix and the identity matrix with dimension depending on the context,
whereas the all-zeros vector and matrix are simply denoted by 0. Finally, Diag(x)

denotes a diagonal matrix containing the vector x along its diagonal.
When comparing computational results, we make use of the arithmetic, geometric

and shifted geometric mean. For values v1, . . . , vn, the arithmetic mean is defined
as 1

n (
∑n

i=1 vi), the geometric mean is computed according to (
∏n

i=1 vi)
1/n and the

shifted geometric mean additionally applies a shift s to the values and computes
the geometric mean of the shifted values. Afterwards, the initial shift is subtracted
again from the result. Thus, the shifted geometric mean is defined as

(n∏
i=1

(vi + s)
)1/n

− s. (1.2)

Compared to the arithmetic mean, the shifted geometric mean is more robust against
very large outliers, and compared to the geometric mean, the shifted geometric mean
is also more robust against very small outliers, see Achterberg [1]. We use a shift
of s = 1 second for solution times and a shift of s = 100 for the number of nodes
processed within a branch-and-bound approach, which is one prominent method to
solve MIPs. Branch-and-bound was first proposed by Land and Doig [153] in 1960
and extended to general nonlinear problems by Dakin [58]. It consists of dividing
the set of feasible solutions into smaller subsets by creating subproblems. This is
achieved by adding variable bounds or additional constraints. For each subproblem,
a continuous relaxation is solved in order to obtain lower bounds. If a feasible
solution to the original problem is found, this yields an upper bound. If the lower
bound of a subproblem is larger than the upper bound, i.e., the objective value of
the currently best feasible solution, this subproblem can be disregarded and the
corresponding node can be pruned. In order to improve the lower bounds, the
subproblems can be strengthened, e.g., by adding (linear) inequalities which are
valid for feasible integral solutions but cut off fractional solutions of the relaxation.

11

CHA PTER 2
A General Framework for

Recovery Using Null Space
Properties

The classical sparse recovery problem asks to recover a sparse vector x(0) ∈ Rn from
its measurements Ax(0), where A ∈ Rm×n is a measurement matrix. Using the ℓ0-
norm to search for the sparsest vector x ∈ Rn with Ax = Ax(0) leads to (P0), that
is, min {∥x∥0 : Ax = Ax(0)}, which is NP-hard [185]. A convex approximation can
be obtained by replacing the ℓ0-norm with the ℓ1-norm, which leads to the convex
optimization problem (P1), that is, min {∥x∥1 : Ax = Ax(0)}. Uniform recovery is
characterized by the classical NSP

∥vS∥1 < ∥vS∥1 ∀ v ∈ null(A) \ {0}, ∀S ⊆ [n], |S| ≤ s, (NSP)

see, e.g., Foucart and Rauhut [104, Theorem 4.5] and Cohen et al. [55]. If (NSP)
is satisfied for the matrix A, then every sufficiently sparse x(0) ∈ Rn is the unique
optimal solution of (P1).

The sparse recovery problem for vectors can be extended to matrices as well, since
sparsity translates to low-rankness. Recall that the rank of a matrix X ∈ Cm×n is
the ℓ0-norm of the vector σ(X) of singular values ofX. In order to recover a symmet-
ric low-rank matrix X(0) ∈ Sn from its measurements A(X(0)), where A : Sn 7→ Rm

is a linear sensing operator, Fazel [94] suggested to solve the optimization problem

min {rank(X) : A(X) = A(X(0)), X ∈ Sn}. (2.1)

13

Chapter 2. A General Framework for Recovery Using Null Space Properties

Similar to ∥·∥0, the rank is a nonconvex function, so that (2.1) is hard to solve in
practice. The analog of the ℓ1-norm as convex relaxation of ∥·∥0 for vectors is the
nuclear norm ∥X∥∗, i.e., the ℓ1-norm of the vector σ(X) of singular values of X.
This leads to the convex optimization problem

min {∥X∥∗ : A(X) = A(X(0)), X ∈ Sn}. (2.2)

For more information to low-rank matrix recovery, see, e.g., Recht et al. [210] and
the references therein.

Additional knowledge, e.g., if the original sparse vector x(0) is known to be non-
negative, or if the original low-rank matrix X(0) is known to be positive semidefinite,
can be included in the recovery problems as well. More precisely, in these cases, the
additional side constraints x ≥ 0 or X ⪰ 0 can be added to the recovery prob-
lems (P1) and (2.2), respectively. For all these settings, adaptions of (NSP) and
other recovery conditions for individual and uniform recovery are known in the lit-
erature. In the classical case, the corresponding NSP can be found in Gribonval
and Nielsen [123] and in [104, Theorem 4.4]. If the vectors have to be nonnegative,
the respective NSP appears in Khajehnejad et al. [143] and in Zhang [256]. For
the case of arbitrary matrices or positive semidefinite (psd) matrices, correspond-
ing NSPs can be found in Kong et al. [146], Oymak and Hassibi [192], or in [104,
Theorem 4.40]. NSPs for block-sparse vectors have first been considered in Stojnic
et al. [230], and NSPs for block-sparse nonnegative vectors appear in Stojnic [229].
In [128], NSPs for block-sparse as well as block-sparse positive semidefinite matrices
were derived. The general framework presented by Juditsky et al. [137] subsumes
many existing NSPs, but additional side constraints such as nonnegativity or posi-
tive semidefiniteness cannot be included.

In this chapter, we extend the framework by Juditsky et al. [137] by also incor-
porating additional side constraints such as nonnegativity, positive semidefiniteness
or integrality. This yields a general framework for individual and uniform recovery
under side constraints using null space properties. The main result of this chapter
is a general null space condition which characterizes exact recovery of sufficiently
sparse vectors from their measurements, i.e., uniform recovery, using an appropriate
general recovery problem. Section 2.1 introduces the framework and formulates nec-
essary technical assumptions. In Section 2.2 a general NSP is presented and proved
to characterize uniform recovery in the framework. The subsequent Sections 2.3
and 2.4 extend this framework further to also cover stable and robust recovery, as
well as recovery of a fixed sufficiently sparse vector, i.e., individual recovery.

The general framework and the null space property presented in Sections 2.1
and 2.2 have been published in [128], which is joint work with Janin Heuer, Thorsten
Theobald and Marc E. Pfetsch. For this thesis, we added a short discussion about

14

2.1. Components of the General Framework

the connections to the concept of decomposable norms. Moreover, we extend the
framework to also cover stable and robust recovery in Section 2.3. In doing so,
it turned out that a minor adaption is needed in order to also cover stability and
robustness. This adaption implies that only one null space property is needed in
comparison to the pair of null space properties proposed in [128]. The details of this
adaption and its implications are discussed in Remarks 2.4, 2.9 and 2.18.

2.1 Components of the General Framework

As in the framework by Juditsky et al. [137], let X and E be two Euclidean spaces.
The signal space X is the space in which the signals of interest lie, and the space E
models representations of the signals. We use a linear sensing map A : X → Rm to
acquire signals x ∈ X and a linear representation map B : X → E to map a signal to
an appropriate representation. In this chapter, unless otherwise stated, the image
of x under a linear operator F is denoted by Fx.

Remark 2.1. Throughout this chapter, we consider real vector spaces X and E ,
since this is the more natural setting when considering nonnegative vectors. How-
ever, at least for unrestricted (block-)vectors or (block-diagonal) matrices, the null
space properties and statements in the subsequent Sections 2.2 to 2.4 also carry over
without changes to the situation where the spaces X and E are complex spaces.

The classical setting of sparse recovery, where x is sparse in its “natural” repre-
sentation, can be obtained by choosing X = E and B to be the identity. How-
ever, the framework also covers the so-called “analysis” setting, where the sig-
nal x is only sparse in a suitable representation system, with B being an ap-
propriate transformation; see, e.g., for an overview [47, 87, 138, 184]. Examples
for transformations include the discrete Fourier transform, different wavelet trans-
forms [42, 124, 171, 212, 221] or a finite difference operator in total variation mini-
mization [36, 48, 187].

In order to model additional side constraints such as nonnegativity, we introduce
a set C ⊂ X with 0 ∈ C and its image D := {Bx : x ∈ C} ⊆ E under the
map B. Additionally, let ∥·∥ be a norm on E . The framework uses projections onto
appropriate subspaces to express sparsity of elements x ∈ X . Therefore, consider a
set P of linear maps on E and a map ν : P → R+. Each map P ∈ P is assigned a
nonnegative real weight ν(P) and another linear map P : E → E . A general concept
of sparsity can now be defined as follows.

Definition 2.2 (Sparsity). Let s ∈ R+. An element y ∈ E is called s-sparse if
there exists a linear map P ∈ P with ν(P) ≤ s and Py = y. Accordingly, x ∈ X is

15

Chapter 2. A General Framework for Recovery Using Null Space Properties

called s-sparse, if its representation Bx ∈ E is s-sparse, i.e., if there exists P ∈ P
with ν(P) ≤ s and PBx = Bx. Furthermore, let Ps := {P ∈ P : ν(P) ≤ s} be the
set of linear maps that can allow s-sparse elements.

We do not assume that ν(P) is integer-valued in general, even if this is the case
in most examples of this general framework.

For a given right-hand side b ∈ Rm, the corresponding generalized recovery prob-
lem can be formulated as

min {∥Bx∥ : Ax = b, x ∈ C}, (2.3)

which is a convex optimization problem, if C is convex. We assume that C is closed,
such that the minimum in (2.3) is attained and finite, or ∞.

If C = X , then our framework reduces to the framework by Juditsky et al. [137],
and our statements become the statements concerning noise-free recovery in [137],
see Remark 2.11 below.

In order to get an intuition, the following examples derive many important cases
previously considered in the literature as special cases of the framework described
above. These cases are used as running examples throughout the chapter to demon-
strate the obtained results. For a (finite) set I, let EI := {y ∈ E : yi = 0 ∀ i /∈ I}
be its coordinate subspace and let RI denote the space of elements with real entries
indexed by the elements of I.

Example 2.3.
(2.3.1) Recovery of sparse vectors by ℓ1-minimization

For the recovery of sparse vectors x ∈ Rn, let X = E = C = Rn, B be the identity
and ∥·∥ = ∥·∥1, so that D = Rn. Let P be the set of orthogonal projectors
onto all coordinate subspaces of Rn, and define P := In − P , where In denotes
the identity mapping on Rn. If P projects onto ES for an index set S ⊆ [n],
then PBx = Px = xS and PBx = xS , where S := [n]\S is the complement of S.
Define the nonnegative weight ν(P) := rank(P), i.e., ν(P) = dim(ES) = |S|. In
this case, the notion of general sparsity coincides with the classical sparsity of
nonzero entries in a vector x ∈ Rn (if Px = x, then ∥x∥0 ≤ ν(P)), and the
recovery problem (2.3) becomes classical ℓ1-minimization.

(2.3.2) Recovery of sparse nonnegative vectors by ℓ1-minimization
For the recovery of nonnegative vectors let X , E , B, P, ν(P), P , ∥·∥ be defined
as in the previous example, and let C = Rn

+, so that D = Rn
+. As before, we

have PBx = xS and PBx = xS and the notion of general sparsity simplifies
to the classical sparsity of nonzero entries in a nonnegative vector x ∈ Rn

+.
Consequently, the recovery problem (2.3) becomes nonnegative ℓ1-minimization.

16

2.1. Components of the General Framework

(2.3.3) Recovery of low-rank matrices by nuclear norm minimization
Let X = E = C = Rn1×n2 . Let the representation map B be the identity (so
that D = Rn1×n2), and let the norm ∥·∥ be the nuclear norm ∥·∥∗. For some
positive integer k and a set I ⊆ [k], define the matrix T k

I ∈ Rk×k to be a matrix
with ones on the diagonal at positions (i, i) for i ∈ I and zeros elsewhere. Let Ok

be the set of k × k orthogonal matrices. Then define the set P of projections
P : Rn1×n2 → Rn1×n2 as

P :=
{
X 7→ U Tn1

I U⊤X V Tn2

I V ⊤ : U ∈ On1 , V ∈ On2 , I ⊆ [nmin]
}
,

where nmin = min {n1, n2}. For P ∈ P defined by U ∈ On1 , V ∈ On2 and an
index set I, define ν(P) = |I|, and P to be the map

X 7→ U (In1
− Tn1

I)U⊤X V (In2
− Tn2

I)V ⊤,

where Ini
denotes the identity matrix of size ni, so that Ini

− Tni

I = Tni

[ni]\I .
1

The intuition behind these projections is as follows. If U and V are chosen
such that X = UΣV ⊤ is the singular value decomposition of X, then P first
projects X onto Σ containing the singular values σ1(X) ≥ · · · ≥ σmin{n1,n2}(X),
then sets σi(X) = 0 for all i /∈ I via left- and right-multiplication of Tn1

I and Tn2

I ,
respectively, and transforms the resulting diagonal matrix Σ̃ back by U Σ̃V ⊤.
A matrix X ∈ Rn1×n2 is rank-s-sparse, i.e., there exist at most s nonzero singular
values, if and only if there exists a projection P ∈ P with corresponding index
set I with PX = X and |I| ≤ s. This implies σi(X) = 0 for all i /∈ I, so
that rank(X) ≤ s. Therefore, the recovery problem (2.3) becomes low-rank
matrix recovery, and sparsity translates to low-rankness.

(2.3.4) Recovery of low-rank positive semidefinite matrices by nuclear norm mini-
mization
For the recovery of positive semidefinite matrices, consider X = E = Sn, C = Sn+,
and let B be the identity map (thus, D = Sn+). The definitions of P, P , ν(P)
and ∥·∥ are as in the previous example. Again, the notion of sparsity simplifies to
low-rankness, and the recovery problem (2.3) becomes low-rank matrix recovery
for positive semidefinite matrices.

Nontrivial representation maps B : X → E appear for example in the case of
settings in which vectors or matrices obey a certain block-structure or block-diagonal
form, even with overlapping blocks. These settings will be discussed in more detail
in the next chapter.

1Note that U Tn1
I U⊤ X V Tn2

I V ⊤ and U (In1 − Tn1
I)U⊤ X V (In2 − Tn2

I)V ⊤ denote matrix
products, since U , Tn1

I , Tn2
I X, and V are matrices, and not linear maps.

17

Chapter 2. A General Framework for Recovery Using Null Space Properties

The next section states some technical assumptions which are needed to charac-
terize recovery of sparse elements x(0) from its measurements b = Ax(0) using the
recovery problem (2.3).

Assumptions

We consider the following assumptions on the sets C, D, P and the norm ∥·∥.

(A1) For every P ∈ P, it holds that
◦ P 2 = P , i.e., P is a projector, and
◦ Py ∈ D for all y ∈ D.
Moreover, B : X → E is injective, and for all c1, c2 ∈ C, c1 + c2 ∈ C holds.

(A2) For every P ∈ P, the corresponding linear map P : E → E satisfies
◦ PP = 0, and
◦ Py ∈ D for all y ∈ D.

(A3) For all y ∈ E and all P ∈ P, it holds that y = Py + Py.
(A4) For all s ≥ 0, P ∈ Ps, for all x, z ∈ C and v := x− z and all v̂(1), v̂(2) ∈ C with

v = v̂(1) − v̂(2) so that ∥Bv̂(2)∥ is minimal among all such decompositions it
holds that

∥Bx∥ ≤ ∥Bz∥+ ∥PBv̂(1)∥ − ∥PBv̂(2)∥ − ∥PBv∥+ 2∥PBx∥. (2.4)

For v ∈ C + (−C), a decomposition v̂(1), v̂(2) ∈ C with ∥Bv̂(2)∥ minimal as used in
Assumption (A4) is also called minimal decomposition of v. Moreover, the minimum

min {∥Bv̂(2)∥ : v = v̂(1) − v̂(2), v̂(1), v̂(2) ∈ C}

is attained, since we assumed that C is closed.

Remark 2.4. Let us shortly compare the presented assumptions with those in [128].
Assumptions (A1) to (A3) remain the same, however, in [128], two different versions
of Assumption (A4) are used, namely (A4a) which demands that Inequality (2.4)
holds for all decompositions v = v(1) − v(2) and (A4b) which only states that there
exists a decomposition which satisfies the inequality. This leads to two different
versions of a null space property, depending on which assumption is satisfied. A
closer inspection reveals that under the stronger Assumption (A4a), both null space
properties are in fact equivalent, whereas under Assumption (A4b), this is wrong in
general. In order to extend the proposed framework to also cover stable and robust
recovery, it turns out that Assumption (A4b) needs to be modified to demand that
the inequality holds for all minimal decompositions. This implies that one of the two

18

2.1. Components of the General Framework

null space properties needs to be adapted as well. However, after this modification,
the two null space properties are equivalent, regardless whether (A4a) or (A4b)
holds. Thus, in order to have a simplified exposition, we only use the modified
version of Assumption (A4b) as Assumption (A4) and also only the modified null
space property, see also Remarks 2.9 and 2.18.

Remark 2.5. Note that Assumption (A4) is asymmetric. Indeed, if we re-
quire ∥Bv(1)∥ to be minimal instead of ∥Bv(2)∥, then Assumption (A4) is violated
even for the classical case of recovery of sparse vectors using the ℓ1-norm, as the
following simple example shows. Consider C = X = Rn with n ≥ 7 and the vectors

xS = (−4, 5, −6)⊤, zS = (1, 2, −3)⊤, v(1)S = (0, 0, 0)⊤, v
(2)
S = (5, −3, 3)⊤,

with xS = zS = v
(1)

S
= v

(2)

S
= 0 for some index set S and v = x − z = v(1) − v(2).

Then,

∥z∥1 − ∥x∥1 + ∥v(1)S ∥1 − ∥v
(2)
S ∥1 − ∥vS∥1 + 2∥xS∥1 = −20 < 0.

With v(1)S = (−5, 3, −3)⊤, v(2)S = (0, 0, 0)⊤, i.e., ∥v(2)∥1 minimal, we obtain

∥z∥1 − ∥x∥1 + ∥v(1)S ∥1 − ∥v
(2)
S ∥1 − ∥vS∥1 + 2∥xS∥1 = 2 > 0.

This suggests that the asymmetry in Assumption (A4) is necessary and cannot be
replaced by a symmetric condition.

The different settings in Example 2.3 satisfy Assumptions (A1) to (A3), since P
consists of orthogonal projections. Only Assumption (A4) remains to be verified.
This will be discussed after the main result of uniform recovery in the next section.
But first we shortly compare the framework introduced above with the concept of
decomposable norms which has first been considered by Negahban et al. [188] and
is used by Candès and Recht [44] and Roulet et al. [214] to present unified bounds
for recovery.

Decomposable norms One simple, but important, common property of the ℓ1-
norm, the nuclear norm and the mixed ℓ2/ℓ1-norm from Example 2.3 is the so-called
decomposability. The concept of decomposable norms has first been defined in [188]
using subspaces. An equivalent definition in terms of projectors is given in [214],
which we recall here.

19

Chapter 2. A General Framework for Recovery Using Null Space Properties

Definition 2.6 (Roulet et al. [214]). Let E be an Euclidean space and ∥·∥ be a norm
on E. For a set P of orthogonal projectors, the norm ∥·∥ is called decomposable
with respect to P, if the following properties are satisfied.

(i) Each P ∈ P is assigned an orthogonal projector P with PP = PP = 0 and a
nonnegative weight ν(P).

(ii) ∥Px+ Px∥ = ∥Px∥+ ∥Px∥ holds for all x ∈ E and all P ∈ P.

Note that Part (i) of Definition 2.6 is contained in Assumptions (A1) and (A2).
The subsequent lemma compares Assumptions (A3) and (A4) and Part (ii) of Defi-
nition 2.6.

Lemma 2.7. Let Assumptions (A1) and (A2) hold. Then, Assumption (A4) implies

∥Bz∥ = ∥PBz∥+ ∥PBz∥ (DP)

for all s ≥ 0, P ∈ Ps and all z ∈ C. In case that C = X , the converse also holds,
i.e., Assumption (A4) and (DP) are equivalent.

If additionally Assumption (A3) holds, then (DP) can be written as

∥PBz + PBz∥ = ∥PBz∥+ ∥PBz∥.

Proof. Let Assumptions (A1), (A2) and (A4) hold. Let s ≥ 0, P ∈ Ps as well
as z ∈ C. Then, Bz ∈ D and consequently, PBz ∈ D as well (Assumption (A1)).
Thus, there exists x ∈ C with Bx = PBz. Define v := x − z. Since P 2 = P

(Assumption (A1)), we have PBx = PBz = Bx and thus PBv = PBx−PBz = 0.
By Assumption (A2) we have PBx = PPBz = 0. This implies PBv = −PBz.
Using Assumption (A4) for v̂(1), v̂(2) ∈ C with v = v̂(1) − v̂(2) and ∥Bv̂(2)∥ minimal
yields

0 ≤ ∥Bz∥ − ∥Bx∥+ ∥PBv̂(1)∥ − ∥PBv̂(2)∥ − ∥PBv∥+ 2∥PBx∥

= ∥Bz∥ − ∥PBz∥+ ∥PBv̂(1)∥ − ∥PBv̂(2)∥ − ∥−PBz∥
≤ ∥Bz∥ − ∥PBz∥+ ∥PBv∥ − ∥PBz∥
= ∥Bz∥ −

(
∥PBz∥+ ∥PBz∥

)
.

Combined with the triangle inequality, this shows ∥Bz∥ = ∥PBz∥+ ∥PBz∥.

Now assume that additionally C = X . Then, for v ∈ C + (−C), its minimal
decomposition v = v̂(1) − v̂(2) with v̂(1), v̂(2) ∈ C is unique and given by v̂(1) = v,
and v̂(2) = 0. In order to show the reverse direction in this case, assume that
∥Bz∥ = ∥PBz∥+∥PBz∥ holds for all s ≥ 0, P ∈ Ps and all z ∈ C. Let s ≥ 0, P ∈ Ps,

20

2.2. Uniform Recovery in the General Framework

and x, z ∈ C with v := x− z. This implies

∥Bz∥ − ∥Bx∥+ ∥PBv̂(1)∥ − ∥PBv̂(2)∥ − ∥PBv∥+ 2∥PBx∥
= ∥Bz∥ − ∥Bx∥+ ∥PBv∥ − ∥PBv∥+ 2∥PBx∥
≥∥Bz∥ − ∥Bx∥+ ∥PBx∥ − ∥PBz∥ − ∥PBx∥ − ∥PBz∥+ 2∥PBx∥
= ∥Bz∥ −

(
∥PBz∥+ ∥PBz∥

)
− ∥Bx∥+

(
∥PBx∥+ ∥PBx∥

)
=0,

where we used the decomposition property ∥Bz∥ = ∥PBz∥ + ∥PBz∥ twice for the
last equality. This shows the desired equivalence if C = X and finishes the proof,
since Assumption (A3) implies Bz = PBz + PBz.

Since for C = X , Assumption (A4) is equivalent to the decomposability property,
the general framework presented in this section extends the concept of decomposable
norms to the case where additional side constraints are present, i.e., C ̸= X .

The next section presents the null space property building on the Assump-
tions (A1) to (A4), which leads to the main result for exact uniform recovery.

2.2 Uniform Recovery in the General Framework

In order to characterize uniform recovery, we define the following null space property.
Let null(A) := {v ∈ X : Av = 0} denote the null space of the linear sensing map A,

Definition 2.8. The linear sensing map A satisfies the general null space property
of order s for the set C if and only if for all v ∈ (null(A)∩ (C + (−C))) with Bv ̸= 0

and all P ∈ Ps it holds that

−PBv ∈ D =⇒ ∀ v̂(1), v̂(2) ∈ C with v = v̂(1) − v̂(2) and ∥Bv̂(2)∥ minimal:

∥PBv̂(1)∥ − ∥PBv̂(2)∥ < ∥PBv∥. (NSPC)

Remark 2.9. Note that this null space property corresponds to the first null space
property NSP-IC in [128]. As outlined in Remark 2.4, the extension to stable and
robust recovery required a modification of one of the assumptions and consequently
of NSP-IC , which becomes (NSPC). It turned out that the null space proper-
ties NSP-IIC in [128] and (NSPC) are in fact equivalent, so that only (NSPC) is
used throughout this thesis.

The next result shows that uniform recovery of a sufficiently sparse x(0) ∈ C from
its measurements b = Ax(0) using (2.3) is exactly characterized by (NSPC).

21

Chapter 2. A General Framework for Recovery Using Null Space Properties

Theorem 2.10. Suppose that Assumptions (A1) to (A4) are satisfied. Let A be a
linear sensing map and s ≥ 0. Then the following statements are equivalent:

(i) Every s-sparse x(0) ∈ C is the unique solution of (2.3) with b = Ax(0).

(ii) A satisfies the general null space property (NSPC) of order s for the set C.

Proof. In order to prove the equivalence, let s ≥ 0 and suppose Assumptions (A1)
to (A4) are satisfied.

Assume that every s-sparse x(0) ∈ C is the unique optimal solution of the recovery
problem (2.3) with b = Ax(0). Let P ∈ Ps and v ∈ (null(A) ∩ (C + (−C))) with
Bv ̸= 0 and −PBv ∈ D. Let v̂(1), v̂(2) ∈ C be a decomposition v = v̂(1) − v̂(2) so
that ∥Bv̂(2)∥ is minimal among all such decompositions. Since v ∈ C + (−C), such
a decomposition exists. Define

w
(1)
S := PBv̂(1), w

(2)
S := PBv̂(2), wS := −PBv.

There exist v(1)S , v(2)S ∈ C with Bv
(1)
S = w

(1)
S and Bv

(2)
S = w

(2)
S , since PBx ∈ D for

all x ∈ C by Assumption (A1). Moreover, −PBv ∈ D by assumption, so that there
exists vS ∈ C with BvS = wS . Assumption (A3) implies

Bv = PBv + PBv = PBv̂(1) − PBv̂(2) + PBv = Bv
(1)
S −Bv

(2)
S −BvS

= B(v
(1)
S − v

(2)
S − vS),

which yields v = v
(1)
S − v

(2)
S − vs, since B is injective by Assumption (A1). Accord-

ingly,

0 = Av = A(v
(1)
S − v

(2)
S − vs) ⇔ A(v

(2)
S + vs) = Av

(1)
S .

Assumption (A1) implies that v(1)S is s-sparse, since

PBv
(1)
S = Pw

(1)
S = PPBv̂(1) = PBv̂(1) = w

(1)
S = Bv

(1)
S .

By construction, v(1)S , v(2)S , vS ∈ C, so that Assumption (A1) yields v(2)S + vS ∈ C as
well. Thus, the uniqueness property of A for the s-sparse v(1)S implies

∥Bv(1)S ∥ < ∥Bv
(2)
S +Bvs∥ ≤ ∥Bv(2)S ∥+ ∥Bvs∥

⇔ ∥Bv(1)S ∥ − ∥Bv
(2)
S ∥ − ∥Bvs∥ < 0

⇔ ∥PBv̂(1)∥ − ∥PBv̂(2)∥ − ∥PBv∥ < 0,

which shows the desired general null space property (NSPC) of order s for the set C.

22

2.2. Uniform Recovery in the General Framework

For the reverse direction, assume A satisfies the general null space prop-
erty (NSPC) of order s for the set C. Let x, z ∈ C with Bx ̸= Bz, Ax = Az

and x being s-sparse, i.e., there exists P ∈ Ps with PBx = Bx. In order to
show the uniqueness property for A, we need to prove that ∥Bx∥ < ∥Bz∥. Define
v := x− z ∈ null(A) ∩ (C + (−C)) with

−PBv = −PBx+ PBz = −PPBx+ PBz = PBz ∈ D,

since PP = 0 and Py ∈ D for all y ∈ D by Assumption (A2). The general null
space property (NSPC) implies that

∥PBv̂(1)∥ − ∥PBv̂(2)∥ − ∥PBv∥ < 0

for v̂(1), v̂(2) ∈ C, where v = v̂(1) − v̂(2) is a decomposition such that ∥Bv̂(2)∥ is
minimal. For this minimal decomposition, Assumption (A4) yields

∥Bx∥ ≤ ∥Bz∥+ ∥PBv̂(1)∥ − ∥PBv̂(2)∥ − ∥PBv∥+ 2∥PBx∥ < ∥Bz∥,

since by assumption, PBx = PPBx = 0. Thus, x must be the unique solution
of (2.3), which completes the proof.

It is worth mentioning that many transformations B which are used in the anal-
ysis setting, e.g., the finite difference operator in total variation minimization, are
not injective. In this case, the null space property (NSPC) is still sufficient for uni-
form recovery, but no longer necessary, since the injectivity of B is only needed for
necessity in the proof of Theorem 2.10. This is in line with the known NSPs in the
analysis setting in the literature, see, e.g., Kabanava and Rauhut [138] or Krahmer
et al. [147, Corollary 2.1].

Remark 2.11. Let C = X and D = E . Then our setting simplifies to the framework
by Juditsky et al. [137], who define a sparsity structure on E as a norm ∥·∥ on E
together with a family P of linear maps of E into itself, satisfying the following
assumptions:
A.1) P 2 = P for all P ∈ P, i.e., every P is a projection;
A.2) Every P ∈ P is assigned a nonnegative weight ν(P) and a linear map P on E

with PP = 0;
A.3) For all P ∈ P and x, y ∈ E , one has ∥P ∗x + P

∗
y∥∗ ≤ max {∥x∥∗, ∥y∥∗},

where ∥·∥∗ is the conjugate norm and P ∗ is the conjugate mapping.
Clearly, A.1) and A.2) are exactly Assumptions (A1) and (A2). Moreover, A.3)
and Assumption (A4) are equivalent, since both are equivalent to the decompos-
ability property (DP), see [214, Lemma B.1] and Lemma 2.7. Furthermore, if As-

23

Chapter 2. A General Framework for Recovery Using Null Space Properties

sumption (A3) does not hold, (NSPC) is only a sufficient condition. For v ∈ C+(−C),
the minimal decomposition is uniquely given by v̂(1) = v and v̂(2) = 0, since C = X .
Thus, (NSPC) is equivalent to the sufficient condition in [137, Lemma 3.1], namely

∥PBv∥ < ∥PBv∥ (2.5)

for all P ∈ Ps and all v ∈ null(A), Bv ̸= 0. If additionally Assumption (A3) holds,
then (2.5) and (NSPC) are also necessary conditions.

Specific NSPs for all the settings in our running examples introduced in Exam-
ple 2.3 are already known in the literature. We will now derive these known NSPs
from the generalized null space property (NSPC). Recall that Assumptions (A1)
to (A3) are satisfied in all four settings of Example 2.3, so that only Assump-
tion (A4) needs to be checked. It is worth mentioning that in these settings, the
null space characterization leads to tractable algorithms to recover x(0), by using
linear programming or semidefinite programming to minimize the ℓ1-norm or the
nuclear norm ∥·∥∗, respectively. However, already in the case of recovering sparse
vectors it is NP-hard to check the classical null space property for a given sensing
matrix A, as shown by Tillmann and Pfetsch [237].

Example 2.12.
(2.12.1) Recovery of sparse vectors by ℓ1-minimization, Example (2.3.1) continued

Recall from Example (2.3.1) that in this case, P is the set of orthogonal pro-
jectors onto all coordinate subspaces ES , with S ⊆ [n] and PBx = xS . The
decomposability property (DP) is satisfied, since

∥vS∥1 + ∥vS∥1 = ∥v∥1

holds for all v ∈ Rn and all S ⊆ [n]. Since C = X , (DP) is equivalent to As-
sumption (A4) by Lemma 2.7. Thus, (NSPC) characterizes uniform recovery by
Theorem 2.10. For v ∈ Rn, the decomposition v = v̂(1)− v̂(2) with v̂(1), v̂(2) ∈ Rn

and ∥v̂(2)∥1 minimal is unique and given by v̂(1) = v as well as v̂(2) = 0. Con-
sequently, Condition (NSPC) simplifies to the regular null space property (NSP)
(see, e.g., Foucart and Rauhut [104]):

∥vS∥1 < ∥vS∥1 ∀ v ∈ null(A) \ {0}, ∀S ⊆ [n], |S| ≤ s. (NSP)

Note that −vS ∈ D holds trivially for all v ∈ Rn, since D = Rn.
(2.12.2) Recovery of sparse nonnegative vectors by ℓ1-minimization, Example (2.3.2)

continued
For the recovery of sparse nonnegative vectors, i.e., if the additional side con-

24

2.2. Uniform Recovery in the General Framework

straint x ≥ 0 is present, Assumption (A4) is satisfied, since for all x ∈ Rn
+, we

have ∥x∥1 = 1⊤x. Since the decomposition v = v̂(1) − v̂(2) with v̂(1), v̂(2) ∈ Rn
+

and minimal ∥v̂(2)∥1 is unique and given by v̂(1) = v+ and v̂(2) = v−, the general
null space property (NSPC) of order s for the set C is equivalent to the known
nonnegative null space property [143, 256]:

vS ≤ 0 =⇒
∑
i∈S

vi < ∥vS∥1 ∀ v ∈ null(A)\{0}, ∀S ⊆ [n], |S| ≤ s,

(NSP≥0)

since P is again the set of orthogonal projectors onto all coordinate subspaces ES ,
with S ⊆ [n] and PBx = xS .

(2.12.3) Recovery of low-rank matrices by nuclear norm minimization, Exam-
ple (2.3.3) continued
The nuclear norm also satisfies

∥V ∥∗ = ∥PV ∥∗ + ∥PV ∥∗

for all V ∈ Rn1×n2 and all P ∈ P as defined in Example (2.3.3). Thus, (DP) is
satisfied, and since C = X , Assumption (A4) is satisfied as well by Lemma 2.7.
This implies that the general null space property (NSPC) characterizes uniform
recovery for low-rank matrices. As in the case of sparse vectors, the decomposi-
tion V = V̂ (1) − V̂ (2) with V̂ (1), V̂ (2) ∈ Rn1×n2 and ∥V̂ (2)∥∗ minimal is unique
and given by V̂ (1) = V as well as V̂ (2) = 0, so that Condition (NSPC) simplifies
to the well-known NSP [192, 209], [104, Theorem 4.40]:∑

j∈S

σj(V) <
∑
j∈S

σj(V) ∀V ∈ null(A)\{0}, ∀S ⊆ [nmin], |S| ≤ s, (NSP∗)

where nmin = min {n1, n2}, σ(V) is the vector of singular values of V , and S is
the index set associated to a projection P ∈ P. For symmetric matrices X ∈ Sn
this simplifies to

∥λS(V)∥1 < ∥λS(V)∥1 ∀V ∈ null(A)\{0}, ∀S ⊆ [n], |S| ≤ s,

where λ(V) is the vector of eigenvalues of V .

(2.12.4) Recovery of low-rank positive semidefinite matrices by nuclear norm mini-
mization, Example (2.3.4) continued
Again, under the additional side constraint X ⪰ 0, Assumption (A4) is satisfied
as well. For a matrix V ∈ Sn with eigenvalue decomposition V = U Diag(λ)U⊤,
where λ is the vector of eigenvalues and U ∈ On, define matrices V + ∈ Sn+

25

Chapter 2. A General Framework for Recovery Using Null Space Properties

and V − ∈ Sn+ as V + = U Diag(λ+)U⊤ and V − = U Diag(λ−)U⊤. Analogously
to the case of sparse nonnegative vectors, the decomposition V = V̂ (1) − V̂ (2)

with V̂ (1), V̂ (2) ∈ Sn+ and ∥V̂ (2)∥∗ minimal is unique and given by V̂ (1) = V +

and V̂ (2) = V −. Thus, the general null space property (NSPC) simplifies to the
following NSP [146, 192]:

λS(V) ≤ 0 =⇒
∑
j∈S

λj(V) < ∥λS(V)∥1

∀V ∈ (null(A) ∩ Sn)\{0}, ∀S ⊆ [n], |S| ≤ s,
(NSP∗

⪰0)

where λ(V) is the vector of eigenvalues of V .

Remark 2.13. The left hand side in the formulation of the nonnegative null space
property (NSP≥0) in Example (2.12.2) satisfies

∑
i∈S vi ≤ ∥vS∥1. Additionally,

if vS > 0 for some v ∈ null(A) \ {0}, then the inequality
∑

i∈S vi < ∥vS∥1 need
not hold for this particular v, see Example 3.11 for an explicit case. This already
indicates that (NSP≥0) is weaker than (NSP).

The simple observation in Remark 2.13 already indicates that imposing side con-
straints leads to weaker NSPs, which implies that it is more likely for a sensing
map to satisfy the resulting NSP. This underlines the importance of incorporating
additional structure in form of side constraints into the recovery problem.

Remark 2.14. The condition in (NSPC) can be interpreted from the viewpoint of
an ordered vector space: Let (V,≤) be a finite-dimensional ordered real vector space,
i.e., a finite-dimensional real vector space V with a partial order ≤. The positive
cone

CV := {x ∈ V : x ≥ 0}

is a convex cone with CV ∩ (−CV) = {0}. If CV is full-dimensional, we have CV −
CV = V due to the next lemma. Simple examples for a full-dimensional positive
cone CV are Rn with the usual ordering on vectors, or the space of symmetric
real n× n-matrices with the usual Löwner partial order: A ⪯ B :⇐⇒ B −A ⪰ 0.

Lemma 2.15. Let K ⊆ Rn be a convex cone. Then K −K = Rn if and only if K
is full-dimensional.

Proof. Clearly, if K is not full-dimensional, then K −K is not full-dimensional. A
proof of the converse direction appears in, e.g., Ahmadi and Hall [7, Lemma 1], which
we state here for completeness. Let x ∈ Rn. If x ∈ K, then taking v(1) = x ∈ K

26

2.2. Uniform Recovery in the General Framework

and v(2) = 0 ∈ K shows x = v(1) − v(2) ∈ K −K. Thus, assume that x /∈ K. Then
there exists v ∈ int(K), where int(K) denotes the interior of K. This implies that
there exists α ∈ (0, 1) with w = (1− α)x+ αv ∈ K. Rewriting this equality yields

x =
1

1− α
w − α

1− α
v ∈ K −K,

since v, w ∈ K and K is a cone.

Thus, if C = CV is a full-dimensional cone in Rn, the null space property (NSPC)
simplifies a bit: the condition v ∈ null(A)∩(C+(−C)) can be replaced by v ∈ null(A).
Moreover, a decomposition v = v(1) − v(2) with v(1), v(2) ∈ C always exists.

Remark 2.16. The presented framework also captures the recovery of sparse vectors
using the ℓ0-“norm” instead of the ℓ1-norm in the recovery problem, that is, solving

min {∥x∥0 : Ax = b, x ∈ Rn}. (2.6)

It is known that every s-sparse x(0) is the unique optimal solution of (2.6) with
b = Ax(0), if and only if every set of 2s columns of A is linearly independent, see,
e.g., Foucart and Rauhut [104, Theorem 2.13]. In terms of spark(A), the spark
of A, which is the minimal number of linear dependent columns of A, this recov-
ery condition reads spark(A) > 2s. In the following, we demonstrate that this
setting also fits into our general framework and that the general NSP simplifies
to spark(A) > 2s in this case. First note that ∥·∥0 is not a norm. However, the
absolute homogeneity of the norm ∥·∥ is not needed in the proof of Theorem 2.10, so
that the NSP characterization in Theorem 2.10 also holds true for ∥·∥ = ∥·∥0. Con-
sider the situation of Example (2.3.1) with the ℓ0-“norm”. Then, Assumptions (A1)
to (A3) are clearly satisfied as well. For all z ∈ Rn and all S ⊆ [n], the ℓ0-norm
satisfies ∥z∥0 = ∥zS∥0 + ∥zS∥0, so that Assumption (A4) is satisfied by Lemma 2.7,
whose proof only exploits the (reverse) triangle inequality of ∥·∥, which is satisfied by
the ℓ0-“norm”. By Theorem 2.10, uniform recovery of every sparse x ∈ Rn using (2.6)
is characterized by (NSPC). As in the case of sparse recovery using the ℓ1-norm in
Example (2.12.1), the decomposition v = v̂(1)− v̂(2) with v̂(1), v̂(2) ∈ Rn and ∥v̂(2)∥0
minimal is unique and given by v̂(1) = v and v̂(2) = 0. Thus, (NSPC) becomes

∥vS∥0 < ∥vS∥0 ∀ v ∈ null(A) \ {0}, S ⊆ [n] with |S| ≤ s. (2.7)

In order to see that (2.7) is equivalent to spark(A) > 2s, note that

spark(A) > 2s ⇔ null(A) ∩ {z ∈ Rn : ∥z∥0 ≤ 2s} = {0}
⇔ ∥v∥0 > 2s ∀ v ∈ null(A) \ {0}. (2.8)

27

Chapter 2. A General Framework for Recovery Using Null Space Properties

Now assume that ∥v∥0 > 2s for all ∈ null(A) \ {0} and let v ∈ null(A) \ {0} as well
as S ⊆ [n] with |S| ≤ s. Then vS is s-sparse, so that ∥vS∥0 ≤ s. If ∥vS∥0 ≥ ∥vS∥0,
then also ∥vS∥0 ≤ s, which implies

∥v∥0 = ∥vS∥0 + ∥vS∥0 ≤ 2s,

which contradicts the assumption ∥v∥0 > 2s. Consequently, ∥vS∥0 < ∥vS∥0.

For the reverse implication, assume that (2.7) holds and let v ∈ null(A) \ {0}.
If |supp(v)| < s, then choosing S = supp(v) yields ∥vS∥0 = 0 < ∥vS∥0, which
contradicts (2.7). Thus, |supp(v)| ≥ s, and we can choose S ⊆ [n] with |S| = s.
This yields

∥v∥0 = ∥vS∥0 + ∥vS∥0 > 2∥vS∥0 = 2s,

which shows (2.8). Altogether, we recover the well-known condition spark(A) > 2s

for uniform recovery of sparse vectors using (2.6).

Remark 2.17. In Example (2.12.1) and Remark 2.16, we have seen that sparse
recovery using ℓ1- and ℓ0-minimization fits into our framework and we recover the
well-known recovery conditions for these cases. We now show that using the ℓ2-
norm instead does not fit into our framework, since Assumption (A4) is violated. In
the situation of Example (2.12.1) with the ℓ2-norm, Assumption (A4) is equivalent
to (DP) by Lemma 2.7 since C = Rn. However, for the vector z = (1, 1, 1)⊤ together
with S = {1}, we have

√
3 = ∥z∥2 < ∥zS∥2 + ∥zS∥2 = 1 +

√
2,

which violates (DP). This implies that we cannot use any of the theorems in this
section to find recovery guarantees for ℓ2-minimization. This counterexample holds
for all ℓq-norms with q > 1 and 0 < q < 1 as well. As a consequence, a null space
property that characterizes successful recovery of sparse vectors in our proposed
framework can only be formulated for the ℓ1-norm and the ℓ0-norm, but not for any
other ℓq-norm with q /∈ {0, 1}.

In Chapter 3, we will consider further settings that emerge from the general frame-
work in more detail. These include recovery for sparse integral vectors, possibly with
additional upper and/or lower bounds and sparse vectors with so-called “constant
modulus” constraints. Moreover, we examine recovery for block-structures matrices.

In the remaining sections of this chapter, we extend the general framework for
uniform recovery presented above in Section 2.2 to stable and robust uniform re-

28

2.3. Stability and Robustness in the General Framework

covery as well as individual recovery, that is, recovery of a fixed x(0), instead of
all s-sparse x(0).

2.3 Stability and Robustness in the General
Framework

Exact recovery of a sparse vector can be seen as an idealized scenario. In reality,
vectors are rarely sparse, but it can be assumed that they are close to a sparse vector.
In this case, we need to allow for an error when recovering x. If the recovery error
can be controlled by the distance of x to sparse vectors, then the recovery process
is also called stable with respect to the sparsity defect in the literature. Apart from
stability, another important point for realistic recovery situations is the fact that
measurements are almost always corrupted by noise. Consequently, the measure-
ments b are only an approximation of the vector Ax, with an error |||Ax− b||| ≤ η,
where η ≥ 0 and ||| · ||| is some appropriate norm. In this case, we cannot hope
to recover the original vector x, but only a vector x∗ whose representation Bx∗ is
close to the representation Bx in the norm ∥·∥. If this distance is controlled by the
measurement error η, the recovery process is called robust with respect to measure-
ment errors. In order to guarantee robustness, the recovery problem needs to be
adapted accordingly to incorporate the error η, i.e., the constraint Ax = b needs to
be replaced with |||Ax− b||| ≤ η. Consequently, stable recovery as described here is
a special case of robust recovery, where no measurement error is assumed.

In the classical case of (almost) sparse vectors, it is known that a slightly strength-
ened null space property assures that ℓ1-minimization is stable, and a further
strengthened null space property also guarantees robustness of the recovery problem

min {∥x∥1 : |||Ax− b||| ≤ η},

where ||| · ||| is any norm on Rn. This result has first been established by Candès
et al. [39], using the restricted isometry property instead of the null space property.
An explicit proof for stability and robustness under a suitable null space property
appears in Foucart and Rauhut [104]. Of course, stability and robustness of the re-
covery problem can also be formulated for additional side constraints as well as for
the problem of recovering low-rank matrices. Conditions for stable and robust re-
covery of sparse nonnegative vectors are derived in Juditsky et al. [136], and Kueng
and Jung [149] use the classical robust null space property to treat nonnegative
vectors. Stability and robustness for low-rank matrix recovery using nuclear norm
minimization has been established in Candès and Plan [43], Mohan and Fazel [180]
and Recht et al. [210] using the restricted isometry property. The extension of

29

Chapter 2. A General Framework for Recovery Using Null Space Properties

the classical stable and robust null space property to the matrix setting appears
in Oymak et al. [195] and Oymak and Hassibi [193]. A strengthened version of the
robust null space property for low-rank matrix recovery is established in Kabanava
et al. [139]. Conditions for stable and robust recovery of low-rank positive semidef-
inite matrices appear in Kong et al. [146] who directly transfer the results of [136]
for the recovery of sparse nonnegative vectors to matrices.

In the following, we demonstrate that the concept of stability and robustness of the
recovery problem can immediately be transferred to the general framework presented
in the previous sections. Since stability is a special case of robustness, we first present
the result for robust recovery in Section 2.3.1 and then derive stable recovery in
Section 2.3.2. Finally, in Section 2.3.3, we show that stability and robustness in the
case of (nonnegative) sparse recovery and recovery of low-rank (positive semidefinite)
matrices can be derived as special cases of the obtained results.

In order to include stable and robust recovery into the general framework for
uniform recovery in Section 2.2, we need the following additional assumption.
(A5) For all s ≥ 0, P ∈ Ps, all v ∈ C+(−C) and for all decompositions v = v̂(1)−v̂(2)

with v̂(1), v̂(2) ∈ C and ∥Bv̂(2)∥ minimal, there exists Q ∈ Ps and Q ∈ P with

QBv = PBv̂(1), QBv̂(2) = 0, and QBv = PBv − PBv̂(2).

Assumption (A5) essentially demands that every (sparsified) minimal decomposition
can directly be obtained by sparsity-inducing projections. For instance, for a sparse
nonnegative vector v ∈ Rn

+, its minimal decomposition is unique and given by
v = v+ − v−, see Example (2.12.2). Then, for every set S ⊆ [n], we can define
T := supp(v+) ∩ S to obtain vT = v+S and v−T = 0.

Remark 2.18. Assumption (A5) explains why we use a slightly modified Assump-
tion (A4) and null space property (NSPC) in comparison to [128], see also Re-
marks 2.4 and 2.9. Namely, in the situation of Example (2.3.2), i.e., the re-
covery of sparse nonnegative vectors with ℓ1-minimization, the maps P ∈ P are
given by orthogonal projections onto coordinate subspaces. Now, for the de-
composition vS = (1,−1)⊤ = (2, 0)⊤ − (1, 1)⊤ there is no projection Q ∈ P
with QvS = (2, 0)⊤. However, for the minimal decomposition vS = (1, 0)⊤− (0, 1)⊤,
the corresponding projection Q is given by the projection onto the coordinate sub-
space of the first coordinate of vS . Thus, the minimality of the decomposition in
Assumption (A5) ensures that this assumption is satisfied in all relevant special
cases considered in Example 2.3, as we will see in Section 2.3.3. But using Assump-
tion (A5) implies that Assumption (A4) and the null space property (NSPC) need
to be adapted accordingly, that is, using a minimal decomposition instead of any
decomposition. As discussed in Remark 2.4, this implies that the split into two dif-

30

2.3. Stability and Robustness in the General Framework

ferent versions of Assumption (A4) and (NSPC) is not necessary any longer, which
simplifies the exposition in comparison to [128]. For exact recovery without noise,
the adaption and resulting simplification is not necessary as shown in [128], but in
order to have a unified presentation for exact, stable and robust recovery, we used
the adapted Assumption (A4) and the null space property (NSPC) also for exact
recovery.

2.3.1 Robust Recovery

Let us now assume that we cannot take exact measurements, and that the origi-
nal x ∈ C may not be sparse. Furthermore, let ||| · ||| be an appropriate norm on Rm.
If measurements b are corrupted by some sort of noise n with |||n||| ≤ η, i.e., b can
be obtained as b = Ax + n, or if there is a measurement error |||Ax− b||| ≤ η, the
general recovery problem becomes

min {∥Bx∥ : |||Ax− b||| ≤ η, x ∈ C} (2.9)

for some y ∈ Rm and η ≥ 0. Thus, exact recovery is not possible. Instead we
want to control the recovery error ∥Bx(0) − Bx∗∥, that is, the distance between
the representations of the original x(0) ∈ C and the recovered x∗ ∈ C. Since for
a given x(0) ∈ C, a solution x∗ ∈ C of the recovery problem (2.9) only needs to
satisfy |||Ax∗ −Ax(0)||| ≤ η, the resulting vector v = x(0) − x∗ /∈ null(A) in general.
Thus, any NSP which ensures a bound on ∥Bx(0) − Bx∗∥ needs to hold for all
v ∈ C+(−C). This in contrast to the exact recovery in Section 2.2, where the NSPs
only need to hold for elements v ∈ null(A)∩ (C +(−C)). This implies that the error
bound will depend on a term |||Av|||, which consequently needs to be incorporated
into a robust NSP as well. An additional modification needs to be done in order to
also account for elements x ∈ C, which are not exactly sparse, but only “close” to
sparse elements. Applying these modifications to (NSPC) yields the following robust
NSP.

Definition 2.19. The linear sensing map A satisfies the general robust null space
property of order s with constants ρ ∈ (0, 1) and τ > 0 for the set C if and only if
for all v ∈ C + (−C) and all P ∈ Ps it holds that

−PBv ∈ D =⇒ ∀ v̂(1), v̂(2) ∈ C with v = v̂(1) − v̂(2) and ∥Bv̂(2)∥ minimal:

∥PBv̂(1)∥ − ∥PBv̂(2)∥ ≤ ρ∥PBv∥+ τ |||Av|||. (rNSPC
ρ,τ)

Analogously to Theorem 2.10, the robust null space property (rNSPC
ρ,τ) can be

used to bound the error of recovery using the general robust recovery problem (2.9).

31

Chapter 2. A General Framework for Recovery Using Null Space Properties

Theorem 2.20. Suppose that Assumptions (A1) to (A5) are satisfied and that
∥Bv∥ = ∥PBv∥ + ∥PBv∥ holds for all v ∈ C + (−C) and all P ∈ P. Let A be
a linear sensing map and s ≥ 0. Consider the error bound

−PBv ∈ D =⇒ ∥Bx−Bz∥ ≤ 1+ρ
1−ρ

(
∥Bz∥ − ∥Bx∥+ 2∥PBx∥

)
+ 2τ

1−ρ |||A(x− z)|||,
(rEB)

where x, z ∈ C, v := x − z and P ∈ Ps. Then the linear sensing map A satisfies
the general robust null space property (rNSPC

ρ,τ) of order s with constants ρ ∈ (0, 1)

and τ > 0 for the set C if and only if the error bound (rEB) holds for all x, z ∈ C
and all P ∈ Ps.

Proof. Let A be a linear sensing map, and let s ≥ 0. Let Assumptions (A1) to (A5)
be satisfied and assume that ∥Bv∥ = ∥PBv∥ + ∥PBv∥ holds for all v ∈ C + (−C)
and all P ∈ P.

Suppose that the general robust null space property (rNSPC
ρ,τ) holds. Let x, z ∈ C

and P ∈ Ps with v := x − z ∈ C + (−C) as well as −PBv ∈ D. Furthermore,
let v̂(1), v̂(2) ∈ C with v = v̂(1) − v̂(2) and ∥Bv̂(2)∥ minimal. Assumption (A4)
implies

∥PBv̂(2)∥+ ∥PBv∥ ≤ ∥Bz∥ − ∥Bx∥+ ∥PBv̂(1)∥+ 2∥PBx∥. (2.10)

By Assumption (A5), there exist Q ∈ Ps, Q ∈ P with QBv = PBv̂(1), QBv̂(2) = 0,
and QBv = PBv − PBv̂(2). We have −PBv ∈ D by assumption and PBv̂(2) ∈ D,
since v̂(2) ∈ C. This implies −QBv = PBv̂(2) − PBv ∈ D, since c1 + c2 ∈ C for
all c1, c2 ∈ C by Assumption (A1). Thus, the robust null space property (rNSPC

ρ,τ)
for Q ∈ Ps and v ∈ C + (−C) implies

∥QBv̂(1)∥ − ∥QBv̂(2)∥ ≤ ρ∥QBv∥+ τ |||Av|||.

By definition, QBv̂(1) = QBv = PBv̂(1), QBv̂(2) = 0 and QBv = PBv − PBv̂(2).
Thus,

∥PBv̂(1)∥ ≤ ρ
(
∥PBv − PBv̂(2)∥

)
+ τ |||Av|||

≤ ρ
(
∥PBv∥+ ∥PBv̂(2)∥

)
+ τ |||Av|||

≤ ρ
(
∥Bz∥ − ∥Bx∥+ ∥PBv̂(1)∥+ 2∥PBx∥

)
+ τ |||Av|||,

where we used (2.10) for the last inequality. Thus,

∥PBv̂(1)∥ ≤ ρ

1− ρ
(
∥Bz∥ − ∥Bx∥+ 2∥PBx∥

)
+

τ

1− ρ
|||Av|||, (2.11)

32

2.3. Stability and Robustness in the General Framework

since 1− ρ ∈ (0, 1). Combining (2.10) and (2.11) yields

∥Bx−Bz∥ = ∥Bv∥ = ∥PBv + PBv∥

= ∥PBv̂(1) − PBv̂(2) + PBv∥

≤ ∥PBv̂(1)∥+ ∥PBv̂(2)∥+ ∥PBv∥

≤ ∥Bz∥ − ∥Bx∥+ 2∥PBv̂(1)∥+ 2∥PBx∥

≤ 1 + ρ

1− ρ

(
∥Bz∥ − ∥Bx∥+ 2∥PBx∥

)
+

2τ

1− ρ
|||Av|||,

where we used (2.10) for the second inequality and (2.11) for the third inequality.
This shows that the error bound (rEB) is satisfied.

In order to prove the reverse implication, suppose that the error bound (rEB) holds
for all x, z ∈ C and all P ∈ Ps. Let P ∈ Ps and v ∈ C + (−C) with −PBv ∈ D.
Let v̂(1), v̂(2) ∈ C be a decomposition v = v̂(1) − v̂(2) so that ∥Bv̂(2)∥ is minimal.
Since v ∈ C + (−C), there exists at least one such decomposition. Define

w
(1)
S := PBv̂(1), w

(2)
S := PBv̂(2), wS := −PBv,

with w
(1)
S , w(2)

S ∈ D since by Assumption (A1), PBx ∈ D for all x ∈ C. More-
over, wS = −PBv ∈ D holds by assumption. Since D is the image of C under B,
there exist v̂(1)S , v̂

(2)
S , vS ∈ C with

Bv̂
(1)
S = w

(1)
S = PBv̂(1), Bv̂

(2)
S = w

(2)
S = PBv̂(2), BvS = wS = −PBv.

Due to Assumption (A3), we have

Bv = PBv + PBv = PBv̂(1) − PBv̂(2) + PBv = B
(
v̂
(1)
S − v̂

(2)
S − vS

)
,

which implies v = v̂
(1)
S − v̂

(2)
S − vS , since B is injective by Assumption (A1).

Since v̂(1)S , v̂
(2)
S , vS ∈ C and c1 + c2 ∈ C for all c1, c2 ∈ C by Assumption (A1),

we have v̂(2)S + vS ∈ C. Define

x := v̂
(1)
S ∈ C, z := v̂

(2)
S + vS ∈ C,

so that v = x − z. Since by assumption, v̂(1), v̂(2) ∈ C with v = v̂(1) − v̂(2) such
that ∥Bv̂(2)∥ is minimal, the error bound (rEB) implies that

∥Bv̂(1)S −Bv̂
(2)
S −BvS∥ ≤

1+ρ
1−ρ

(
∥Bv̂(2)S +BvS∥ − ∥Bv̂

(1)
S ∥+ 2∥PBv̂(1)S ∥

)
+ 2τ

1−ρ |||Av|||,

33

Chapter 2. A General Framework for Recovery Using Null Space Properties

which yields

(1− ρ)∥Bv̂(1)S −Bv̂
(2)
S −BvS∥

≤ (1 + ρ)
(
∥Bv̂(2)S +BvS∥ − ∥Bv̂

(1)
S ∥+ 2∥PBv̂(1)S ∥

)
+ 2τ |||Av|||.

(2.12)

This shows

(1− ρ)
(
∥PBv̂(1)∥ − ∥PBv̂(2)∥+ ∥PBv∥

)
≤ (1− ρ)

(
∥PBv̂(1) − PBv̂(2)∥+ ∥PBv∥

)
=(1− ρ)∥PBv̂(1) − PBv̂(2) + PBv∥

=(1− ρ)∥Bv̂(1)S −Bv̂
(2)
S −BvS∥

≤ (1 + ρ)
(
∥Bv̂(2)S +BvS∥ − ∥Bv̂

(1)
S ∥+ 2∥PBv̂(1)S ∥

)
+ 2τ |||Av|||

=(1 + ρ)
(
∥PBv̂(2) − PBv∥ − ∥PBv̂(1)∥

)
+ 2τ |||Av|||

≤ (1 + ρ)
(
∥PBv̂(2)∥+ ∥PBv∥ − ∥PBv̂(1)∥

)
+ 2τ |||Av|||,

where we used the assumption ∥Bv∥ = ∥PBv∥ + ∥PBv∥ for the first equality,
Inequality (2.12) for the second inequality, and PP = 0 (Assumption (A2)) for the
third equality. This results in the inequality

(1− ρ)
(
∥PBv̂(1)∥ − ∥PBv̂(2)∥+ ∥PBv∥

)
≤ (1 + ρ)

(
∥PBv̂(2)∥+ ∥PBv∥ − ∥PBv̂(1)∥

)
+ 2τ |||Av|||.

(2.13)

Rewriting Inequality (2.13), we obtain

2∥PBv̂(1)∥ − 2∥PBv̂(2)∥ − 2ρ∥PBv∥ − 2τ |||Av||| ≤ 0,

which shows the general robust null space property (rNSPC
ρ,τ) of order s with con-

stants ρ and τ for the set C.

Remark 2.21. For the proof that the robust error bound (rEB) implies the robust
null space property (rNSPC

ρ,τ), we need that

∥Bv∥ = ∥PBv∥+ ∥PBv∥ (2.14)

holds for all v ∈ C + (−C) and all P ∈ P. However, Lemma 2.7 only shows that
Assumption (A4) implies (2.14) for all v ∈ C and all P ∈ P. Thus, we added

34

2.3. Stability and Robustness in the General Framework

the slightly stronger property as assumption to the statement in Theorem 2.20. It
turns out that in all settings considered throughout this thesis, (2.14) even holds
for all v ∈ X and all P ∈ P. In fact, we conjecture that Assumption (A4) already
implies (2.14) for all v ∈ C + (−C) and all P ∈ P.

If the general robust null space property (2.10) is satisfied, the error bound (rEB)
holds for all x, z ∈ C. If x = x(0) ∈ C and z = x̃ ∈ C is an optimal solution of
the recovery problem (2.9) with b = Ax(0), then Theorem 2.20 yields an explicit
error bound in terms of the measurement error η and the distance of x(0) to sparse
elements. To formalize this distance, we introduce the best s-term approximation
of x and its error in the following.

Definition 2.22. Let x ∈ X . The error σs(x) of the best s-term approximation
of x is defined as

σs(x) := min {∥Bx−Bz∥ : z ∈ X , ∃P ∈ Ps with PBz = Bz}, (2.15)

and any z ∈ X attaining this minimum is called a best s-term approximation of x.

Definition 2.22 generalizes the usual notion of the best s-term approximation for
sparse vectors σs(x)1 = min {∥x − z∥1 : z ∈ Rn is s-sparse}, see e.g., Foucart and
Rauhut [104, Definition 2.2]. We could also restrict to z ∈ C in (2.15), but this
would lead to possibly larger values σs(x), which in turn would weaken any (upper)
bound involving σs(x). Thus, we use z ∈ X in (2.15).

Theorem 2.20 can now be used to formulate the desired error bound in the
norm ∥·∥ for an optimal solution of the general robust recovery problem (2.9), which
depends on the measurement error and the distance to sparse elements.

Theorem 2.23. Suppose that Assumptions (A1) to (A5) are satisfied. Let A be a
linear sensing map and s ≥ 0. Let x(0) ∈ C, and let x̃ be an optimal solution of the
recovery problem (2.9) with b = Ax(0) + e and |||e||| ≤ η. If A satisfies (rNSPC

ρ,τ)
of order s with constants 0 < ρ < 1 and τ > 1, and if there exists P ∈ Ps such
that the (unique) preimage of PBx(0) ∈ D is a best s-term approximation of x(0)

and −PB(x(0) − x̃) ∈ D, then x̃ approximates x(0) with error

∥Bx(0) −Bx̃∥ ≤ 2 1+ρ
1−ρσs(x

(0)) + 4τ
1−ρη.

Note that for all x(0) ∈ C, the preimage of PBx(0) ∈ D exists by definition of D and
is unique since B is assumed to be injective by Assumption (A1).

35

Chapter 2. A General Framework for Recovery Using Null Space Properties

Proof. Suppose that Assumptions (A1) to (A5) are satisfied. Let x(0) ∈ C and
let x̃ ∈ C be a minimizer of min {∥Bx∥ : |||b−Ax||| ≤ η, x ∈ C} with b = Ax(0) + e

and |||e||| ≤ η. Then, ∥Bx̃∥ ≤ ∥Bx(0)∥. Let P ∈ Ps so that the preimage z ∈ C
of PBx(0) is a best s-term approximation of x(0) and that −PB(x(0) − x̃) ∈ D.
This implies σs(x(0)) = ∥Bx(0) − Bz∥ = ∥Bx(0) − PBx(0)∥ = ∥PBx(0)∥ due to
Assumption (A3). Define v := x(0) − x̃ and let v̂(1), v̂(2) ∈ C with v = v̂(1) − v̂(2)
and ∥Bv̂(2)∥minimal. Since A satisfies (rNSPC

ρ,τ) of order s with constants 0 < ρ < 1

and τ > 1 and −PB(x(0) − x̃) ∈ D, the error bound (rEB) in Theorem 2.20 yields

∥Bx(0) −Bx̃∥ ≤ 1+ρ
1−ρ

(
∥Bx̃∥ − ∥Bx(0)∥+ 2∥PBx(0)∥

)
+ 2τ

1−ρ |||Ax
(0) −Ax̃|||

≤ 2 1+ρ
1−ρσs(x

(0)) + 4τ
1−ρη,

since |||Ax(0) −Ax̃||| ≤ |||(Ax(0) + e)−Ax̃|||+ |||e||| ≤ 2η.

Remark 2.24. If x(0) is s-sparse, i.e., there exists P ∈ Ps with PBx(0) = Bx(0),
then σs(x(0)) = 0 and the error bound in Theorem 2.23 becomes

∥Bx(0) −Bx̃∥ ≤ 4τ
1−ρη.

Moreover, if the measurement error (or the noise level, respectively) satisfies η = 0,
that is, the measurements are exact, then Theorem 2.23 asserts that x(0) is exactly
reconstructed. Thus, we obtain the statement from Theorem 2.10 about uniform
exact recovery.

Remark 2.25. The error bound in Theorem 2.23 is in terms of the norm ∥·∥, which
is used in the objective function of the general robust recovery problem (2.9). In
the classical cases this would be the ℓ1-norm or the nuclear norm. However, it is
also interesting to have an estimate for the recovery error with respect to another
norm, e.g., the ℓ2-norm or the Frobenius norm in the classical cases. This can
be modeled by using a third norm on E and an adaption of the robust null space
property (rNSPC

ρ,τ).

Unconstrained Case Next we consider the important case where there are no addi-
tional side constraints, that is, C = X and D = E holds. In this case, for any v ∈ X ,
the unique minimal decomposition v = v̂(1) − v̂(2) with v̂(1), v̂(2) ∈ X is given
by v̂(1) = v and v̂(2) = 0. Thus, we can fix the minimal decomposition v = v − 0 in
Assumption (A4), Assumption (A5), and (rEB) without loss of generality. Assump-
tion (A4) becomes

∥Bx∥ ≤ ∥Bz∥+ ∥PBv∥ − ∥PBv∥+ 2∥PBx∥ (2.16)

36

2.3. Stability and Robustness in the General Framework

for all s ≥ 0, P ∈ P, for all x, z ∈ X and v := x− z. Assumption (A5) simplifies to

∃Q ∈ Ps, Q ∈ P : QBv = PBv, QBv = PBv

for all P ∈ Ps, v ∈ C + (−C). Choosing Q = P and Q = P shows that Assump-
tion (A5) is always satisfied in the unconstrained case. The error bound (rEB)
becomes

∥Bx−Bz∥ ≤ 1+ρ
1−ρ

(
∥Bz∥ − ∥Bx∥+ 2∥PBx∥

)
+ 2τ

1−ρ |||A(x− z)||| (2.17)

for all x, z ∈ X , v := x − z and P ∈ Ps. The general robust null space prop-
erty (rNSPC

ρ,τ) for the set X simplifies to the condition

∥PBv∥ ≤ ρ∥PBv∥+ τ |||Av||| (2.18)

for all v ∈ X and all P ∈ Ps. Altogether, Theorem 2.20 yields the following
equivalence between the general robust null space property (2.18) and the error
bound (2.17).

Theorem 2.26. Let A be a linear sensing map and s ≥ 0. Suppose that Assump-
tions (A1) to (A3) are satisfied and that (2.16) holds. In case that C = X holds,
the linear sensing map A satisfies the general robust null space property (2.18) of
order s with constants ρ ∈ (0, 1) and τ > 0 for the set X if and only if the error
bound (2.17) holds for all x, z ∈ X and all P ∈ Ps.

Proof. Since C = X , Lemma 2.7 shows that (2.16) implies ∥Bv∥ = ∥PBv∥+∥PBv∥
for all v ∈ X and all P ∈ P. Thus, the statement is exactly Theorem 2.20 restricted
to C = X and D = E .

2.3.2 Stable Recovery

In the previous section, we already showed that under a strengthened null space
property, a modified version of the recovery problem which also accounts for the
measurement error η, guarantees robust recovery. The recovery error between the
original x(0) ∈ C and the recovered x∗ ∈ C in the norm ∥·∥ depends on the distance
of x(0) to sparse elements and the measurement error η. Let us now consider a special
case and assume that the measurement error η = 0, that is, the measurements are
exact and not corrupted by noise. Then, we again arrive at the (exact) general
recovery problem (2.3), that is,

min {∥Bx∥ : Ax = Ax(0), x ∈ C}.

37

Chapter 2. A General Framework for Recovery Using Null Space Properties

However, we still do not assume that x(0) ∈ C is sparse. As outlined in the be-
ginning of Section 2.3, the recovery problem (2.3) allows for stable recovery, if
the error between the original x(0) and the recovered x is controlled by the dis-
tance of x(0) to sparse elements. Since (2.3) is used for stable recovery, only ele-
ments v ∈ null(A) ∩ (C + (−C)) are of interest for a characterization of recovery.
This implies that a corresponding error bound only needs to hold for x, z ∈ C
with Ax = Az. Consequently, Av = 0, so that the terms τ |||Av||| can be omitted in
the statements within the last section. This directly leads to the following stable
null space property.

Definition 2.27. The linear sensing map A satisfies the general stable null space
property of order s with constant ρ ∈ (0, 1) for the set C if and only if for all
v ∈ (null(A) ∩ (C + (−C))) and all P ∈ Ps it holds that

−PBv ∈ D =⇒ ∀ v̂(1), v̂(2) ∈ C with v = v̂(1) − v̂(2) and ∥Bv̂(2)∥ minimal:

∥PBv̂(1)∥ − ∥PBv̂(2)∥ ≤ ρ∥PBv∥. (sNSPC
ρ)

Since we use the (exact) recovery problem (2.3), an error bound which en-
sures stability only needs to hold for all x, z ∈ C with Ax = Az. Thus, the
term 2τ |||A(x− z)||| vanishes from the robust error bound (rEB). This directly leads
to the following characterization of stable recovery as a corollary of the characteri-
zation of robust recovery in Theorem 2.20.

Corollary 2.28. Suppose that Assumptions (A1) to (A5) are satisfied and that
∥Bv∥ = ∥PBv∥ + ∥PBv∥ holds for all v ∈ C + (−C) and all P ∈ P. Let A be a
linear sensing map and s ≥ 0. For x, z ∈ C and P ∈ Ps, consider the error bound

−PBv ∈ D =⇒ ∥Bx−Bz∥ ≤ 1+ρ
1−ρ

(
∥Bz∥ − ∥Bx∥+ 2∥PBx∥

)
, (sEB)

where v := x − z. Then the linear sensing map A satisfies the general stable null
space property (sNSPC

ρ) of order s with constant ρ ∈ (0, 1) for the set C if and only
if the error bound (sEB) holds for all x, z ∈ C with Ax = Az and all P ∈ Ps.

Proof. The statements can be obtained from Theorem 2.20 by noting that the stable
null space property (sNSPC

ρ) only needs to hold for all v ∈ null(A)∩ (C + (−C)) and
requiring that the stable error bound (sEB) only needs to hold for all x, z ∈ C
with Ax = Az.

Setting η = 0 in the error bound for robust recovery in Theorem 2.23 yields the
following error bound in terms of the norm ∥·∥ for the optimal solution of the general
recovery problem (2.9) when the original x(0) ∈ C is not s-sparse. The resulting error

38

2.3. Stability and Robustness in the General Framework

bound depends only on the distance of x(0) to sparse elements by using the error of
the best s-term approximation.

Corollary 2.29. Suppose that Assumptions (A1) to (A5) are satisfied. Let A be a
linear sensing map and s ≥ 0. Let x(0) ∈ C and let x̃ be an optimal solution of

min {∥Bx∥ : Ax = Ax(0), x ∈ C}.

If A satisfies (sNSPC
ρ) of order s with constant ρ ∈ (0, 1), and if there exists P ∈ Ps

such that PBx(0) is the representation of a best s-term approximation of x(0) and
−PB(x(0) − x̃) ∈ D, then x̃ approximates x(0) with error

∥Bx(0) −Bx̃∥ ≤ 2 1+ρ
1−ρσs(x

(0)).

Proof. Directly follows from Theorem 2.23 by letting η = 0.

Remark 2.30. If x(0) is s-sparse, i.e., there exists P ∈ Ps with PBx = Bx, and
if Assumption (A2) (or, to be more precise, PP = 0) holds, then σs(x

(0)) = 0 and
Corollary 2.29 asserts that x(0) is exactly recovered. Thus, we recover the statement
in Theorem 2.10 about exact uniform recovery.

Unconstrained Case Let us again consider the important special case without side
constraints, that is C = X and D = E . Setting τ = 0 and restricting to v ∈ null(A)
in the simplified robust null space property for the unconstrained case in (2.18)
yields the following simplified NSP for stable recovery:

∥PBv∥ ≤ ρ∥PBv∥ (2.19)

for all v ∈ null(A) ∩ X and all P ∈ Ps, where ρ ∈ (0, 1). The corresponding error
bound in Corollary 2.28 becomes

∥Bx−Bz∥ ≤ 1+ρ
1−ρ

(
∥Bz∥ − ∥Bx∥+ 2∥PBx∥

)
, (2.20)

where x, z ∈ X and P ∈ Ps. Analogously to Theorem 2.26, the linear sensing map A
satisfies the null space property (2.19) of order s with constant ρ ∈ (0, 1) if and only
if the error bound (2.20) holds for all x, z ∈ X with Ax = Az and all P ∈ Ps.

2.3.3 Stability and Robustness for Some Special Cases

We now show that for our running examples, the statements about stable and ro-
bust recovery from the previous sections simplify to the corresponding NSPs which

39

Chapter 2. A General Framework for Recovery Using Null Space Properties

are already known in the literature. In all these settings, the decomposability prop-
erty ∥Bv∥ = ∥PBv∥+ ∥PBv∥ clearly holds for all v ∈ X and all P ∈ P.

Recovery of sparse vectors by ℓ1-minimization, Example (2.12.1) continued Re-
call that Assumption (A4) holds and that for all v ∈ Rn, the minimal decomposi-
tion v = v̂(1) − v̂(2) with v̂(1), v̂(2) ∈ Rn is uniquely given by v̂(1) = v and v̂(2) = 0.
As already noted before, Assumption (A5) is trivially satisfied in the unconstrained
case by setting Q = P and Q = P . The stable null space property (sNSPC

ρ) of
order s with constant ρ ∈ (0, 1) simplifies to the well known stable NSP (see, e.g.,
Foucart and Rauhut [104, Definition 4.11]):

∥vS∥1 ≤ ρ∥vS∥1

for all v ∈ null(A) and all S ⊆ [n] with |S| ≤ s. Corollaries 2.28 and 2.29 become
the corresponding statements in [104, Theorem 4.14, Theorem 4.12]. Similarly, the
robust null space property (rNSPC

ρ,τ) of order s with constants ρ ∈ (0, 1) and τ > 0

simplifies to the well known robust NSP (see, e.g., [104, Definition 4.17]):

∥vS∥1 ≤ ρ∥vS∥1 + τ |||Av|||

for all v ∈ Rn and all S ⊆ [n] with |S| ≤ s. Theorems 2.20 and 2.23 are exactly [104,
Theorem 4.20, Theorem 4.19].

Recovery of sparse nonnegative vectors by ℓ1-minimization, Example (2.12.2)
continued Recall that for the recovery of sparse nonnegative vectors, i.e., C = Rn

+,
Assumption (A4) is satisfied and that for v ∈ Rn, the decomposition v = v̂(1)− v̂(2)
with v̂(1), v̂(2) ∈ C and ∥v̂(2)∥1 minimal is unique and given by v̂(1) = v+,
and v̂(2) = v−. Since the supports of v+ and v− are disjoint, using the projec-
tion Q onto the support supp(v+) of v+ and the projection Q onto [n] \ supp(v+)
shows that Assumption (A5) is satisfied as well. Thus, stable and robust recov-
ery is characterized by (sNSPC

ρ) and (rNSPC
ρ,τ), respectively, which simplify to the

following properties:

vS ≤ 0 =⇒
∑
i∈S

vi ≤ ρ∥vS∥1 ∀ v ∈ null(A), ∀S ⊆ [n], |S| ≤ s,

vS ≤ 0 =⇒
∑
i∈S

vi ≤ ρ∥vS∥1 + τ |||Av||| ∀ v ∈ Rn, ∀S ⊆ [n], |S| ≤ s.

The robust nonnegative NSP and a variant of the corresponding characterization
of robust recovery in Theorem 2.20 appears in Juditsky et al. [136], who treat the
slightly more general setting of sign restrictions on a part of all entries of x ∈ Rn.

40

2.3. Stability and Robustness in the General Framework

Recovery of low-rank matrices by nuclear norm minimization, Example (2.12.3)
continued As in the case of recovery of sparse vectors, Assumption (A4) is satisfied.
Moreover, the unique minimal decomposition V = V̂ (1)− V̂ (2) is given by V̂ (1) = V

and V̂ (2) = 0. Once again, setting Q = P and Q = P satisfies Assumption (A5).
The stable and robust null space properties (sNSPC

ρ) and (rNSPC
ρ,τ) simplify to∑

j∈S

σj(V) ≤ ρ
∑
j∈S

σj(V) ∀V ∈ null(A), ∀S ⊆ [nmin], |S| ≤ s,

∑
j∈S

σj(V) ≤ ρ
∑
j∈S

σj(V) + τ |||AV ||| ∀V ∈ Rn1×n2 , ∀S ⊆ [nmin], |S| ≤ s,

where nmin = min {n1, n2} and σ(V) is the vector of singular values of V . These
NSPs and the corresponding statements for stable and robust recovery can be found
in [104, Exercises 4.19 and 4.20].

Recovery of low-rank positive semidefinite matrices by nuclear norm minimiza-
tion, Example (2.12.4) continued As in the case of recovery of sparse nonnegative
vectors, Assumptions (A4) and (A5) are satisfied, since for V ∈ Sn with eigen-
value decomposition V = U Diag(λ)W⊤ the unique decomposition V = V̂ (1) − V̂ (2)

with V̂ (1), V̂ (2) ⪰ 0 and ∥V̂ (2)∥∗ minimal is given by V̂ (1) = U Diag(λ+)W⊤

and v̂(2) = U Diag(λ−)W⊤, where λ is the vector of eigenvalues of V . Consequently,
stable and robust recovery is characterized by (sNSPC

ρ) and (rNSPC
ρ,τ), respectively,

which simplify to the following properties:

λS(V) ≤ 0 =⇒
∑
j∈S

λj(V) ≤ ρ∥λS(V)∥1 ∀V ∈ (null(A) ∩ Sn), ∀S ⊆ [n], |S| ≤ s,

λS(V) ≤ 0 =⇒
∑
j∈S

λj(V) ≤ ρ∥λS(V)∥1 + τ |||AV ||| ∀V ∈ Sn, ∀S ⊆ [n], |S| ≤ s.

The latter robust null space property and a variant of the corresponding character-
ization of robust recovery in Theorem 2.20 appears in Kong et al. [146].

Recovery of sparse vectors by ℓ0-minimization We first remark that the results
within this paragraph are based on joint work with Marc E. Pfetsch. In Remark 2.16,
we have seen that recovery of sparse recovery using ℓ0-minimization also fits into
our framework, and that we recover the well-known condition spark(A) > 2s needed
for exact uniform recovery. Using the results of Section 2.3, this condition can in
principle be extended to stable and robust recovery using ℓ0-minimization. The
argument that Assumption (A5) is trivially satisfied in the unconstrained case by
settingQ = P andQ = P is also applicable to the ℓ0-norm. Recall from Remark 2.16

41

Chapter 2. A General Framework for Recovery Using Null Space Properties

that Assumption (A4) holds. Furthermore, we choose ||| · ||| = ∥·∥0. Even if ∥·∥0
is not a norm, all statements in Section 2.3 still hold for this choice, since the
absolute homogeneity is not needed in the proofs. The general robust null space
property (rNSPC

ρ,τ) with ρ ∈ (0, 1) and τ > 0 simplifies to

∥vS∥0 ≤ ρ∥vS∥0 + τ∥Av∥0 (2.21)

for all v ∈ Rn, and all S ⊆ [n] with |S| ≤ s. By Theorem 2.20, this condition is
satisfied if and only if

∥z − x∥0 ≤ 1−ρ
1+ρ

(
∥z∥0 − ∥x∥0 + 2∥xS∥0

)
+ 2τ

1−ρ∥Av∥0

holds for all x, z ∈ Rn. If A satisfies the null space property (2.21) of order s with
constants ρ ∈ (0, 1) and τ > 0, then Theorem 2.23 yields the error bound

∥x− x̃∥0 ≤ 2 1+ρ
1−ρ max {0, ∥x∥0 − s}+ 4τ

1−ρη (2.22)

for a solution x̃ of min {∥z∥0 : Az = Ax}, since the best s-term approximation of x
in ∥·∥0 is given by any z with at most s nonzero entries. Thus, the error σs(x) of
the best s-term approximation of x is either 0, if x is s-sparse, or ∥x∥0 − s, if x
has more than s nonzero entries. Clearly, if x is s-sparse and there is no recovery
or measurement error, i.e., η = 0, then this error bound implies exact recovery.
The NSP condition (2.21) is implied by a statement in terms of the spark of the
matrix A, similar to Remark 2.16.

Lemma 2.31. Let A ∈ Rm×n, s ≥ 0, and ρ ∈ (0, 1) and τ > 0. If spark(A) ≥ 1+ρ
ρ s

and τ ≥ s, then A satisfies the robust NSP (2.21) of order s with constants ρ and τ .

Proof. The proof is analogous to the exact case in Remark 2.16. Let A ∈ Rm×n,
s ≥ 0, and ρ ∈ (0, 1). First note that

spark(A) ≥ 1+ρ
ρ s ⇔ ∥v∥0 ≥ 1+ρ

ρ s ∀ v ∈ null(A) \ {0}. (2.23)

Now suppose that τ ≥ s and that (2.23) holds. Let v ∈ Rn and S ⊆ [n] with |S| ≤ s.
W.l.o.g. we can assume v ̸= 0, otherwise (2.21) holds trivially. By construction, vS
is s-sparse. If v /∈ null(A), we have ∥Av∥0 ≥ 1 and consequently

∥vS∥0 ≤ s ≤ ρ∥vS∥0 + s∥Av∥0 ≤ ρ∥vS∥0 + τ∥Av∥0,

i.e., (2.21) holds. Thus, we assume that v ∈ null(A). If (2.21) is violated, we have

∥vS∥0 > ρ∥vS∥0 + τ∥Av∥0 = ρ∥vS∥0.

42

2.3. Stability and Robustness in the General Framework

This yields

∥v∥0 = ∥vS∥0 + ∥vS∥0 < s+ s
ρ = 1+ρ

ρ s,

which is a contradiction to ∥v∥0 ≥ 1+ρ
ρ s. This shows that (2.21) is satisfied for

all v ∈ Rn and all S ⊆ [n] with |S| ≤ s.

Even if we obtain a characterization of robust recovery when using ||| · ||| = ∥·∥0,
this choice implies that the error bound (2.22) is weak, especially if m is large,
since ∥A(x− x̃)∥0 ≤ m in general. However, if ||| · ||| is any (absolute homogeneous)
norm, then the robust null space property (rNSPC

ρ,τ) can never be satisfied, since
taking v ∈ Rn with vS = 0 yields the condition

∥vS∥0 ≤ τ |||Av|||.

By scaling, we have τ |||Av||| → 0, but ∥vS∥0 stays constant, since the norm ||| · ||| is
homogeneous, whereas ∥·∥0 is not. This implies the following important observation
for the satisfiability of the robust null space properties: The condition (rNSPC

ρ,τ) can
only be satisfied if ∥·∥ and ||| · ||| are both compatible with respect to homogeneity.
This means, the norms need to satisfy

∥x∥ ≤ ∥y∥ =⇒ ∥λx∥ ≤ ∥λy∥ and |||x||| ≤ |||y||| =⇒ |||λx||| ≤ |||λy|||

for all x, y and all λ ∈ R. It remains an open question whether there exists an
error bound for the robust NSP (2.21) where the measurement error η is bounded
in terms of a (absolute homogeneous) norm ||| · |||, such as the ℓ2-norm. For a related
discussion, see Foucart and Rauhut [104, Remark 4.34].

In the absence of noise or recovery errors, the term τ∥Av∥0 can be omitted, and
the statements above simplify as follows. We obtain the stable null space property

∥vS∥0 ≤ ρ∥vS∥0 (2.24)

for all v ∈ null(A), where 0 < ρ < 1, which is satisfied if and only if

∥z − x∥0 ≤ 1−ρ
1+ρ

(
∥z∥0 − ∥x∥0 + 2∥xS∥0

)
holds for all x, z ∈ Rn with Ax = Az (c.f. Corollary 2.28). The corresponding error
bound becomes

∥x− x̃∥0 ≤ 2 1+ρ
1−ρ max {0, ∥x∥0 − s},

43

Chapter 2. A General Framework for Recovery Using Null Space Properties

where x̃ is a solution of min {∥z∥0 : Az = Ax} (c.f. Corollary 2.29). Lastly, for
stable recovery, a characterization in terms of the spark of A is possible.

Corollary 2.32. Let A be a measurement matrix and s ≥ 0. Then, the stable
NSP (2.24) is equivalent to

spark(A) ≥ 1+ρ
ρ s. (2.25)

Proof. The proof that (2.25) implies (2.24) is completely analogous to Lemma 2.31
above by noting that the assumption τ ≥ s in Lemma 2.31 is only needed for the
case v /∈ null(A), which cannot occur for the stable NSP (2.24).

For the reverse direction, assume that (2.24) holds for all v ∈ null(A)\{0} and all
S ⊆ [n] with |S| ≤ s. Let v ∈ null(A) \ {0}. If ∥v∥0 < s, then choosing S = supp(v)

implies ∥vS∥0 = s > 0 = ρ∥vS∥0, which contradicts (2.24). Thus, ∥v∥0 > s, and we
can choose S ⊆ supp(v) with |S| = s. This yields

∥v∥0 = ∥vS∥0 + ∥vS∥0 ≥ ∥vS∥0 + 1
ρ∥vS∥0 = 1+ρ

ρ s,

which implies (2.25) by (2.23).

Note that the condition (2.25) is necessary and sufficient for stable recovery,
whereas for robust recovery, the corresponding spark condition is only necessary.
It remains an open question to also find a characterization in terms of the spark in
this case.

2.4 Individual Recovery

Until now, we have derived conditions which guarantee that every sufficiently sparse
element x(0) ∈ C is recovered using the general recovery problem (2.3). Thus, a single
measurement matrix satisfying the corresponding NSPs can be used for recovering
various different elements x(0) ∈ C, which are only required to be sparse, but need
not satisfy any other assumptions. However, in some scenarios, it is only desired to
recover a single sufficiently sparse fixed element x(0) ∈ C, rather than all sufficiently
sparse vectors. We call this scenario individual recovery in order to distinguish it
from uniform recovery. Of course, any NSP is sufficient for individual recovery of a
fixed sparse x(0) ∈ C, but these conditions are clearly too strong, as the following
simple example shows.

44

2.4. Individual Recovery

Example 2.33. Consider the matrix A ∈ R3×3 defined as

A =

0 1 −1
0 −2 2

1 2 3

 .

The null space of A is null(A) = {(−5λ, λ, λ)⊤ : λ ∈ R}. Let s = 1 and consider
the vector x(0) = (0, 1, 0)⊤. The minimization problem for recovering x(0) reads

min {∥x∥1 : Ax = (1,−2, 2)⊤} = min
{
∥x∥1 : x2 = 1− 1

5x1, x3 = 1
5x1
}
.

This problem has a unique global optimum at x1 = 0 which yields the unique global
optimal solution x̃ = (0, 1, 0)⊤ = x(0). Thus, x(0) has been successfully recovered.
However, for S = {1}, the classical null space property (NSP) is violated, since
choosing λ = 1 implies ∥vS∥1 = 5 > 2 = ∥vS∥1.

Thus, we need to formulate weaker conditions in order to obtain a characteriza-
tion of individual recovery. For the case of recovery of sparse vectors, corresponding
conditions appear in Fuchs [107] or Tropp [240]. Individual recovery for sparse
nonnegative vectors is treated by Stojnic [226] and by Lange et al. [154] under the
additional integrality constraint. Similar results for recovery of low-rank (positive
semidefinite) matrices have been obtained by Oymak and Hassibi [192] and Oymak
et al. [194]. Chandrasekaran et al. [49] and Amelunxen et al. [9] analyze individ-
ual recovery under random measurements and present a different but very simple
condition for individual recovery only based on optimality of the recovery problem.

In the previous sections on exact, stable and robust uniform recovery, we have seen
that for all settings considered in the literature, the corresponding NSPs guarantee-
ing successful recovery can be derived as special cases from the general framework
presented at the beginning of this chapter. In this section, we show that the same
also holds for the above-cited NSPs known in the literature for individual recovery.
In order to fit individual recovery into our general framework, let x(0) ∈ C be an s-
sparse element, and let P ∈ Ps any linear map with PBx(0) = Bx(0). Contrary to
uniform recovery treated in Sections 2.2 and 2.3, we do not need all the assump-
tions stated in Section 2.1. Namely, we only assume that B is injective, all other
Assumptions (A1) to (A3) do not have to hold, unless explicitly stated. Indepen-
dently of Assumption (A4) and without exploiting any possible sparsity of x(0), we
have the following characterization of individual recovery using the general recovery
problem (2.3).

45

Chapter 2. A General Framework for Recovery Using Null Space Properties

Lemma 2.34. Let B be injective and let x(0) ∈ C. Then, x(0) is the unique optimal
solution of (2.3) if and only if

−
(
Bv −Bx(0)

)
∈ D =⇒ ∥Bx(0) −Bv∥ > ∥Bx(0)∥ (2.26)

holds for all v ∈ null(A) with Bv ̸= 0.

Proof. First, let x(0) ∈ C be the unique optimal solution of (2.3). Let v ∈ null(A)
with Bv ̸= 0 and −(Bv − Bx(0)) ∈ D. Since B is injective and D is the image
of C under B, we have x(0) − v ∈ C. Since Ax(0) = A(x(0) − v), individual recovery
implies ∥Bx(0) −Bv∥ > ∥Bx(0)∥.

For the reverse direction, let z ∈ C with Bz ̸= Bx(0) and Az = Ax(0). Then,
v = x(0)−z ∈ null(A)∩ (C+(−C)) and Bv ̸= 0 as well as −(Bv−Bx(0)) = Bz ∈ D,
since z ∈ C. The NSP (2.26) implies ∥Bz∥ = ∥Bx(0)−Bv∥ > ∥Bx(0)∥, which shows
individual recovery of x(0).

Note that −(Bv − Bx(0)) ∈ D implies x(0) − v ∈ C, since B is injective and D is
the image of C under B. Thus, v = x(0) − (x(0) − v) ∈ C + (−C). As a consequence,
we do not need to explicitly require v ∈ C + (−C) in Lemma 2.34.

Remark 2.35. We do need to assume that x(0) is sparse in Lemma 2.34. In fact,
Lemma 2.34 can be seen as an analog of the well-known statement that for a proper
convex function f , x is the unique optimal solution of min {f(x) : Ax = b}, if and
only if the descent cone of f at x intersects the null space of A only in {0}, see,
e.g., Amelunxen et al. [9, Fact 2.8], Chandrasekaran et al. [49, Proposition 2.1], or
Rudelson and Vershynin [215, Chapter 4].

We now discuss general robust individual recovery. Afterwards, we apply the
results on individual recovery for our running examples from Example 2.3, and
show that the NSPs known in the literature for these special case also emerge from
the NSP (2.26).

Robustness It is also possible to formulate a version of Lemma 2.34 for robust
individual recovery. Therefore, as in Section 2.3.1, we consider an appropriate norm
for measuring errors on Rm. Additionally, we can use another norm, possibly dif-
ferent from ∥·∥ to measure errors on E . Therefore, let ||| · ||| be a norm on Rm, and
let ϕ (·) be a norm on E . Note that in Section 2.3.1, we used ϕ (·) = ∥·∥. Recall the
general robust recovery problem (2.9), i.e.,

min {∥Bx∥ : |||Ax− b||| ≤ η, x ∈ C},

46

2.4. Individual Recovery

for some b ∈ Rm and η ≥ 0. The following lemma gives a bound for the recovery error
when using the general robust recovery problem to approximate a given x(0) ∈ C
with b = Ax(0)+ e, where |||e||| ≤ η. A very similar condition in the slightly different
setting of atomic norms appears in [49, Proposition 2.2].

Lemma 2.36. Let x(0) ∈ C be given and let x̃ be the solution of the general robust
recovery problem (2.9) where b = Ax(0) + e with |||e||| ≤ η. If |||Av||| ≥ τϕ (Bv) for
all v ∈ C + (−C) with −(Bv −Bx(0)) ∈ D and ∥Bx(0) −Bv∥ ≤ ∥Bx(0)∥, then

ϕ
(
Bx(0) −Bx̃

)
≤ 2η

τ
.

Proof. Let x(0) ∈ C be given and let x̃ be the solution of the general robust recovery
problem (2.9) where b = Ax(0) + e with |||e||| ≤ η. Assume that |||Av||| ≥ τϕ (Bv)

holds for all v ∈ C + (−C) with −(Bv − Bx(0)) ∈ D and ∥Bx(0) − Bv∥ ≤ ∥Bx(0)∥.
Then, since x̃ is an optimal solution, we have ∥Bx̃∥ ≤ ∥Bx(0)∥. If Bx̃ ̸= Bx(0), then
we obtain v := x(0) − x̃ ∈ C + (−C) and −(Bv − Bx(0)) = Bx̃ ∈ D. Moreover, we
have ∥Bx(0) −Bv∥ = ∥Bx̃∥ ≤ ∥Bx(0)∥. This implies

ϕ
(
Bx(0) −Bx̃

)
= ϕ (Bv) ≤ |||Av|||

τ
=
|||b−Ax̃− e|||

τ
≤ |||b−Ax̃|||+ |||e|||

τ
≤ 2η

τ
.

Individual Recovery for Some Special Cases

Let us apply the statements in this section to our running examples from Exam-
ple 2.3.

Recovery of sparse vectors by ℓ1-minimization, Example (2.12.1) continued
Since v ∈ null(A) if and only if −v ∈ null(A), the NSP in Lemma 2.34 simplifies to

∥x(0) + v∥1 > ∥x(0)∥1 ∀ v ∈ null(A) \ {0},

which can be shown to be equivalent to the following well-known characterization
for individual recovery, see Foucart and Rauhut [104, Theorem 4.30]:

∥vS∥1 > |⟨v, sgn(x
(0))⟩| ∀ v ∈ null(A) \ {0}, (2.27)

where x(0) is the s-sparse vectors that is to be recovered, and S = supp(x(0)).
Moreover, sgn(x) is the vector of the (componentwise) signs of x.

Recovery of sparse nonnegative vectors by ℓ1-minimization, Example (2.12.2)
continued For the recovery of sparse nonnegative vectors, i.e., C = Rn

+, the fol-

47

Chapter 2. A General Framework for Recovery Using Null Space Properties

lowing property characterizes individual recovery by Lemma 2.34:

x(0) + v ≥ 0 =⇒ 1⊤v > 0 ∀ v ∈ null(A) \ {0}. (2.28)

Note that the vector v has been replaced by −v in Lemma 2.34 to obtain the
NSP (2.28). This NSP appears in Lange et al. [154, Theorem 4.17] for the restric-
tion to sparse integral nonnegative vectors, but the same proof without integral-
ity restrictions also works for general sparse nonnegative vectors. Moreover, the
NSP (2.28) can be shown to be equivalent to the NSP

vS ≥ 0 =⇒ 1⊤v > 0 ∀ v ∈ null(A) \ {0},

where S = supp(x(0)), which appears in Stojnic [226, Corollary 3].

Recovery of low-rank matrices by nuclear norm minimization, Example (2.12.3)
continued Lemma 2.34 yields the following NSP:

∥X(0) + V ∥∗ > ∥X(0)∥∗ ∀ V ∈ null(A) \ {0},

which is equivalent to the known condition [192, 194]

∥(U (2))⊤WV (2)∥∗ > − tr
(
(U (1))⊤WV (1)

)
∀W ∈ null(A) \ {0},

where X(0) = [U (1)U (2)] Σ [V (1)V (2)]⊤ is the full singular value decomposition
of X(0) and X(0) = U (1)Σr(V

(1))⊤ is the reduced singular value decomposition
of X(0) with rank(X(0)) = r.

Recovery of low-rank positive semidefinite matrices by nuclear norm minimiza-
tion, Example (2.12.4) continued Lemma 2.34 proves that the following property
characterizes individual recovery of low-rank positive semidefinite matrices:

X(0) + V ⪰ 0 =⇒
n∑

i=1

λj(V) > 0, (2.29)

where λ(V) is the vector of eigenvalues of V ∈ Sn. Consider the following sufficient
condition for individual recovery in Oymak and Hassibi [192, Lemma 20]:

∀W ∈ null(A) \ {0} :

W not psd, or

tr(W) > 0, or

η−
(
V ⊤WV

)
> 0,

(2.30)

48

2.4. Individual Recovery

where X(0) = UΣU⊤ is the reduced eigenvalue decomposition of X(0), V is a matrix
so that [UV] is unitary, and η−(W) denotes the number of negative eigenvalues
of W . Then, the sufficient condition (2.30) implies the necessary and sufficient
condition (2.29).

In the next chapter, we consider more interesting special cases, which did not
appear as often in the literature as the special cases from our running examples. We
will see that these cases also fit into our framework and that we can derive new null
space properties which were not known in the literature before.

49

CHA PTER 3
Recovery Conditions for

Special Cases

In this chapter, we apply the general framework from Chapter 2 to three interesting
special cases which have not been treated in the literature as extensively as the cases
of sparse (nonnegative) vectors or low-rank (positive semidefinite) matrices.

First of all, in Section 3.1, we start with the recovery of (positive semidefinite)
block-diagonal matrices. This setting generalizes the block-sparsity structure of
vectors to matrices, so that by deriving the corresponding recovery conditions for
(positive semidefinite) block-diagonal matrices, we also derive well-known recovery
conditions for block-sparse (nonnegative) vectors. We also present connections and
differences between the “classical settings” without block-structure and the block-
structured settings. All statements and results within Section 3.1 are taken from
joint work with Janin Heuer, Thorsten Theobald and Marc E. Pfetsch [128].

The subsequent Section 3.2 considers the special case of recovery of integral vec-
tors, possibly with additional box constraints or a nonnegativity constraint, in more
detail. This setting appears in Keiper et al. [141], where mainly individual recovery
is treated, and in Lange et al. [154], which contains a thorough analysis of individual
and uniform recovery conditions for both ℓ0- and ℓ1-minimization. Since the exist-
ing conditions only deal with exact recovery, we use the general framework from
Chapter 2 to derive new conditions for the case of stable and robust recovery.

Finally, in Section 3.3 we consider the recovery of sparse complex vectors x ∈ Cn

with the side constraint that each nonzero entry xj has a constant modulus, i.e.,
there exists c ∈ R with |xj | ∈ {0, c} for all j ∈ [n]. This setting has applications in
signal processing, e.g., many communication signals have this property. We derive
an explicit recovery condition for sparse vectors with constant modulus constraints,

51

Chapter 3. Recovery Conditions for Special Cases

which, to the best of our knowledge, is not yet known in the literature. Besides,
we present an algorithmic approach to solve the resulting recovery problems. This
algorithm exploits the special structure given by the constant modulus constraint.
Parts of Section 3.3 are based on joint work with Tobias Fischer, Ganapati Hegde,
Marius Pesavento, Marc E. Pfetsch and Andreas M. Tillmann [97] within the project
“EXPRESS” (SPP 1798).

Throughout this chapter, we mostly only state results for exact uniform recov-
ery. An easy modification according to Corollary 2.28 and Theorem 2.20 as well
as Lemma 2.34 leads to corresponding results for stable, robust or individual re-
covery, respectively. For sparse integral vectors and vectors with constant modulus
constraints we shortly mention the resulting conditions, but do not go into detail.

3.1 Block-Structured Vectors and Matrices

The general framework that we introduced and analyzed in Chapter 2 makes use of
a representation map B, which can be used to formulate that an element x is not
sparse by itself, but rather in another representation Bx. However, in all explicit
examples considered in the previous chapter, the representation map was trivially
given by the identity map, see Example 2.3. This is due to the fact that we assumed
that a (nonnegative) vector is sparse in its natural representation, which means that
it consists of only a few nonzero entries, and that a (positive semidefinite) matrix
by itself has only a few nonzero singular values, i.e., is low-rank. In order to obtain
settings which fit into the general framework and do not use the identity map as
representation map, we now consider a block-structure on vectors and matrices. To
do so, we sort the entries of a vector x ∈ Rn or a matrix X ∈ Rm×n into blocks,
and consider the blocks as “one element”. A block is considered to be zero, if all
entries within are zero, and nonzero otherwise. Sparsity in this setting translates
to block-sparsity, which means that only a few blocks contain nonzero elements.
This setting of so-called block-sparse vectors has frequently been considered in e.g.,
Eldar et al. [90], Elhamifar and Vidal [91], Lin and Li [159], Stojnic et al. [230],
and in, e.g., Stojnic [229] with an additional nonnegativity constraint. One impor-
tant application of block-sparsity is the multiple measurement problem, see Chen
and Huo [50], Cotter et al. [56], Lai and Liu [151], and van den Berg and Fried-
lander [242]. There, instead of a single measurement, multiple measurements of a
signal are taken, and the measurements are assumed to exhibit a common sparsity
structure. More generally, it can also be assumed that a vector lies in a union of
(low-dimensional) subspaces. This also leads to a block-sparsity structure which can
be exploited in recovery, see Blumensath and Davies [28] or Eldar and Mishali [89].
Further applications of block-structured signals include DNA multiarrays as treated

52

3.1. Block-Structured Vectors and Matrices

in Parvaresh et al. [197], multi-band signals considered by Mishali and Eldar [179],
recognition of faces in Wright et al. [253] and clustering of data in multiple subspaces,
see Elhamifar and Vidal [92].

In order to recover block-sparse vectors, one possibility is to use the mixed ℓp,q-
norm ∥·∥p,q with p, q > 0, which takes the blocks into account and is defined as

∥x∥p,q :=
(k∑

i=1

∥x[i]∥qp
) 1

q
.

Here, the entries of the vector x ∈ Rn are sorted in k blocks x[1], . . . , x[k]. In the
following, inner norm refers to the ℓp-norm applied to each block, and outer norm
denotes the ℓq-norm applied to the vector of inner norms. As an adaption of the
ordinary ℓ1-norm, an outer ℓ1-norm and an inner ℓ2-norm can be used, which leads
to the problem

min {∥x∥2,1 : Ax = b, x ∈ Rn block-structured}.

Note that neither the blocksizes need to be equal, nor the blocks need to be con-
secutive. Furthermore, the blocks do not need to be mutual exclusive with respect
to their elements. Instead of the inner ℓ2-norm, any other norm can be used, since
we only need to decide whether or not a block contains nonzero elements. As we
will see later on, the NSP for uniform recovery of block-sparse vectors depends on
the choice of the inner norm. Moreover, if all entries of x are nonnegative, using an
inner ℓ1-norm is essential to obtain an NSP for this case.

Since vectors can be seen as diagonal matrices, the block-structure can be ex-
tended to matrices as well. This leads to so-called block-diagonal matrices which
consist of blocks along their diagonals, that is

X =

XB1

. . .
XBk

 ,

where XBi
are (square) matrices. Again, we call the matrix X (block-) sparse, if

only a few blocks XBi
contain nonzero elements. Thus, we can use the mixed ℓ∗,1-

norm, which applies an outer ℓ1-norm to the vector of inner nuclear norms of the
blocks, that is

∥X∥∗,1 :=

k∑
i=1

∥XBi
∥∗. (3.1)

53

Chapter 3. Recovery Conditions for Special Cases

Analogously to block-sparse nonnegative vectors, a positive semidefiniteness con-
straint on the matrices can be added. Systems with a block-diagonal form (as
formally defined in Definition 3.2) appear, e.g., in the recovery of unknown quan-
tum states, which is also called quantum state tomography, see Eisert et al. [83] and
the references therein. Frequently, quantum states are represented using low-rank
Hermitian matrices. If the measurements of a quantum state are taken with an only
partly-calibrated device, that is, not all calibration parameters are fully known, this
introduces a sparsity structure on the calibration parameters, which can be modeled
using sparse block-diagonal matrices. Apart from this application in CS, positive
semidefinite block-diagonal systems appear in various other areas, which are not
directly related to CS. Consider a standard semidefinite problem (SDP)

min {⟨A0, X⟩F : ⟨Ap, X⟩F = bp, p ∈ {1, . . . ,m}, X ⪰ 0}, (3.2)

with A0, . . . , Am ∈ Sn, b ∈ Rm and ⟨U, V ⟩F defined in (1.1). Even if SDPs are
(most of the time) theoretically solvable in polynomial time, scalability for SDPs
is still a problem which often prevents SDP-based formulations to be used in prac-
tice, see also the recent survey by Majumdar et al. [170]. One approach to improve
solving times for large SDPs, is to exploit sparsity in the matrices Ap. This can
be done by introducing a block-diagonal form on X, corresponding to the positions
of the nonzero entries in Ap. By reformulating the matrices in (3.2), we can ob-
tain a block-diagonal form. The optimal solution stays unchanged, since no term
related to sparsity is added to the objective function. For more information on
sparsity in SDPs, see, e.g., Fukuda et al. [109], Nakata et al. [183], Vandenberghe
and Andersen [244], as well as [170, Section 2].

Besides their usage for exploiting sparsity in SDPs, block-diagonal systems also
appear in the analysis of structured infeasibility in SDPs. The structure of infeasible
linear systems is well understood, see, e.g., Chinneck [52]. For the generalization
to SDPs, an irreducible infeasible subsystem (IIS) of a semidefinite system can be
defined, i.e., an infeasible subsystem such that every proper subsystem is feasible,
analogously to the linear case. This leads to block-diagonal systems, and an IIS
is then given by an inclusion-minimal set of infeasible block-diagonal subsystems.
A full characterization of IISs is available only in the linear case, see Gleeson and
Ryan [119]. For semidefinite systems, a full characterization is not available, and it
turns out that subsystems with minimal block-support, i.e., block-sparse subsystems
need to be computed in order to find an IIS, see Kellner et al. [142] for more details.

In this section, we introduce the concept of (positive semidefinite) systems in
block-diagonal form and derive the corresponding NSPs and recovery statements
from the general framework in Chapter 2. We also demonstrate that the well-known
recovery results for block-sparse vectors can be directly obtained as a special case.

54

3.1. Block-Structured Vectors and Matrices

3.1.1 Block-Sparse (Positive Semidefinite) Matrices

In order to formally introduce the concept of block-sparsity for matrices, let X = Sn,
and consider the linear sensing operator A : Sn → Rm given by

A(X) = (⟨A1, X⟩F, . . . , ⟨Am, X⟩F)⊤,

where A1, . . . , Am ∈ Sn, b ∈ Rm, and X ∈ Sn. This results in the matrix equa-
tion A(X) = b.

Remark 3.1. In this section, we deviate from the notation used in the previous
chapter and denote the image of a linear map F as F (X) in order to avoid confusion
between matrix products and images of linear maps.

We can now define the following block-diagonal form for linear measurement op-
erators and the appearing matrices.

Definition 3.2. Let k ≥ 1 and B1, . . . , Bk ̸= ∅ be a partition of the set [n], that
is,
⋃n

i=1Bi = [n] with pairwise disjoint blocks Bi. A linear operator A(X) is said
to be in block-diagonal form with blocks B1, . . . , Bk if and only if (Ai)s,t = 0 holds
for all (s, t) /∈ (B1 ×B1) ∪ · · · ∪ (Bk ×Bk) and all i ∈ [m].

For a matrix X ∈ Sn and an index set I ⊆ [n], the submatrix containing rows and
columns of X indexed by I is denoted by XI . Moreover, SI (and SI+) denotes the
space of symmetric (positive semidefinite) |I| × |I| matrices with rows and columns
indexed by the elements of I.

In order to formulate the setting of block-diagonal matrices in the general frame-
work from Chapter 2, let E = SB1 × · · · × SBk . We write X ∈ E as

X =

XB1

. . .
XBk

 with XBi
∈ SBi for all i ∈ [k].

Therefore, the representation map B : X → E takes X ∈ X = Sn and gener-
ates (XB1

, . . . , XBk
)⊤ defined as XBi

:= {(Xrs)r, s∈Bi
} for i ∈ [k]. Note that entries

outside of the blocks are ignored. The projections, which induce sparsity, are defined
as P = {PI : I ⊆ [k]}, where PI : E → E is the orthogonal projection onto the sub-
space EI := {X ∈ E : XBi

= 0 ∀ i /∈ I}. For PI ∈ P define its nonnegative weight
as ν(P) = |I| and P := P[k]\I . Lastly, let the norm ∥·∥ be the mixed ℓ∗,1-norm, as
defined in (3.1), where ∥·∥∗ is the nuclear norm on SBi . An element X ∈ X is called

55

Chapter 3. Recovery Conditions for Special Cases

s-block-sparse, if and only if there exists an index set

I ⊆ [k] with |I| ≤ s and PI(B(X)) = B(X),

which implies that XBi
= 0 for all i /∈ I. This yields a block-sparsity setting for

matrices. Additionally, an important side constraint on the matrix X, which shall
be recovered is given by X ⪰ 0. This can be incorporated into the general framework
from Chapter 2 by letting C = Sn+, which implies D = SB1

+ × · · · × SBk
+ , and the

general recovery problem (2.3) simplifies to the convex optimization problem

min {∥X∥∗,1 : A(X) = b, X ⪰ 0}. (3.3)

Using the ℓ0-norm ∥x∥0 of a vector x ∈ Rn, the number of nonzero blocks in a
block-diagonal matrix X ∈ Sn can be written as

∥X∥∗,0 = ∥(∥XB1
∥∗, . . . , ∥XBk

∥∗)⊤∥0.

Thus, the following problem finds solutions of A(X) = b with minimal block support:

min {∥X∥∗,0 : A(X) = b, X ⪰ 0}. (3.4)

As in the case of sparse vectors, Problem (3.3) is a convex approximation of (3.4).
This directly leads to the question when it is possible to recover a block-sparse
positive semidefinite matrix X(0) with ∥X(0)∥∗,0 ≤ s, from b = A(X(0)) using the
convex relaxation (3.3). For the answer, we formulate a null space property in the
next definition. Theorem 3.4 shows that this NSP characterizes uniform recovery
using (3.3) by deriving the proposed NSP from the general framework in Chapter 2.

Definition 3.3. A linear operator A(X) in block-diagonal form satisfies the semidef-
inite block-matrix null space property of order s if and only if

VBi
⪯ 0 ∀ i ∈ S =⇒

∑
i∈S

1⊤λ(VBi
) <

∑
i∈S

∥VBi
∥∗ (NSP∗

∗,1,⪰0)

holds for all V ∈ (null(A) ∩ Sn) \ {0} and all S ⊆ [k], |S| ≤ s, where λ(VBi
) is the

vector of eigenvalues of VBi
.

Theorem 3.4. Let A(X) be a linear operator in block-diagonal form and s ≥ 0.
The following statements are equivalent:
(i) Every X(0) ∈ Sn+ with ∥X(0)∥∗,0 ≤ s is the unique optimal solution of (3.3)

with b = A(X(0)).
(ii) A(X) satisfies the semidefinite block-matrix null space property of order s.

56

3.1. Block-Structured Vectors and Matrices

Proof. In the situation described above, using C = Sn+, D = SB1
+ ×· · ·×S

Bk
+ and the

mixed ℓ∗,1-norm Assumptions (A1) to (A3) are clearly satisfied. In order to prove
that Assumption (A4) holds, let P := PS ∈ Ps and Z, X ∈ Sn+ with V = X − Z.
Moreover, let V̂ (1), V̂ (2) ∈ Sn+ with V = V̂ (1) − V̂ (2) be a minimal decomposition.
By definition of P and ∥·∥∗,1, we have ∥B(X)∥∗,1 = ∥P (B(X))∥∗,1+ ∥P (B(X))∥∗,1.
Furthermore,

n∑
i=1

λi
(
P (B(V̂ (1)))

)
−

n∑
i=1

λi
(
P (B(V̂ (2)))

)
=

n∑
i=1

λi
(
P (B(V))

)
.

Thus, ∥P (B(V̂ (1)))∥∗,1 − ∥P (B(V̂ (2)))∥∗,1 = ∥P (B(X))∥∗,1 − ∥P (B(Z))∥∗,1, and

∥B(Z)∥∗,1 + ∥P (B(V̂ (1)))∥∗,1 − ∥P (B(V̂ (2)))∥∗,1 − ∥P (B(V))∥∗,1 + 2∥P (B(X))∥∗,1
= ∥P (B(Z))∥∗,1 + ∥P (B(X))∥∗,1 − ∥P (B(V))∥∗,1 + 2∥P (B(X))∥∗,1
≥ ∥P (B(Z))∥∗,1 + ∥P (B(X))∥∗,1 − ∥P (B(X))∥∗,1 − ∥P (B(Z))∥∗,1

+ 2∥P (B(X))∥∗,1
= ∥B(X)∥∗,1,

which shows that Assumption (A4) is satisfied.
It remains to show that (NSPC) is equivalent to (NSP∗

∗,1,⪰0). As in the case
of low-rank positive semidefinite matrices in Example (2.12.4), the unique mini-
mal decomposition V = V̂ (1) − V̂ (2) with V̂ (1), V̂ (2) ∈ Sn+ is given by V̂ (1) = V +

and V̂ (2) = V −. The matrices V + and V − are defined as in Example (2.12.4). Now,
let S ⊆ [k], |S| ≤ s and P = PS be fixed. Since

n∑
i=1

λi
(
P (B(V))

)
= ∥λi

(
P (B(V +))

)
∥1 − ∥λi(P (B(V −)))∥1,

Condition (NSP∗
∗,1,⪰0) clearly implies (NSPC).

For the reverse implication, let again S ⊆ [k], |S| ≤ s and P = PS be fixed and
let V ∈ null(A) ∩ Sn with B(V) ̸= 0 and P (B(V)) ⪯ 0. Then (NSPC) implies

0 > ∥P (B(V +))∥∗,1 − ∥P (B(V −))∥∗,1 − ∥P (B(V))∥∗,1

=

n∑
i=1

λi
(
P (B(V +))

)
−

n∑
i=1

λi
(
P (B(V −))

)
−

n∑
i=1

|λi
(
P (B(V))

)
|

=
∑
i∈S

1⊤λ(VBi
)−

∑
i∈S

∥VBi
∥∗,

which establishes (NSP∗
∗,1,⪰0) and finishes the proof by Theorem 2.10.

57

Chapter 3. Recovery Conditions for Special Cases

Block-structured Matrices Without Positive Semidefiniteness The situation
where the additional side constraint X ⪰ 0 is not present, can be modeled
with C = X = Sn and D = E = SB1 × · · · × SBk , while A, B, P, P and the
norm ∥·∥ are defined as above. Consequently, the recovery problems (3.4) and (3.3)
become

min {∥X∥∗,0 : A(X) = b, X ∈ Sn}, and (3.5)

min {∥X∥∗,1 : A(X) = b, X ∈ Sn}, (3.6)

respectively. Although this setting was first introduced explicitly in [128], it implic-
itly appeared in the literature before. Namely, it can be obtained by combining the
block/group case and the matrix case in Juditsky et al. [137]. As before, the next
definition presents an NSP which characterizes uniform recovery of block-diagonal
matrices which are not necessarily positive semidefinite.

Definition 3.5. A linear operator A(X) in block-diagonal form satisfies the block-
matrix null space property of order s if and only if∑

i∈S

∥VBi
∥∗ <

∑
i∈S

∥VBi
∥∗ (NSP∗

∗,1)

holds for all V ∈ (null(A) ∩ Sn)\{0} and all S ⊆ [k], |S| ≤ s.

Theorem 3.6. Let A(X) be a linear operator in block-diagonal form and s ≥ 0.
The following statements are equivalent:
(i) Every X(0) ∈ Sn with ∥X(0)∥∗,0 ≤ s is the unique optimal solution of (3.6) with

b = A(X(0)).
(ii) A(X) satisfies the block-matrix null space property of order s.

The proof of Theorem 3.6 is completely analogous to the proof of Theorem 3.4.
It can be shown that also without the additional side constraint X ⪰ 0, Assump-
tion (A4) is satisfied and that (NSPC) and (NSP∗

∗,1) are equivalent. Note that
for V ∈ Sn, the unique minimal decomposition V = V̂ (1)−V̂ (2) with V̂ (1), V̂ (2) ∈ Sn
is given by V̂ (1) = V as well as V̂ (2) = 0, see also Example (2.12.3). Theorem 2.10
then yields the desired result. Alternatively, as already stated, this result can be
obtained by combining the block and the matrix case in Juditsky et al. [137].

Remark 3.7. The setting described in this section used X = Sn and a non-
overlapping block-structure, since the blocks B1, . . . , Bk were defined to form a
partition of [n], which allowed for an easier presentation. As a slight general-
ization, consider X = C = Rn1×n2 and possibly overlapping blocks Bi ̸= ∅

58

3.1. Block-Structured Vectors and Matrices

with B1 ∪ · · · ∪ Bk = [n1] × [n2]. Additionally, the inner nuclear norms can be
replaced by arbitrary norms on RBi×Bi . This also fits in our general setting de-
scribed in Chapter 2, such that (NSP∗

∗,1) characterizes uniform recovery using

min
{ k∑

i=1

∥XBi
∥ : A(X) = b, X ∈ Rn1×n2

}
.

3.1.2 Block-Sparse (Nonnegative) Vectors

Block-sparse vectors x can be seen as a special case of block-diagonal matrices.
Indeed, they can be interpreted as a block-diagonal matrix X which consists of
blocks that are diagonal matrices as well. Then, the entries of x coincide with the
eigenvalues of X, and positive semidefiniteness of X is equivalent to nonnegativity
of x. The mixed ℓ∗,1-norm becomes the mixed ℓ1,1-norm, so that Theorem 3.4
yields a characterization for the uniform recovery of block-sparse nonnegative vectors
using ℓ1,1-minimization. Moreover, (NSP∗

∗,1) simplifies to the well-known NSP for
block-sparse vectors. In this section, we shortly derive this well-known result as a
special case of block-diagonal matrices. Moreover, we present an NSP for block-
sparse nonnegative vectors, which has not appeared in the literature before. This
NSP can be obtained from (NSP∗

∗,1,⪰0).

Block-structured vectors can be modeled in the general setup of Chapter 2 in a
similar way as block-structured matrices by setting X = Rn. The block-structure
is given by a partition B1, . . . , Bk of [n] with nonempty sets Bi. For a (finite)
set I, let RI denote the space of elements with entries indexed by the elements
of I. Then let E = RB1 × · · · × RBk and write y ∈ E as y = (y[1], . . . , y[k])⊤,
where y[i] ∈ RBi for all i ∈ [k]. Nonnegativity of x can be modeled by C = Rn

+, which
yields D = RB1

+ × · · · ×R
Bk
+ . The representation map B : X → E maps x ∈ C to its

block-structured representation y[i] = (xj)j∈Bi
. The sparsity-inducing projections

are given by P = {PI : I ⊆ [k]}, where PI : E → E is the orthogonal projection
onto the subspace EI := {y ∈ E : y[i] = 0 ∀ i /∈ I}. For a projection PI ∈ P we
define its nonnegative weight as ν(P) = |I| and define P := P[k]\I . The norm ∥·∥ is
defined as the the mixed ℓ1,1-norm ∥x∥1,1 =

∑k
i=1∥y[i]∥1, where y = Bx ∈ E is the

block-structured representation of x ∈ X . Then, a vector x ∈ X is s-block-sparse, if
there exists an index set I ⊆ [k] with |I| ≤ s and PIBx = Bx, which for y = Bx

implies that y[i] = 0 for i /∈ I. With these definitions, we arrive at the setting of
recovery of block-sparse nonnegative vectors. The general recovery problem (2.3)
becomes the recovery problem

min {∥x∥1,1 : Ax = b, x ∈ Rn
+}, (3.7)

59

Chapter 3. Recovery Conditions for Special Cases

which is a convex approximation of the exact recovery problem

min {∥x∥1,0 : Ax = b, x ∈ Rn
+}.

The NSP for nonnegative block-linear systems can now be obtained as a direct
corollary of Theorem 3.4 by a restriction to diagonal matrices. Note that if any
inner ℓq-norm other than the ℓ1-norm is used, Assumption (A4) is no longer satisfied.
Thus, we explicitly need to use the mixed ℓ1,1-norm in order to formulate an NSP.

Corollary 3.8. Consider a block-linear system Ax = [A[1] · · ·A[k]]x = b, where
b ∈ Rm and A ∈ Rm×n consists of k blocks A[i] ∈ Rm×ni . The following statements
are equivalent:
(i) Every x(0) ∈ Rn

+ with ∥x(0)∥1,0 ≤ s is the unique optimal solution of (3.7)
with b = Ax(0).

(ii) A satisfies the nonnegative block-linear null space property of order s, i.e.,

v[S] ≤ 0 =⇒
∑
i∈S

1⊤v[i] <
∑
i∈S

∥v[i]∥1 (NSP1,1,≥0)

holds for all v ∈ null(A)\{0} and all S ⊆ [k], |S| ≤ s, where v[S] := (v[i])i∈S.

Block-sparse vectors Without the nonnegativity constraint, let C = X = Rn

and D = E , while B, P, P are defined as before. This time, the norm ∥·∥ is
defined as the mixed ℓq,1-norm ∥y∥q,1 =

∑k
i=1∥y[i]∥q, with q ≥ 1 on RBi . In the

absence of the additional constraint x ≥ 0 it is not necessary to use an inner ℓ1-norm
for recovery, since in this case, Assumption (A4) is satisfied for any inner ℓq-norm
with q ≥ 1. The exact recovery problem using a nonconvex ℓ0-term is

min {∥x∥q,0 : Ax = b, x ∈ Rn},

and using the ℓ1-norm as convex relaxation leads to the problem

min {∥x∥q,1 : Ax = b, x ∈ Rn}. (3.8)

Similar to the previous section, define the block-linear null space property of order s
as

∥v[S]∥q,1 < ∥v[S]∥q,1 (NSPq,1)

for all v ∈ null(A)\{0} and all S ⊆ [k] with |S| ≤ s, where again v[S] := (v[i])i∈S .
This null space property characterizes the recovery for block-sparse vectors, which

60

3.1. Block-Structured Vectors and Matrices

can be obtained as an immediate corollary of Theorem 3.6 by restricting to diagonal
matrices. If the inner ℓq-norms are given by the ℓ2-norm, this characterization is
due to Stojnic et al. [230], who state as a remark that

“it is reasonable to believe that the null-space characterization [...] can
easily be generalized to the ℓp optimization”2.

Corollary 3.9. Let A = [A[1] · · ·A[k]] ∈ Rm×n be in block-linear form with k

blocks, x = (x[1], . . . , x[k])⊤ ∈ Rn and s ≥ 0. Then, the following statements
are equivalent:
(i) Every x(0) ∈ Rn with ∥x(0)∥q,0 ≤ s is the unique optimal solution of (3.8)

with b = Ax(0).
(ii) A satisfies the block-linear null space property of order s, i.e., (NSPq,1) holds

for all v ∈ null(A)\{0} and all S ⊆ [n] with |S| ≤ s.

As already stated, Corollary 3.9 directly follows as a special case from Theo-
rem 3.6.

Remark 3.10. Similar to Remark 3.7, it is also possible to consider X = C = Rn

and possibly overlapping blocks Bi ̸= ∅ with B1 ∪ · · · ∪Bk = [n] instead of a parti-
tion B1, . . . , Bk of [n]. Additionally, the inner ℓq-norms could be replaced by arbi-
trary norms ∥·∥ on RBi . This also fits in our general setting described in Chapter 2,
such that (NSPq,1) characterizes uniform recovery using min {

∑k
i=1∥x[i]∥ : Ax = b}.

3.1.3 Discussion of Block-Sparsity

In this section, we analyze and compare the null space properties derived for
the recovery of block-structured (nonnegative) vectors and block-diagonal (posi-
tive semidefinite) matrices. In order to connect them to the corresponding NSPs in
the respective non-block-structured settings, which served as running examples in
Chapter 2, Table 3.1 subsumes all these NSPs. The third column gives the reference,
if the NSP is already known in the literature, and states the corresponding theorem
(resp. corollary) within this thesis. In the following, we will point out important
connections between the NSPs for the eight settings considered in Table 3.1.

First of all, recall from Section 3.1.2 that the block-linear and the nonnegative
block-linear cases are special cases of the block-diagonal and the semidefinite block-
diagonal cases. Contrary to that, the matrix and the semidefinite matrix case are
not special cases of the (semidefinite) block-diagonal cases, since the blocks are not
assumed to have low rank. Nevertheless, all settings fall into the general framework
in Theorem 2.10.
2Stojnic et al. [230, p. 3077]

61

Chapter 3. Recovery Conditions for Special Cases

Table 3.1. Null space properties for different settings and their references.

Setting NSP Reference

Linear case:
min {∥x∥1 : Ax = b, x ∈ Rn}

∥vS∥1 < ∥vS∥1
∀ v ∈ null(A)\{0}, S ⊆ [n], |S| ≤ s.

[55, 71],
Ex. (2.12.1)

Nonnegative linear case:
min {∥x∥1 : Ax = b, x ∈ Rn

+}
vS ≤ 0 =⇒

∑
i∈S

vi < ∥vS∥1

∀ v ∈ null(A)\{0}, S ⊆ [n], |S| ≤ s.
[143, 256],

Ex. (2.12.2)

Block-linear case:
min {∥x∥q,1 : Ax = b, x ∈ Rn}

∥v[S]∥q,1 < ∥v[S]∥q,1
∀ v ∈ null(A)\{0}, S ⊆ [k], |S| ≤ s.

[230],
Cor. 3.9

Nonnegative block-linear case:
min {∥x∥1,1 : Ax = b, x ∈ Rn

+}
v[S] ≤ 0 =⇒

∑
i∈S

1⊤v[i] < ∥v[S]∥1,1

∀ v ∈ null(A)\{0}, S ⊆ [k], |S| ≤ s.
Cor. 3.8

Matrix case:
min {∥X∥∗ : A(X) = b, X ∈ Sn}

∥λS(V)∥1 < ∥λS(V)∥1
∀V ∈ null(A)\{0}, S ⊆ [n], |S| ≤ s.

[192, 209],
Ex. (2.12.3)

Semidefinite matrix case:
min {∥X∥∗ : A(X) = b, X ∈ Sn

+}
λS(V) ≤ 0 =⇒

∑
j∈S

λj(V) < ∥λS(V)∥1

∀V ∈ null(A)\{0}, S ⊆ [n], |S| ≤ s.

[146, 192],
Ex. (2.12.4)

Block-diagonal case:
min {∥X∥∗,1 : A(X) = b, X ∈ Sn}

∑
i∈S

∥VBi∥∗ <
∑
i∈S

∥VBi∥∗

∀V ∈ null(A)\{0}, S ⊆ [k], |S| ≤ s.
Thm. 3.6

Semidefinite block-diagonal case:
min {∥X∥∗,1 : A(X) = b, X ∈ Sn

+}

VBi ⪯ 0 ∀ i ∈ S

=⇒
∑
i∈S

1
⊤λ(VBi) <

∑
i∈S

∥VBi∥∗

∀V ∈ null(A)\{0}, S ⊆ [k], |S| ≤ s

Thm. 3.4

For the null space properties in Table 3.1, we now compare the conditions that
need to hold in the cases with and without the additional nonnegativity or positive
semidefiniteness constraints, when the inner norms used in the respective recovery
problems are identical. First note that since Rn

+ ⊆ Rn and Sn+ ⊆ Sn, the conditions
needed for characterizing uniform recovery in the presence of nonnegativity or pos-
itive semidefiniteness are not stronger than those needed without this prior knowl-
edge. The following example demonstrates that exploiting positive semidefiniteness
indeed yields a weaker condition for uniform recovery when using the nuclear norm
as inner norm in both cases.

62

3.1. Block-Structured Vectors and Matrices

Example 3.11. Let A1, . . . , A4 be the block-diagonal matrices

A1 =

0

−1

−1 0

0 2

 , A2 =

1

−1

−1 0

0 −1

 , A3 =

0

−1

1 0

0 0

 , A4 =

0

0

0 1

1 0

 ,

with blocks B1 = {1}, B2 = {2} and B3 = {3, 4}, and let b = (−1, 0, 0, 0)⊤.
Consider

min {∥X∥∗,0 : A(X) = b, X ⪰ 0},

where A(X) = (⟨A1, X⟩F, ⟨A2, X⟩F, ⟨A3, X⟩F, ⟨A4, X⟩F)⊤, see (3.4). The null
space null(A) = {V : ⟨Ai, V ⟩F = 0 for i ∈ [4]} consists of the matrices of the
form

V =

3α

α

α 0

0 α

 , with α ∈ R.

Since only nonzero matrices in the null space of A are of interest for the NSP, α
cannot attain the value 0. The eigenvalues of V are given by λ = (3α, α, α, α)⊤.
For the semidefinite block-matrix null space property (NSP∗

∗,1,⪰0) of order s = 1

to hold for A, the following implications need to be satisfied for the support sets
S ∈ {∅, {1}, {2}, {3}}:

S = ∅ : (3α, α, α, α)⊤ ≤ 0 =⇒ 0 < 6|α|,
S = {1} : (α, α, α)⊤ ≤ 0 =⇒ 3α < 3|α|,
S = {2} : (3α, α, α)⊤ ≤ 0 =⇒ α < 5|α|,
S = {3} : (3α, α)⊤ ≤ 0 =⇒ 2α < 4|α|.

These are all satisfied, since for every V ∈ null(A)\{0}, α ̸= 0 holds. However, the
block-matrix null space property (NSP∗

∗,1) of order s is violated, since for S = {1}
and α ̸= 0, we have ∑

i∈S

∥VBi
∥∗ = 3|α| ≥ 3|α| =

∑
i∈S

∥VBi
∥∗.

As already indicated in Remark 2.13 this example shows the important aspect that
explicitly exploiting nonnegativity or positive semidefiniteness can yield stronger
results for uniform recovery. In order to further strengthen this point, we explicitly
construct an infinite family of examples that satisfy the nonnegative block-linear
null space property (NSP1,1,≥0) in the next subsection. Besides highlighting the

63

Chapter 3. Recovery Conditions for Special Cases

favorable effect of additional side constraints, this construction also shows that the
proposed null space properties are meaningful in the sense that they are satisfied by
certain general (families of) matrices.

An infinite family satisfying the nonnegative block-linear NSP

The NSPs for the nonnegative block-linear case and for the semidefinite block-
diagonal case hold in many situations. The next theorem presents a specific infinite
family of instances for block sizes (n1, . . . , nk) = (2, 1, . . . , 1), so that the nonnega-
tive block-linear NSP holds, whereas both the (unrestricted) block-linear NSP and
the nonnegative linear NSP are violated. In order to construct such a family, we
employ the following characterization of the nonnegative linear NSP due to Donoho
and Tanner [73].

Proposition 3.12 (Donoho and Tanner [73]). Let A ∈ Rm×n be a matrix with
nonzero columns a(1), . . . , a(n) and m < n, and let s ≥ 1. Then A satisfies the
nonnegative null space property (NSP≥0) of order s if and only if the polytope P :=

conv{a(1), . . . , a(n), 0} has n+1 vertices and is outwardly s-neighborly, that is, every
subset of s vertices not including the origin span a face of P .

Remark 3.13. With the same preconditions, A satisfies the unrestricted linear NSP
of order s if and only if the polytope P ′ := conv{±a(1), . . . ,±a(n)} has 2n vertices
and is s-centrally neighborly, i.e., any s vertices not including an antipodal pair span
a face of P , see Donoho [67, Theorem 1] and also Foucart and Rauhut [104, Exer-
cise 4.16]. By results of McMullen and Shephard [177], P ′ can never be s-centrally
neighborly for s > ⌊(m+ 1)/3⌋ (see also Donoho and Tanner [74, Section 5.3]).

Theorem 3.14. Let k > m ≥ 3 and let B1, . . . , Bk be blocks of sizes (n1, . . . , nk) :=

(2, 1, . . . , 1). Define n :=
∑k

i=1 ni = k + 1. Then there exists a matrix A ∈ Rm×n

with A = [A[1] · · ·A[k]] so that the nonnegative block-linear null space property
(NSP1,1,≥0) is satisfied up to the order s∗ := ⌊m/2 − 1⌋. Moreover, for m ≥ 12

neither the unrestricted block-linear null space property (NSPq,1) of order s∗ is sat-
isfied nor the nonnegative null space property (NSP≥0) of order s∗ is satisfied.

Proof. Let k > m ≥ 3. Let w(1), . . . , w(k−1) ∈ Rm−2 \ {0} be k − 1 distinct
points on the moment curve {(t, t2, . . . , tm−2)⊤ : t ∈ R} in Rm−2 and define
the matrix A′ := [w(1), . . . , w(k−1)] ∈ R(m−2)×(k−1). It is well-known that the
polytope P = conv{w(1), . . . , w(k−1)} is a cyclic polytope, which is ⌊(m − 2)/2⌋-
neighborly, see, e.g., Ziegler [257, Corollary 0.8]. Hence, the nonnegative linear NSP
of order ⌊(m− 2)/2⌋ = ⌊m/2− 1⌋ holds for the matrix A′.

64

3.1. Block-Structured Vectors and Matrices

Let p be an interior point of P and set w′ = (p, 1, 0)⊤, w′′ = (p, 0, 1)⊤, as well
as ŵ(i) = (w(i), 0, 0)⊤ for i ∈ [k − 1]. Let A := [w′, w′′, ŵ(1), . . . , ŵ(k−1)] ∈ Rm×n

and consider the block sizes (2, 1, . . . , 1). We claim that A satisfies (NSP1,1,≥0)
of order s∗. Namely, assume that there exists v = (v1, . . . , vn)

⊤ ∈ null(A) \ {0}
and S ⊆ [k] with |S| ≤ s∗ and vS ≤ 0 such that

∑
i∈S 1

⊤v[i] ≥ ∥vS∥1,1.
Since v ∈ null(A) and since the penultimate and the last row of A only have a
single nonzero entry, we have v1 = v2 = 0. Hence, ṽ := (v1, v3, . . . , vn)

⊤ is a nonzero
vector in the null space of A♢ = [w′, ŵ(1), . . . , ŵ(k−1)] and violates the nonnegative
linear NSP of order s∗ for A♢. However, since the polytope P and thus also the
polytope conv{w′, ŵ(1), . . . , ŵ(k−1)} are ⌊m/2−1⌋-neighborly (due to the pyramidal
construction with respect to the apex w′), this is a contradiction.

If m ≥ 12, the nonnegative null space property (NSP≥0) of order s∗ does not
hold for A, because the polytope P ′ := conv{w′, w′′, ŵ(1), . . . , ŵ(k−1)} is not s∗-
neighborly. To see this, observe that any choice of vertices which includes w′

and w′′ cannot span a face, hence P ′ is not 2-neighborly, and this implies that P ′ is
not ⌊m/2− 1⌋-neighborly because of m ≥ 6.

It remains to show that (NSPq,1) of order s∗ is not satisfied for m ≥ 12. As-
sume that it is satisfied. Then for any vector v = (v1, . . . , vn)

⊤ ∈ null(A) \ {0}
and S ⊆ [k] with |S| ≤ s∗, we have ∥v[S]∥q,1 < ∥v[S]∥q,1. Restricting
to v1 = 0, the induced NSP-formula of order s∗ must also hold for any corre-
sponding (v2, . . . , vn)

⊤ ∈ null(Ã), where Ã results from A by deleting the first
column, i.e., Ã = [w′′, w(1) . . . , w(k−1)]. But this is a contradiction to the re-
sults of McMullen and Shephard from Remark 3.13, because we have m ≥ 12 and
thus s∗ = ⌊m/2− 1⌋ > ⌊(m+ 1)/3⌋.

Remark 3.15. The construction in the proof can be generalized, for example to
block sizes (n1, . . . , nk) = (2, . . . , 2︸ ︷︷ ︸

r

, 1, . . . , 1︸ ︷︷ ︸
n−r

) for fixed r and sufficiently large k.

This result has two interesting implications. First, it shows that there are de-
terministic matrices which satisfy the NSP for block-sparse nonnegative vectors.
Furthermore, its proof provides an explicit construction of such matrices. Second,
the result also demonstrates that exploiting the nonnegativity as side constraint
leads to successful recovery, whereas without the side constraint, successful recov-
ery is not guaranteed. Hence, if nonnegativity is exploited, a strictly weaker NSP
suffices for uniform recovery, which improves the chances of recovery.

The next section concentrates on another interesting side constraint which can be
exploited in the recovery process, namely integrality.

65

Chapter 3. Recovery Conditions for Special Cases

3.2 Integrality Constraints on Sparse Vectors

The integrality of the vector x(0) which shall be recovered, is another interesting side
constraint which frequently appears in applications of compressed sensing. A promi-
nent example is discrete tomography, which is treated by Kuske et al. [150]. More-
over, integral vectors and especially binary vectors frequently appear in signal pro-
cessing applications of compressed sensing, such as digital or wireless communication
systems. Examples include wideband spectrum sensing in Axell et al. [11], and mas-
sive multiple-input/multiple-output (MIMO) with constellation signals, see Hegde
et al. [125, 126]. The latter application deals with signals whose components are
chosen from a small finite alphabet. These constellation signals appear as a result
of various modulation schemes, such as M -phase shift keying (M -PSK), where an
alphabet of size M is used. Binary variables can be used to assign the symbols from
the finite alphabet to the components of the resulting constellation signal.

An integrality condition, possibly together with additional box-constraints, can
be modeled by the side constraint

x ∈ [ℓ, u]Z := {x ∈ Zn : ℓ ≤ x ≤ u}, (3.9)

where ≤ is applied componentwise and ℓ ∈ (R∪{−∞})n as well as u ∈ (R∪{∞})n.
We assume that ℓ ≤ 0 ≤ u. If the integrality constraint is directly included in the
recovery program by using C = [ℓ, u]Z, then the resulting problem

min {∥x∥1 : Ax = Ax(0), x ∈ [ℓ, u]Z} (3.10)

is nonconvex. Thus, in the literature the constraint x ∈ [ℓ, u]Z is commonly replaced
by

x ∈ [ℓ, u] := {x ∈ Rn : ℓ ≤ x ≤ u}. (3.11)

Recovery conditions for the important binary case with ℓi = 0 and ui = 1 for
all i ∈ [n] have first been derived by Stojnic [227], who presents a sufficient condition
for individual recovery, that is, recovery of a fixed sparse binary vector x(0) ∈ {0, 1}n
using min {∥x∥1 : Ax = Ax(0), x ∈ [0, 1]}. This condition is also analyzed proba-
bilistically for (Gaussian) random matrices A ∈ Rm×n to obtain thresholds for the
values of measurements m and the sparsity level s for which, in dependence of n,
individual recovery is possible with high probability.

For a given system of linear equations Ax = b, Mangasarian and Recht [172]
present conditions for a vector x(0) ∈ {−1, 1}n with Ax(0) = b to be the unique
optimal solution of min {∥x∥∞ : Ax = b}. In this context, x(0) is not sparse in the

66

3.2. Integrality Constraints on Sparse Vectors

classical sense, but lies on a vertex of the hypercube [−1, 1]n, which is the unit ball
of the ℓ∞-norm ∥·∥∞. The corresponding recovery problem replaces the ℓ1-norm
by ∥·∥∞ in the objective function.

Keiper et al. [141] analyze the recovery of integral (box-constrained) vectors using
a relaxed integrality constraint. The authors propose an NSP for individual recovery
of a fixed x(0) and analyze the transition between success and failure of individual
recovery for (Gaussian) random matrices A. These results show that exploiting
the box-constraints in the recovery problem has a positive effect on the success of
recovery. Results concerning individual recovery of sparse binary vectors using the
convex relaxation x ∈ [0, 1]n for further random measurement matrices appear in
Flinth and Keiper [98] and Keiper [140].

The mentioned references only treat individual recovery of a fixed vector, but
not uniform recovery, and they also relax the integrality constraint for the recov-
ery problem. Keiper et al. [141] show that if the integrality constraint in (3.9)
is relaxed to (3.11), the prior knowledge of x being integral does not help for re-
covery: uniform recovery of all sparse bounded integral x is equivalent to uniform
recovery of all sparse bounded x. This already shows that in order to exploit in-
tegrality, one has to take this into account in the recovery program. This is done
in Lange et al. [154], where null space properties for uniform recovery of sparse
integral (box-constrained) vectors using the ℓ1-minimization problem (3.10) are de-
rived. Moreover, characterizations for uniform as well as individual recovery using
the ℓ0-minimization problem min {∥x∥0 : Ax = Ax(0), x ∈ [ℓ, u]Z} are considered.

There also exist different solution approaches for recovery of sparse binary vectors.
Fosson [100] analyzes recovery conditions for a nonconvex functional, and Fosson
and Abuabiah [101] propose a polynomial optimization problem for the recovery as
a variant of ℓ1-minimization. Another modification of ℓ1-minimization is considered
in Aïssa-El-Bey et al. [12].

In the following, we will derive the setting of recovery of sparse integral (box-
constrained) vectors from the general framework presented in Chapter 2 and show
that we obtain the recovery conditions presented in Lange et al. [154]. It turns out
that one of the results in [154] needs to be slightly modified in order to obtain a
valid characterization of uniform recovery.

The derivation of sparse integral vectors is analogous to the case of sparse vectors
in Example (2.3.1). Therefore, let X = E = Rn and C = [ℓ, u]Z with ℓ ≤ 0 ≤ u.
Let B be the identity map, so that D = C. Furthermore, let P be the set of
orthogonal projectors onto all coordinate subspaces ES = {y ∈ Rn : yi = 0 ∀ i /∈ S}
of Rn, where S ⊆ [n]. For P ∈ P, define its nonnegative weight as ν(P) := rank(P),
and define P := In − P , where In denotes the identity mapping on Rn. Thus, if P
projects onto EI , then ν(P) = |I|. Finally, let the norm ∥·∥ be the usual ℓ1-norm.

67

Chapter 3. Recovery Conditions for Special Cases

The general recovery problem (2.3) becomes

min {∥x∥1 : Ax = b, x ∈ [ℓ, u]Z}, (3.12)

which is a relaxation of

min {∥x∥0 : Ax = b, x ∈ [ℓ, u]Z}. (3.13)

In contrast to the classical case, where the ℓ1-minimization problem is the convex
relaxation of the nonconvex ℓ0-minimization problem, (3.12) is nonconvex but can
be formulated as a MIP. Furthermore, note that both (3.12) and (3.13) are NP-hard
problems [154].

Since sparse integral (box-constrained) vectors are a special case of sparse vectors,
Assumptions (A1) to (A3) are satisfied in the integral case as well, except for the
condition c1 + c2 ∈ C for all c1, c2 ∈ C in Assumption (A1). This condition may be
violated due to the presence of box-constraints ℓ ≤ x ≤ u. However, the following
remark states that a simpler condition suffices for the statements in Chapter 2.

Remark 3.16. In the proofs of the recovery results in Chapter 2, i.e., Theorems 2.10
and 2.20 and Corollary 2.28, the assumption c1 + c2 ∈ C for all c1, c2 ∈ C is used.
However, a closer inspection of these proofs reveals that a less restrictive assumption
suffices. Indeed, in the proofs we only need the condition

PBc1, PBc2 ∈ D =⇒ PBc1 + PBc2 ∈ D (3.14)

for all c1, c2 ∈ C + (−C) and all P ∈ P.

Clearly, Condition (3.14) is satisfied for box-constrained integral vectors, so that
the general framework from Chapter 2 is applicable. Next we prove that Assump-
tion (A4) holds. To do so, note that for v ∈ [ℓ − u, u − ℓ]Z, the decomposi-
tion v = v̂(1) − v̂(2) with v̂(1), v̂(2) ∈ [ℓ, u]Z with ∥v̂(2)∥1 minimal is unique and
given by

v̂
(1)
i =

vi, if ℓi ≤ vi ≤ ui,
ui, if vi > ui,

ℓi, if vi < ℓi,

and v̂
(2)
i =

0, if ℓi ≤ vi ≤ ui,
ui − vi, if vi > ui,

ℓi − vi, if vi < ℓi,

(3.15)

for all i ∈ [n].

Lemma 3.17. Let ℓ ∈ (R∪{−∞})n and u ∈ (R∪{∞})n with ℓ ≤ 0 ≤ u. Let P ∈ P
be the orthogonal projection onto ES with S ⊆ [n]. Let x, z ∈ [ℓ, u]Z with v := x− z.

68

3.2. Integrality Constraints on Sparse Vectors

Furthermore, let v̂(1), v̂(2) ∈ [ℓ, u]Z be the minimal decomposition in (3.15). Then,

∥x∥1 ≤ ∥z∥1 + ∥v̂(1)S ∥1 − ∥v̂
(2)
S ∥1 − ∥vS∥1 + 2∥xS∥1.

Proof. For x, z ∈ [ℓ, u]Z and v := x − z, let v̂(1), v̂(2) ∈ [ℓ, u]Z be the minimal
decomposition in (3.15). This implies

∥z∥1 − ∥x∥1 + ∥v̂(1)S ∥1 − ∥v̂
(2)
S ∥1 − ∥vS∥1 + 2∥xS∥1

= ∥zS∥1 + ∥zS∥1 − ∥xS∥1 + ∥xS∥1 + ∥v̂
(1)
S ∥1 − ∥v̂

(2)
S ∥1 − ∥xS − zS∥1

≥∥zS∥1 + ∥zS∥1 − ∥xS∥1 + ∥xS∥1 + ∥v̂
(1)
S ∥1 − ∥v̂

(2)
S ∥1 − ∥xS∥ − ∥zS∥1

= ∥zS∥1 − ∥xS∥1 + ∥v̂(1)S ∥1 − ∥v̂
(2)
S ∥1

=
∑
i∈S

(
|zi| − |xi|+ |v̂(1)i | − |v̂

(2)
i |
)
.

For i ∈ S with ℓi ≤ vi ≤ ui, it holds that v̂(1)i = vi and v̂(2)i = 0, which yields

|zi| − |xi|+ |v̂(1)i | − |v̂
(2)
i | = |zi| − |xi|+ |xi − zi| ≥ 0.

For i ∈ S with vi > ui, it holds that v̂(1)i = ui and v̂(2)i = ui − vi ≤ 0. Thus,

|zi| − |xi|+ |v̂(1)i | − |v̂
(2)
i | = |zi|+ zi − (|xi|+ xi) + |ui|+ ui,

with |zi| + zi ≥ 0 for zi ≥ 0 and |zi| + zi = 0 for zi < 0. Since ui < vi = xi − zi
and xi ≤ ui, we have zi < 0. This yields

|zi|+ zi − (|xi|+ xi) + |ui|+ ui ≥ 2(ui − xi) ≥ 0

for all i ∈ S with vi > ui. The last case vi < ℓi is completely analogous by noting
that vi < ℓi implies zi > 0, which yields

|zi| − |xi|+ |v̂(1)i | − |v̂
(2)
i | = |zi| − zi − (|xi| − xi) + |ℓi| − ℓi ≥ 0.

This shows |zi| − |xi|+ |v̂(1)i | − |v̂
(2)
i | ≥ 0 for all i ∈ S, which implies

∥x∥1 ≤ ∥z∥1 + ∥v̂(1)S ∥1 − ∥v̂
(2)
S ∥1 − ∥vS∥1 + 2∥xS∥1.

Lemma 3.17 shows that Assumption (A4) is satisfied, so that by Theorem 2.10,
the null space property (NSPC) characterizes uniform recovery for sparse box-
constrained integral vectors. This NSP can be simplified as shown in the following
theorem. This simplification is based on the idea to split a vector x ∈ Rn into

69

Chapter 3. Recovery Conditions for Special Cases

its positive and negative part x+ ∈ Rn
+ and x− ∈ Rn

+ with x = x+ − x−, and to
write Ax = b as (A,−A)(x+, x−) = b.

Theorem 3.18. Let A ∈ Rm×n and s ≥ 0 and define

K :=

{(
x

y

)
∈
[(

0

0

)
,

(
u

−ℓ

)]
Z

: xi · yi = 0, i ∈ [n]

}
.

Then every s-sparse x(0) ∈ [ℓ, u]Z is the unique solution of (3.12) if and only if

−
(
vS
wS

)
∈ K =⇒

n∑
i=1

(
vi + wi

)
< 0 (3.16)

holds for all (v⊤, w⊤)⊤ ∈ null(A,−A) ∩ (K + (−K)) with (v⊤, w⊤)⊤ ̸= (0⊤, 0⊤)⊤

and all index sets S ⊆ [n], |S| ≤ s.

Before we prove this result, note that a similar result already appears in Lange
et al. [154], but without the complementarity constraints in K. However, the fol-
lowing example shows that the complementarity constraints cannot be omitted.

Example 3.19. Let ℓ = (−1,−1,−1)⊤, u = (1, 1, 1)⊤ and consider the matrix

A =

 1 1 −1
1 1 1

−1 1 1

 ∈ R3×3,

which has a trivial null space null(A) = {(0, 0, 0)⊤}. Consequently, A has full rank,
so that the system of linear equations Ax = b has a unique solution for all b ∈ R3.
Thus, every sparse x(0) ∈ Z3 with ℓ ≤ x(0) ≤ u is the unique optimal solution of
the recovery problem min {∥x∥1 : Ax = Ax(0), ℓ ≤ x ≤ u, x ∈ Z3}. The null space
of the matrix (A,−A) is given by null(A,−A) = {(α, β, γ, α, β, γ)⊤ : α, β, γ ∈ R}.
Thus, for all (v⊤, w⊤)⊤ ∈ null(A,−A) ∩ (K + (−K)) with (v⊤, w⊤)⊤ ̸= (0⊤, 0⊤)⊤,
there exists no index i with vi · wi = 0, so that the NSP condition (3.16) trivially
holds. Define

K̃ :=

[(
0

0

)
,

(
u

−ℓ

)]
Z

,

i.e., K̃ is the set K without the complementarity constraint. Then,

(v⊤, w⊤)⊤ = (1,−1, 0, 1,−1, 0)⊤ ∈ null(A,−A) ∩ (K̃ + (−K̃)),

70

3.2. Integrality Constraints on Sparse Vectors

with −(v⊤
S
, w⊤

S
)⊤ ∈ K̃ for S = {1} and

∑n
i=1(vi + wi) = 0 ≥ 0, which is a con-

tradiction to (3.16) with K̃ instead of K. This shows that the complementarity
constraint is required in order to obtain a condition which is not only sufficient but
also necessary for uniform recovery.

We now prove Theorem 3.18.

Proof of Theorem 3.18. Let A ∈ Rm×n, s ≥ 0, and recall C = [ℓ, u]Z. We first
show that (3.16) is equivalent to (NSPC). Then, Theorem 2.10 yields the desired
equivalence between uniform recovery and (3.16).

Therefore, assume first that (NSPC) holds and let S ⊆ [n], |S| ≤ s.
Let (v⊤, w⊤)⊤ ∈ null(A,−A) ∩ (K + (−K)) with (v⊤, w⊤)⊤ ̸= (0⊤, 0⊤)⊤,
and −(v⊤

S
, w⊤

S
)⊤ ∈ K. Thus, v − w ∈ null(A), and −vS ∈ [0, u]Z as well

as wS ∈ [ℓ, 0]Z. This implies −(v − w)S ∈ [ℓ, u]Z. Since (v⊤, w⊤)⊤ ∈ K + (−K),
there exist ((x(1))⊤, (x(2))⊤)⊤, ((y(1))⊤, (y(2))⊤)⊤ ∈ K with v = x(1) − y(1) as well
as w = x(2) − y(2), so that it is easy to see that v ̸= w. Indeed, assume there ex-
ists j ∈ [n] with vj = wj ̸= 0. If x(1)j ̸= 0, then x(2)j = 0, y(2)j ̸= 0 and y(1)j = 0 due to
the complementarity constraints inK and x(1)j −y

(1)
j = x

(2)
j −y

(2)
j . Thus, x(1)j = −y(2)j

and vj = x
(1)
j > 0 as well as wj = −y(2)j < 0. This is a contradiction to vj = wj ̸= 0.

The case x(1)j = 0 is completely analogous. Define f := v − w. Then,

f = v − w =
(
x(1) − x(2)︸ ︷︷ ︸

∈[ℓ,u]Z

)
−
(
y(1) − y(2)︸ ︷︷ ︸

∈[ℓ,u]Z

)
∈ null(A) ∩ [ℓ− u, u− ℓ]Z,

since ((x(1))⊤, (x(2))⊤)⊤ ∈ K and ((y(1))⊤, (y(2))⊤)⊤ ∈ K. Moreover, we have
−fS = wS − vS ∈ [ℓ, u]Z, since −(v⊤

S
, w⊤

S
)⊤ ∈ K as well, so that we can ap-

ply (NSPC). Let f̂ (1), f̂ (2) ∈ [ℓ, u]Z with f = f̂ (1) − f̂ (2) and ∥f̂ (2)∥1 minimal.
Then,

∥f̂ (1)S ∥1 − ∥f̂
(2)
S ∥1 < ∥fS∥1. (3.17)

Additionally, we define

x :=

{
0, if j ∈ S,
x
(1)
j − x

(2)
j , if j ∈ S,

and z :=

{
−fj , if j ∈ S,
y
(1)
j − y

(2)
j , if j ∈ S,

so that f = x− z and x, z ∈ [ℓ, u]Z = C. Assumption (A4) for f, x, z and f̂ (1), f̂ (2)

yields

0 ≤ ∥z∥1 − ∥x∥1 + ∥f̂ (1)S ∥1 − ∥f̂
(2)
S ∥1 − ∥fS∥1 + 2∥xS∥1. (3.18)

71

Chapter 3. Recovery Conditions for Special Cases

Combining (3.17) and (3.18) shows

0 < ∥z∥1 − ∥x∥1 + 2∥xS∥1 = ∥zS∥1 − ∥xS∥1 + ∥zS∥1 + ∥xS∥1

=
∑
i∈S

(
|y(1)i − y

(2)
i | − |x

(1)
i − x

(2)
i |
)
+
∑
i∈S

|wi − vi|.

Since ((y(1))⊤, (y(2))⊤)⊤, ((x(1))⊤, (x(2))⊤)⊤ ∈ K, and −(v⊤
S
, w⊤

S
)⊤ ∈ K, we obtain

0 <
∑
i∈S

(
y
(1)
i + y

(2)
i −

(
x
(1)
i + x

(2)
i

))
+
∑
i∈S

−
(
vi + wi

)
= −

n∑
i=1

(
vi + wi

)
,

which shows that
∑n

i=1(vi + wi) < 0, as desired in (3.16).
For the reverse implication assume that (3.16) holds. Let S ⊆ [n], |S| ≤ s

and let v ∈ null(A) ∩ (C + (−C)) with v ̸= 0 as well as −vS ∈ C. Furthermore,
let v̂(1), v̂(2) ∈ C with v = v̂(1) − v̂(2) and ∥v̂(2)∥1 minimal. Define

x := (v̂
(1)
S)+ − (v̂

(2)
S)+ − (−vS)

+, y := (v̂
(1)
S)− − (v̂

(2)
S)− − (−vS)

−.

Then, (A,−A)(x⊤, y⊤)⊤ = Av = 0. Furthermore, we have (x⊤, y⊤)⊤ ̸= (0⊤, 0⊤)⊤

since v ̸= 0 and (x⊤, y⊤)⊤ ∈ K +(−K) with −(x⊤
S
, y⊤

S
)⊤ ∈ K. Thus, (3.16) implies

0 > 1⊤
(
x

y

)
=
∑
i∈S

(
xi + yi

)
+
∑
i∈S

(
xi + yi

)
= ∥v̂(1)S ∥1 − ∥v̂

(2)
S ∥ −

∑
i∈S

(
(−vi)+ + (−vi)−

)
= ∥v̂(1)S ∥1 − ∥v̂

(2)
S ∥ − ∥vS∥1,

which shows that (NSPC) is satisfied. This concludes the proof.

The complementarity constraints xi · yi = 0 in K are due to the split into a
positive and a negative part. This already shows that the introduction of bounds
leads to different recovery conditions, in contrast to the situation of classical sparse
recovery over Rn. For testing the NSP in Theorem 3.18, one needs to take care of
the complementarity constraints xi ·yi = 0. This can be done by, e.g., using methods
by Fischer and Pfetsch [95, 96].

Remark 3.20. It is also possible to use the exact recovery problem (3.13) instead
of (3.12) for recovery of sparse integral vectors. If there are finite bounds, then
Problem (3.13) can also be formulated as a MIP by using binary variables to model
the nonconvex ℓ0-term in the objective function. Recall that both (3.12) and (3.13)

72

3.2. Integrality Constraints on Sparse Vectors

are NP-hard problems, see [154]. Recovery conditions for integral sparse recovery
with and without bounds when solving (3.13) can be found in [154]. In the classical
case of sparse recovery, the recovery condition for ℓ0-minimization is spark(A) > 2s,
where spark(A) denotes the smallest number of linear dependent columns in A, see
Remark 2.16.

Without Box-Constraints If there are no box-constraints, that is, C = Zn, then
Condition (3.16) can be further simplified to

∥vS∥1 < ∥vS∥1 ∀ v ∈
(
null(A) ∩Zn

)
\ {0}, S ⊆ [n], |S| ≤ s, (3.19)

which is exactly the classical NSP for the recovery of sparse vectors restricted to
integral vectors in the null space of A, see Example (2.12.1). Indeed, for C = Zn

and v ∈ Zn, the decomposition v = v̂(1) − v̂(2) with v̂(1), v̂(2) ∈ Zn and ∥v̂(2)∥1
minimal is unique and given by v̂(1) = v and v̂(2) = 0. Consequently, (NSPC)
simplifies to (3.19). The NSP (3.19) already appears in [154]. This shows that the
split into positive and negative part together with the complementarity constraints
in K are not necessary if no box-constraints are present. Of course, the NSP (3.16)
with ℓi = −∞ and ui = ∞ for all i ∈ [n] is also an equivalent characterization of
uniform recovery of sparse integral vectors. By removing the integrality condition,
we further obtain an NSP for sparse vectors, which is of course equivalent to the
classical condition (NSP).

Clearly, for rational matrices A ∈ Qm×n, vectors in the null space of A can always
be scaled to be integral, so that there is no difference between the recovery of integral
and general x, see also [154]. In the presence of additional box-constraints on some
entries of x, this is no longer true. The condition

∥vS∥1 < ∥vS∥1 ∀ v ∈
(
null(A) ∩ [ℓ− u, u− ℓ]Z

)
\ {0}, S ⊆ [n], |S| ≤ s,

is shown to be only sufficient but not necessary for uniform recovery of x ∈ [ℓ, u]Z
using (3.12) in [154]. This is in contrast to the general case without integrality.
There, additional bounds do not influence the recovery conditions since vectors in
the null space of A can always be scaled accordingly.

With Nonnegativity If the box-constraints are given by ℓi = 0 and ui = ∞ for
all i ∈ [n], i.e., x ≥ 0 componentwise and C = Zn

+, then Example (2.12.2) shows that
Assumption (A4) is satisfied. Thus, uniform recovery is characterized by (NSPC),
which simplifies to

vS ≤ 0 =⇒ 1⊤v < 0 ∀ v ∈
(
null(A) ∩Zn

)
\ {0}, S ⊆ [n], |S| ≤ s, (3.20)

73

Chapter 3. Recovery Conditions for Special Cases

analogously to Example (2.12.2). The NSP (3.20) also appears in [154]. As in the
case without bounds, this null space property shows that exploiting integrality for
rational matrices A ∈ Qm×n does not lead to improved recovery conditions. If
additional upper bounds are introduced, i.e., C = [0, u]Z, then the variable split
in Theorem 3.18 is not needed, and it can be shown that Condition (3.20) for
all v ∈ (null(A) ∩ [−u, u]Z) \ {0} and all S ⊆ [n] with |S| ≤ s characterizes uniform
recovery, see [154].

Individual Recovery In the case of individual recovery of a fixed sparse inte-
gral x(0) ∈ [ℓ, u]Z with ℓ ≤ 0 ≤ u, the results which can be obtained from Section 2.4
become exactly the results in [154], so that we do not repeat them here. In [154],
it is shown that the direct adaption of the corresponding statements in the classical
(non-integral) case (see (2.27) and (2.28)) to integrality yields a characterization, if
an additional nonnegativity constraint is present. However, without the additional
nonnegativity, the resulting conditions are only sufficient for individual recovery of
integral vectors, in contrast to the classical case. It is possible to obtain a simple
characterization of individual integral recovery by using Lemma 2.34, which reads

∥x(0) + v∥1 > ∥x(0)∥1 ∀ v ∈ (null(A) ∩Zn) \ {0}.

In the presence of bounds, a variable split as in Theorem 3.18 can be used to
obtain the following characterization of individual recovery of integral vectors in the
presence of bounds, which resembles the usual null space properties:(

v

w

)
+

(
x
(0)
+

x
(0)
−

)
∈ [0,

(
u
−ℓ

)
]Z =⇒ 1⊤

(
v

w

)
> 0

for all (v⊤, w⊤)⊤ ∈ null(A,−A)∩ [
(−u

ℓ

)
,
(

u
−ℓ

)
]Z \ {0}, see [154, Theorem 4.22]. Note

that in contrast to uniform recovery in Theorem 3.18, this NSP for individual re-
covery does not need complementarity constraints.

Stability and Robustness Let us lastly consider stable and robust recovery of
sparse integral vectors. To do so, let ||| · ||| be a norm on Rm in which the recovery
error shall be measured, e.g., the ℓ1- or the ℓ2-norm. Without additional bounds
and with an additional nonnegativity constraint, the corresponding NSPs can be
directly obtained from the NSP for stable and robust (nonnegative) recovery in
Section 2.3.3 by demanding that the respective condition only needs to hold for
integral vectors in the null space of A. Using C = Zn in Theorem 2.20 yields a
characterization for robust integral recovery and Theorem 2.23 presents the corre-
sponding error bound. The results for stable integral recovery can be obtained from

74

3.2. Integrality Constraints on Sparse Vectors

Corollary 2.28 and Corollary 2.29, respectively. Furthermore, replacing C = Zn

by C = Zn
+ yields the corresponding results for integral nonnegative vectors. In

both cases, Assumption (A5) is satisfied analogously to the case of sparse (nonnega-
tive) vectors without integrality, c.f. Section 2.3.3. Moreover, ∥v∥1 = ∥vS∥1 + ∥vS∥1
clearly holds for all v ∈ Rn and all S ⊆ [n].

In the presence of box-constraints x ∈ C = [ℓ, u]Z with ℓ ≤ 0 ≤ u, ℓ ∈ (R∪{−∞})n
and u ∈ (R ∪ {∞})n, Assumption (A5) does not hold due to the structure of the
minimal decomposition of v ∈ C + (−C) in (3.15). However, this problem can be
avoided by using a variable split. The robust recovery problem

min {∥x∥1 : |||Ax− b||| ≤ η, x ∈ [ℓ, u]Z}

is equivalent to the recovery problem

min

{∥∥∥(x
y

)∥∥∥
1
:
∣∣∣∣∣∣∣∣∣(A,−A)(x

y

)
− b
∣∣∣∣∣∣∣∣∣ ≤ η, (x

y

)
∈ K

}
, (3.21)

where the set K is defined as in Theorem 3.18, i.e.,

K :=

{(
x

y

)
∈
[(

0

0

)
,

(
u

−ℓ

)]
Z

: xi · yi = 0, i ∈ [n]

}
.

In order to formulate the setting after using the variable split in the general frame-
work from Chapter 2, we use X = E = R2n and C = K. Furthermore, B is the
identity map, so that D = C, and P is the set of orthogonal projectors onto all
coordinate subspaces ES = {(x⊤, y⊤)⊤ ∈ R2n : xi = yi = 0 ∀ i /∈ S} of R2n,
where S ⊆ [n]. For P ∈ P, define its nonnegative weight as ν(P) := rank(P)/2, and
define P := I2n − P , where I2n denotes the identity mapping on R2n. Finally, let
the norm ∥·∥ be the ℓ1-norm. Then, the general robust recovery problem (2.9) be-
comes the recovery problem (3.21). The general stable null space property (sNSPC

ρ)
for (A,−A) ∈ Rm×2n reads

−
(
vS
wS

)
∈ K =⇒

∑
i∈S

(
vi + wi

)
≤ ρ
∥∥∥(vS
wS

)∥∥∥
1

(3.22)

for all (v⊤, w⊤)⊤ ∈ null(A,−A)∩(K+(−K)) and all S ⊆ [n] with |S| ≤ s. Similarly,
the general robust null space property (rNSPC

ρ,τ) for (A,−A) ∈ Rm×2n becomes

−
(
vS
wS

)
∈ K =⇒

∑
i∈S

(
vi + wi

)
≤ ρ
∥∥∥(vS
wS

)∥∥∥
1
+ τ
∣∣∣∣∣∣∣∣∣(A,−A)(v

w

)∣∣∣∣∣∣∣∣∣ (3.23)

for all (v⊤, w⊤)⊤ ∈ K + (−K) and all S ⊆ [n] with |S| ≤ s.

75

Chapter 3. Recovery Conditions for Special Cases

In this setting, Assumptions (A1) to (A5) are satisfied, analogously to the case of
sparse nonnegative vectors without integrality, see Example (2.12.2). Thus, Corol-
lary 2.28 and Theorem 2.20 provide the following characterizations of stable and
robust recovery using (3.22) and (3.23), respectively.

Lemma 3.21. Let A ∈ Rm×n and s ≥ 0. Then, the following statements hold,
where for x = (α⊤, β⊤)⊤ ∈ R2n and S ⊆ [n], we write xS = (α⊤

S , β
⊤
S)⊤.

1. The matrix (A,−A) satisfies the integral stable NSP (3.22) of order s with
constant ρ ∈ (0, 1) if and only if

−vS ∈ K =⇒ ∥x− z∥1 ≤ 1+ρ
1−ρ

(
∥z∥1 − ∥x∥1 + 2∥xS∥1

)
holds for all x, z ∈ K with (A,−A)x = (A,−A)z, v := x − z and all S ⊆ [n]

with |S| ≤ s.
2. The matrix (A,−A) satisfies the integral robust NSP (3.23) of order s with

constants ρ ∈ (0, 1) and τ > 0 if and only if

−vS ∈ K =⇒ ∥x− z∥1 ≤ 1+ρ
1−ρ

(
∥z∥1−∥x∥1 + 2∥xS∥1

)
+ 2τ

1−ρ |||(A,−A)(x− z)|||

holds for all x, z ∈ K, v := x− z and all S ⊆ [n] with |S| ≤ s.

Proof. Let C = K. The first part directly follows from Corollary 2.28 and the second
part is due to Theorem 2.20 by using the variable split as outlined above.

The corresponding error bounds for stable and robust recovery of sparse box-
constrained integral vectors can be obtained from Corollary 2.29 and Theorem 2.23
with C = K, respectively. These error bounds hold for the recovery problems after
using the variable split. In this setting, the error σs of the best s-term approximation
of x = ((x(1))⊤, (x(2))⊤)⊤ ∈ R2n in Definition 2.22 reads

σs(x) = min

{∥∥∥(x(1)
x(2)

)
−
(
z(1)

z(2)

)∥∥∥
1
: ∃S ⊆ [n], |S| ≤ s, with

(
z
(1)

S

z
(2)

S

)
=

(
0

0

)}
,

and any z = ((z(1))⊤, (z(2))⊤)⊤ ∈ R2n attaining this minimum is called a best s-term
approximation of x.

Lemma 3.22. Let A ∈ Rm×n and s ≥ 0. Then, the following statements hold,
where for x = (α⊤, β⊤)⊤ ∈ R2n and S ⊆ [n], we again write xS = (α⊤

S , β
⊤
S)⊤.

76

3.3. Constant Modulus Constraints on Vectors

1. Let x(0) ∈ K and let x̃ be a solution of

min {∥x∥1 : (A,−A)x = (A,−A)x(0), x ∈ K}.

Furthermore, let S ⊆ [n] such that x(0)S is a best s-term approximation of x(0).
If the matrix (A,−A) satisfies the integral stable NSP (3.22) of order s with
constant ρ ∈ (0, 1) and if −(x(0)

S
− x̃S) ∈ K, then x̃ approximates x(0) with

error

∥x(0) − x̃∥1 ≤ 2 1+ρ
1−ρσs(x

(0)).

2. Let x(0) ∈ K and let x̃ be a solution of

min {∥x∥1 : |||(A,−A)x− b||| ≤ η, x ∈ K}

with b = (A,−A)x(0)+e and |||e||| ≤ η. Furthermore, let S ⊆ [n] such that x(0)S

is a best s-term approximation of x(0). If the matrix (A,−A) satisfies the
integral robust NSP (3.23) of order s with constants ρ ∈ (0, 1) and τ > 0 and
if −(x(0)

S
− x̃S) ∈ K, then x̃ approximates x(0) with error

∥x(0) − x̃∥1 ≤ 2 1+ρ
1−ρσs(x

(0)) + 4τ
1−ρη.

Proof. Let C = K. The first part directly follows from Corollary 2.29, and the
second statement is due to Theorem 2.23.

If x(0) ∈ R2n is s-sparse, that is, there exists S ⊆ [n] with |S| ≤ s and x
(0)

S
= 0,

then σs(x(0)) = 0 and the error bound in the second part of Lemma 3.22 becomes

∥x(0) − x̃∥1 ≤ 4τ
1−ρη.

Moreover, if the measurement error (or the noise level, respectively) satisfies η = 0,
that is, the measurements are exact, then Lemma 3.22 asserts that x(0) is exactly
recovered. Thus, we recover the statement from Theorem 3.18 about exact uniform
recovery.

3.3 Constant Modulus Constraints on Vectors

Until now, all considered special cases of the general framework presented in Chap-
ter 2 were settings and side constraints over the real numbers. At least the cases
without additional side constraints such as nonnegativity or positive semidefinite-
ness can directly be extended to the complex setting. For instance, it is well known

77

Chapter 3. Recovery Conditions for Special Cases

that the NSPs which emerge from the general framework in case of sparse complex
vectors and sparse real vectors are in fact equivalent for a real linear sensing map A,
see Foucart and Gribonval [102]. However, since for a complex number x ∈ C,
nonnegativity is not well-defined, the results for recovery of sparse (real) nonnega-
tive vectors do not carry over to the complex setting. In this section, we explicitly
consider the setting of complex vectors together with a side constraint that is more
interesting for complex vectors than for real vectors. Namely, we demand that all
entries xj ∈ C of the vector x ∈ Cn to be recovered have a constant modulus, that
is,

|xj | =
√

Re[xj]2 + Im[xj]2 ∈ {0, c}

holds for all j ∈ [n] and for some c ∈ R, where Re[x] and Im[x] denote the real and
imaginary part of x ∈ C, respectively. Clearly, if |xj | = 0, then also xj = 0, so that
sparsity counts the number of entries with |xj | = 1, that is, Re[xj] or Im[xj] are
nonzero. Note that throughout this section, i denotes the imaginary unit and j is
used for indices.

The assumption of constant modulus is frequently encountered in communica-
tion applications, see van der Veen and Paulraj [243] and the references therein.
Typically, in order to transmit communication signals, a modulation is used, which
varies properties of the signal such as amplitude, phase or frequency. Examples
for modulation schemes include frequency modulation (FM) and phase modulation
(PM) of analog signals, where either the frequency or the phase is varied, whereas
the other properties remain constant. Modulation schemes for digital signals include
frequency shift keying (FSK), phase shift keying (PSK), or minimum shift keying
(MSK), where a finite alphabet of frequencies or phases are used to represent the
signal. The resulting signals under such a modulation then have a constant modulus,
which can be exploited in the reconstruction. Furthermore, the constant modulus
property can also be exploited in the context of direction-of-arrival estimation or
parameter estimation [155].

In the “EXPRESS” project within the SPP 1798, constant modulus was considered
as one specific structure in the problem of joint antenna selection and phase-only
beamforming in transmission networks [97]. In directional signal transmission via
beamforming, radio frequency (RF) phase shifters are employed to vary the phase
of the signal at the transmitters. In large networks, such as massive multiple-
input/multiple-output (MIMO) systems, it is no longer affordable to connect each
antenna element to a dedicated RF phase shifter for it to be able to transmit sig-
nals. Rather, using switches, there only exists a reduced number of costly RF phase
shifters, which are connected to a subset of the inexpensive antenna elements. In
hybrid massive MIMO systems, the RF phase shifters are based on analog beam-
formers, which require a fixed magnitude of the signals to be transmitted, since only

78

3.3. Constant Modulus Constraints on Vectors

y

α1

α2

αM

1

2

M

S
w
it
ch
es

x1

x2

xN

Phase
shifters

Antenna
array

user 1

user K

A

y1

yK

Figure 3.1. Schematic model of the system model for joint antenna selection and
phase-only beamforming, taken from [97].

the phase of the signals can be varied. More specifically, consider a sensor array
with N antenna elements, M phase shifters with M ≪ N and K (single-antenna)
users that need to be served. Let x ∈ CN be the transmitted signal vector, and
let α = (α1, . . . , αM)⊤ ∈ CM be the set of M analog beamformers, where αm is the
value of the m-th phase shifter with |αm| = c for a constant c ∈ R and all m ∈ [M].
Throughout this section, we assume without loss of generality c = 1. Further,
let A ∈ CN×K be the channel matrix with columns a1, . . . , aK ∈ CN . If the n-th
antenna is connected to the m-th phase shifter, then xn = αm, and xn = 0 other-
wise. The desired output at the K users is given by y ∈ CK , and the actual output
at the users can be expressed as ŷ = A⊤x + e, where e represents complex i.i.d.
additive white Gaussian noise. The underlying model is depicted in Figure 3.1.

In order to minimize hardware costs, the approach in [97] minimizes the number
of required phase shifters by jointly assigning appropriate antenna elements to the
phase shifters and designing the optimal phase values, while keeping the root-mean-
square error between the desired and the actual output at the users below a given
threshold

√
δ. This problem can be formulated as

min
x∈CN

∥x∥0

s.t. ∥y −A⊤x∥2 ≤
√
δ,

|xj | ∈ {0, 1} ∀j ∈ [N].

(3.24)

The rest of this section is structured as follows. In Section 3.3.1, we first show that
the side constraint |xj | ∈ {0, 1} fits into our framework in Chapter 2. Then, Sec-
tion 3.3.2 describes an algorithmic approach to solve Problem (3.24), together with
a (primal) heuristic, which can be used in a solution process to obtain good feasi-
ble solutions. Lastly, Section 3.3.3 presents numerical experiments for the problem
of joint antenna selection and phase-only beamforming, which we described above.

79

Chapter 3. Recovery Conditions for Special Cases

The contents of Sections 3.3.2 and 3.3.3 are taken from the publication [97], whereas
Section 3.3.1 has been developed independently.

3.3.1 Constant Modulus Constraints in the General Framework

In order to derive the setting of constant modulus constraints from the general
framework in Chapter 2, let X = Cn, C = {x ∈ Cn : |xj | ∈ {0, 1}, j ∈ [n]} and
let B be the identity map, so that E = X = Cn and D = C. We use a complex
linear sensing map A : Cn 7→ Cm and the ℓ1-norm ∥·∥1. The set P consists of
projections PS onto subspaces of the form {x ∈ Cn : Re[xj] = Im[xj] = 0, j /∈ S}
with S ⊆ [n]. For a projection PS ∈ P and x ∈ Cn, we define xS := PSx, i.e.,

Re[(xS)j] =

{
Re[xj], if j ∈ S,
0, if j /∈ S,

Im[(xS)j] =

{
Im[xj], if j ∈ S,
0, if j /∈ S.

The nonnegative weight ν(PS) of a projector PS ∈ P is given by ν(PS) = |S| and
the associated map P = PS . Note that we adopted the notation used in Chapter 2,
in order to derive the setting of constant modulus constraints independent of the
specific application explained above. Analogously to the case of box-constrained
integral vectors, the condition c1 + c2 ∈ C for all c1, c2 ∈ C from Assumption (A1)
does not hold, whereas the weaker condition

PBc1, PBc2 ∈ D =⇒ PBc1 + PBc2 ∈ D

for all c1, c2 ∈ C + (−C) holds. As stated in Remark 3.16, this condition suffices
for the proofs of the statements in Chapter 2. The other conditions from Assump-
tions (A1) to (A3) are clearly satisfied. In order to show that Assumption (A4)
holds as well, we need to find all decompositions of v ∈ C + (−C) into v̂(1), v̂(2) ∈ C
with v = v̂(1)− v̂(2) and ∥v̂(2)∥1 minimal. The following lemma states a key property
satisfied by all minimal decompositions, which allows to prove Assumption (A4).

Lemma 3.23. Let x, z ∈ C and define v := x−z ∈ C+(−C). Then, if v̂(1), v̂(2) ∈ C
is a decomposition v = v̂(1) − v̂(2) with ∥v̂(2)∥1 minimal, then the inequality

|zj | − |xj |+ |v̂(1)j | − |v̂
(2)
j | ≥ 0

holds for all j ∈ [n].

Proof. Let x, z ∈ C and define v := x−z ∈ C+(−C). Furthermore, let v̂(1), v̂(2) ∈ C
be a decomposition v = v̂(1)− v̂(2) with ∥v̂(2)∥1 minimal. Let j ∈ [n]. We distinguish
between two cases.

80

3.3. Constant Modulus Constraints on Vectors

1. If vj = 0, then xj = zj . In this case, the minimality of ∥v̂(2)∥1 clearly im-
plies v̂(1)j = v̂

(2)
j = 0, and since x, z ∈ C, we have |zj |− |xj |+ |v̂(1)j |− |v̂

(2)
j | = 0.

2. If vj ̸= 0, there are three subcases: Exactly one of xj , zj can be nonzero, or
both can be nonzero. For the first two cases, the minimality of ∥v̂(2)∥1 implies

v̂
(1)
j =

{
xj , if xj ̸= 0 and zj = 0,

−zj , if xj = 0 and zj ̸= 0,
and v̂

(2)
j = 0,

which yields |zj | − |xj | + |v̂(1)j | − |v̂
(2)
j | ≥ 0 as well. For the remaining

case xj ̸= 0 and zj ̸= 0, the corresponding minimal decomposition cannot
be explicitly stated. However, since x, z, v̂(1), v̂(2) ∈ C, we have |zj |− |xj | = 0

and |v̂(1)j | − |v̂
(2)
j | ≥ 0. Indeed, |v̂(1)j | − |v̂

(2)
j | < 0 implies v̂

(1)
j = 0

and v̂
(2)
j ̸= 0, since v̂

(1)
j , v̂

(2)
j ∈ C. Thus, switching v̂

(1)
j and v̂

(2)
j (as well

as their signs) leads to a smaller ℓ1-norm of v̂(2), which is a contradiction
to the minimality of ∥v̂(2)∥1. Consequently, also in this case, the inequal-
ity |zj | − |xj |+ |v̂(1)j | − |v̂

(2)
j | ≥ 0 holds.

Using Lemma 3.23 we can now show that Assumption (A4) is satisfied. The
argument is similar to the proof of Lemma 3.17.

Lemma 3.24. Let x, z ∈ C = {x ∈ Cn : |xj | ∈ {0, 1}, j ∈ [n]}. Let S ⊆ [n].
Furthermore, define v := x − z and let v̂(1), v̂(2) ∈ C with v = v̂(1) − v̂(2) be a
minimal decomposition. Then,

∥x∥1 ≤ ∥z∥1 + ∥v̂(1)S ∥1 − ∥v̂
(2)
S ∥1 − ∥vS∥1 + 2∥xS∥1.

Proof. Let x, z ∈ C = {x ∈ Cn : |xj | ∈ {0, 1}, j ∈ [n]} and define v := x − z.
Let S ⊆ [n]. Furthermore let v̂(1), v̂(2) ∈ C be a decomposition v = v̂(1) − v̂(2)

with ∥v̂(2)∥1 minimal. Then,

∥z∥1 − ∥x∥1 + ∥v̂(1)S ∥1 − ∥v̂
(2)
S ∥1 − ∥vS∥1 + 2∥xS∥1

=
∑
j∈S

(
|zj | − |xj |+ |v̂(1)j | − |v̂

(2)
j |
)
+
∑
j /∈S

(
|zj | − |xj | − |vj |+ 2|xj |

)
=
∑
j∈S

(
|zj | − |xj |+ |v̂(1)j | − |v̂

(2)
j |
)
+
∑
j /∈S

(
|zj |+ |xj | − |xj − zj |

)
≥ 0,

since |xj − zj | ≤ |zj | + |xj | and |zj | − |xj | + |v̂(1)j | − |v̂
(2)
j | ≥ 0 for all j ∈ S by

Lemma 3.17.

81

Chapter 3. Recovery Conditions for Special Cases

Even if all previous special cases used X = Rn, the general framework in Chapter 2
also covers the case X = Cn, see also Remark 2.1. Consequently, by Theorem 2.10
uniform recovery of sparse vectors x ∈ Cn with constant modulus constraints using
the minimization problem

min {∥z∥1 : Az = Ax, |zj | ∈ {0, 1}, j ∈ [n], z ∈ Cn} (3.25)

is characterized by (NSPC) for the set C = {x ∈ Cn : |xj | ∈ {0, 1}, j ∈ [n]}.
Analogously to the previous sections, the NSP condition can be simplified as shown
in the following theorem.

Theorem 3.25. Let C = {x ∈ Cn : |xj | ∈ {0, 1}, j ∈ [n]}, s ≥ 0 and A ∈ Cm×n.
Then, every s-sparse x ∈ C is the unique optimal solution of (3.25) if and only if

−vS ∈ C =⇒
∑
j∈S

χ{|vj |=1} <
∑
j∈S

χ{|vj |=1} (3.26)

holds for all v ∈ null(A) ∩ (C + (−C)) with v ̸= 0 and all S ⊆ [n], |S| ≤ s.
Here, χ{|vj |=1} denotes the indicator function of the event {|vj | = 1}, that is,
χ{|vj |=1} = 1 if |vj | = 1 and χ{|vj |=1} = 0 else. Note that

∑n
j=1 χ{|vj |=1} = ∥v∥1,

since v ∈ C.

Proof. We need to show that (NSPC) for C = {x ∈ Cn : |xj | ∈ {0, 1}, j ∈ [n]}
is equivalent to the NSP (3.26). The statement then directly follows from Theo-
rem 2.10. In order to prove the equivalence between the two NSP conditions, let
first v ∈ null(A) ∩ (C + (−C)) with v ̸= 0 and S ⊆ [n] with |S| ≤ s and −vS ∈ C.
Let v̂(1), v̂(2) ∈ C with v = v̂(1) − v̂(2) and ∥v̂(2)∥1 minimal. Since v ∈ C + (−C), at
least one such decomposition exists. Applying (NSPC) yields

∥v̂(1)S ∥1 − ∥v̂
(2)
S ∥1 < ∥vS∥1. (3.27)

Additionally, we define

w
(1)
j :=

0, if vj = 0,

vj , if |vj | = 1,

v̂
(1)
j , otherwise,

w
(2)
j :=

0, if vj = 0,

0, if |vj | = 1,

v̂
(2)
j , otherwise,

so that clearly w(1), w(2) ∈ C and v = w(1) − w(2). By Assumption (A4)
for v, w(1), w(2) ∈ C and the minimal decomposition v̂(1), v̂(2) ∈ C, we have

0 ≤ ∥w(2)∥1 − ∥w(1)∥1 + ∥v̂(1)S ∥1 − ∥v̂
(2)
S ∥1 − ∥vS∥1 + 2∥w(1)

S
∥1. (3.28)

82

3.3. Constant Modulus Constraints on Vectors

Combining (3.27) and (3.28) shows

0 < ∥w(2)∥1 − ∥w(1)∥1 + 2∥w(1)

S
∥1

= ∥w(2)
S ∥1 − ∥w

(1)
S ∥1 + ∥w

(2)

S
∥1 + ∥w(1)

S
∥1

= −
∑

j∈S : |vj |=1

|vj | −
∑

j∈S : |vj |/∈{0,1}

(
|v̂(1)j | − |v̂

(2)
j |
)
+
∑
j∈S

|vj |

= −
∑
j∈S

χ{|vj |=1} +
∑
j∈S

χ{|vj |=1},

since −vS ∈ C implies |vj | ∈ {0, 1} for all j ∈ S and since |vj | /∈ {0, 1} for j ∈ S
implies that v̂(1)j , v̂

(2)
j ̸= 0 and thus |v̂(1)j | = |v̂

(2)
j | = 1. This proves (3.26).

For the reverse implication, let v ∈ null(A) ∩ (C + (−C)) with v ̸= 0 and S ⊆ [n]

with |S| ≤ s and −vS ∈ C. Furthermore, let v̂(1), v̂(2) ∈ C with v = v̂(1) − v̂(2)
and ∥v̂(2)∥1 minimal. Then,

∥v̂(1)S ∥1 − ∥v̂
(2)
S ∥1 =

∑
j∈S

(
χ{|v̂(1)

j |=1} − χ{|v̂(2)
j |=1}

)
=

∑
j∈S : |v̂(1)

j |=1, v̂
(2)
j =0

1−
∑

j∈S : v̂
(1)
j =0, |v̂(2)

j |=1

1

≤
∑
j∈S

χ{|vj |=1}

<
∑
j∈S

χ{|vj |=1} = ∥vS∥1,

where we used the NSP (3.26) for the last inequality and the assumption −vS ∈
C for the last equality. The second equality follows from v̂(1), v̂(2) ∈ C, so
that |v̂(1)j |, |v̂

(2)
j | ∈ {0, 1} for all j ∈ [n]. Thus, the two NSP conditions are equiva-

lent.

A direct extension to stable and robust recovery as for all previous special cases
seems not to be possible, since Assumption (A5) is not satisfied, due to the com-
plicated structure of the minimal decomposition of v ∈ C + (C). In contrast to
box-constrained integral vectors, even a variable splitting does not lead to a setting
where all assumptions are satisfied. Thus, the statements from Section 2.3 con-
cerning stable and robust recovery cannot be applied. Nevertheless, analogously to
Theorem 3.25 it can be shown that (rNSPC

ρ,τ) is equivalent to the condition

−vS ∈ C =⇒
∑
j∈S

χ{|vj |=1} < ρ
∑
j∈S

χ{|vj |=1} + τ |||Av||| (3.29)

83

Chapter 3. Recovery Conditions for Special Cases

for all v ∈ (C + (−C)) \ {0} and all S ⊆ [n] with |S| ≤ s, where ρ ∈ (0, 1) and τ > 0.
The corresponding robust recovery problem becomes

min {∥z∥1 : |||Az − y||| ≤ η, |zj | ∈ {0, 1}, j ∈ [n], z ∈ Cn} (3.30)

for y ∈ Cn. However, it is not clear, if the NSP (3.29) yields an error bound for
recovery of an s-sparse x ∈ C using (3.30) with y = Ax+ e and |||e||| ≤ η.

The side constraint x ∈ C, i.e., |xj | ∈ {0, 1} for all j ∈ [n], has a particularly
interesting implication. Namely, for x ∈ C, the ordinary ℓ1-norm and the ℓ0-norm
coincide. Thus, the robust recovery program (3.30) can equivalently be formulated
as

min {∥z∥0 : |||Az − y||| ≤ η, |zj | ∈ {0, 1}, j ∈ [n], z ∈ Cn}. (3.31)

By choosing ||| · ||| = ∥·∥2, η =
√
δ and adapting the notation, we directly obtain the

joint antenna selection and phase-only beamforming problem (3.24). Here,
√
δ is

the given threshold which should be satisfied by the error between the desired and
actual output of the users. We now consider the important question of how to solve
the resulting recovery problem (3.24), which is equivalent to (3.30) and (3.31). First
of all, note that the constant modulus constraint implies that both (3.30) and (3.31)
are nonconvex and thus hard to solve in practice. This also shows that in this case,
using a convex objective function does not change the hardness of the problem.

3.3.2 Solving Problems with Constant Modulus Constraints

Let us come back to the problem of joint antenna selection and phase-only beam-
forming. Recall that in the network, there are K users to be served and N antenna
elements, so that A ∈ CK×N , x ∈ CN with |xj | ∈ {0, 1} and y ∈ CK . In the
following, we describe an algorithmic approach to solve Problem (3.24) to global
optimality by exploiting the special structure of the additional constant modulus
constraint |xj | ∈ {0, 1}.

In order to model Problem (3.24), auxiliary binary variables bj can be used. This
leads to the formulation

min
x∈CN

N∑
j=1

bj

s.t. ∥y −A⊤x∥2 ≤
√
δ,

|xj | = bj ∀j ∈ [N],

bj ∈ {0, 1} ∀j ∈ [N].

(3.32)

84

3.3. Constant Modulus Constraints on Vectors

In order to obtain a real-valued formulation of Problem (3.32), we introduce the
variables wj := Re[xj] and zj := Im[xj] for all j ∈ [N]. Then, let w = (w1, . . . , wN)⊤

and z = (z1, . . . , zN)⊤, so that Problem (3.32) can equivalently be written as

min
x∈CN

N∑
j=1

bj (3.33a)

s.t.
K∑

k=1

(
Re[yk]−

(
Re[ak]⊤w − Im[ak]

⊤z
))2

+
(
Im[yk]−

(
Re[ak]⊤z + Im[ak]

⊤w
))2
≤ δ, (3.33b)

Re[xj]2 + Im[xj]
2 ≤ bj ∀ j ∈ [N], (3.33c)

Re[xj]2 + Im[xj]
2 ≥ bj ∀ j ∈ [N], (3.33d)

bj ∈ {0, 1} ∀ j ∈ [N], (3.33e)

where the constant modulus constraints |xj |2 = Re[xj]2 + Im[xj]
2 = bj , j ∈ [N]

are replaced by the two inequality constraints (3.33c) and (3.33d). Thus, Prob-
lem (3.33) is a (nonconvex) mixed-integer nonlinear program (MINLP) with binary
variables. The quadratic constraints (3.33b) and (3.33c) can be rewritten as second
order cone (SOC) constraints, and thus are convex constraints. The nonconvexity
of the problem is due to the quadratic constraints (3.33d). In general, MINLPs can
be solved by using spatial branch-and-bound, see, e.g., Vigerske and Gleixner [250].
In this approach, branching is performed on integral and continuous variables, and
in each node of the branch-and-bound tree, a continuous relaxation of the problem
is solved. This relaxation can be strengthened using gradient cuts for convex con-
straints and more general linear cuts for other types of constraints. Binary variables
with a fractional solution value in the current relaxation lead to the creation of the
two new branching nodes, in which the variables are fixed to 0 and 1, respectively.
Violated nonlinear constraints are handled by creating branches on continuous vari-
ables. In this case, the feasible region is subdivided into two (or possibly more) parts,
hence the name spatial branching. Reducing feasible regions then allows to induce
strengthened variable bounds, which is called domain propagation. Strengthened
bounds in turn lead to tighter relaxation solutions. This spatial branch-and-bound
approach is guaranteed to terminate in finite time and to converge to a global op-
timum under appropriate assumptions, if the concept of ε-δ-feasibility is used, see,
e.g., Horst and Tuy [132].

General Algorithmic Description In the following, we will exploit the particular
structure of Problem (3.33) to enhance the general spatial branch-and-bound proce-

85

Chapter 3. Recovery Conditions for Special Cases

zj

wj

zj ≤ bj

zj ≥ −bj

wj ≤ bjwj ≥ −bj

wj + zj ≤
√
2 bj

wj − zj ≤
√
2 bj

−wj + zj ≤
√
2 bj

−wj − zj ≤
√
2 bj

zj

wj

(ŵj , ẑj)

Figure 3.2. Left: Linear inequalities for strengthening the relaxation. Right: Mod-
ulus constraint subdivision into orthants.

dure. Namely, we describe a customized domain propagation and branching routine
on continuous variables using the constant modulus constraints. Additionally, a sim-
ple greedy heuristic to produce feasible solutions for Problem (3.33) is presented.
This heuristic can produce upper bounds, which in turn allows to prune nodes in
the branch-and-bound tree if the solution value of the relaxation is larger than the
current best upper bound.

In each node of the branch-and-bound tree, an LP relaxation of Problem (3.33)
is solved, where the binary constraints on bj are relaxed to 0 ≤ bj ≤ 1, for j ∈ [N],
and the quadratic constraints (3.33b) to (3.33d) are omitted. This LP relaxation is
strengthened by adding the following linear inequalities:

−bj ≤ wj ≤ bj , −bj ≤ zj ≤ bj ,

wj + zj ≤
√
2 bj , wj − zj ≤

√
2 bj ,

−wj + zj ≤
√
2 bj , −wj − zj ≤

√
2 bj ,

see Figure 3.2 for a visualization. These linear inequalities approximate the con-
straints (3.33c). The reason for using an LP relaxation instead of a more general
convex relaxation in the nodes of the branch-and-bound tree is that LPs allow for
warm-starting using the dual simplex algorithm, see, e.g., Schrijver [218]. Since the
quadratic constraints (3.33b) to (3.33d) and the binary constraints on bj are not
present in the LP relaxation, an optimal solution of the LP relaxation violates these
constraints in general. For each binary variable with a fractional solution value in
the current LP relaxation, this violation is handled by generating two child nodes,
as described above. This tightens the LP relaxation in both child nodes.

The error bounding constraint (3.33b) and the constraints (3.33c), which model
the upper bound part of the constant modulus constraints are convex SOC con-

86

3.3. Constant Modulus Constraints on Vectors

straints, as already mentioned above. Violations of these SOC constraints can
be handled by adding a (linear) gradient cut to the LP relaxation, which cuts off
the current LP relaxation solution, see Vigerske [249]. Thus it remains to enforce
the nonconvex lower bound part of the constant modulus constraints, that is, con-
straints (3.33d). Due to their nonconvexity, these constraints are harder to enforce
than the SOC constraints and the binary constraints. If the solution of the cur-
rent LP relaxation violates at least one of these constraints, we generate branching
nodes, add linear cuts or propagate domains of variables appearing in the violated
modulus constraint. This is described in the following in more detail.

Handling Modulus Constraints

Assume that (ŵ, ẑ, b̂) is the solution of the current LP relaxation of Problem (3.33)
and suppose that this solution violates the constraint w2

j +z
2
j ≥ bj for some j ∈ [N].

This violation can then be resolved by one (or more) of the following steps. Note
that we do not assume b̂j to be integral.

1. If the binary variable b̂j is already fixed to zero, the inequality w2
j + z2j ≤ bj

implies that we can set ŵj , ẑj to zero as well.
2. If the bounds of the continuous variables wj and zj are not yet restricted to one

of the orthants w.r.t. wj × zj , four branching nodes are generated, one for each
orthant. That is, the additional constraints wj ≥ 0, zj ≥ 0 are added to the
first node, the constraints wj ≥ 0, zj ≤ 0 are added to the second node, the
constraints wj ≤ 0, zj ≤ 0 to the third node and the constraints wj ≤ 0, zj ≥ 0

to the fourth node. Thus, the feasible solution set is subdivided into these four
orthants, see Figure 3.2. If either wj or zj is already bounded to be nonnegative
or nonpositive, then only two of the four orthants can contain feasible solutions.
Thus, only two branching nodes are generated in this case.

3. If the bounds of the continuous variables wj and zj are already restricted to one
of these four orthants, the following domain propagation, separation or branching
can be applied. We assume w.l.o.g. that (ŵj , ẑj , b̂j) is feasible for the first orthant,
i.e., wj ≥ 0 and zj ≥ 0.
(i) Propagation: Let l1 ≤ wj ≤ u1, l2 ≤ zj ≤ u2 denote the cur-

rent lower and upper bounds of the variables wj and zj , respectively.
Define the function f(x) =

√
1− x2. Then compute the four points

(l1, f(l1)), (u1, f(u1)), (f(l2), l2) and (f(u2), u2) on the unit circle that cor-
respond to the respective lower and upper bounds of wj and zj . The lower
and upper bounds of wj and zj can now be strengthened by using these four
points. In order for an optimal solution (w⋆, z⋆, b⋆) to fulfill the modulus
constraint w2

j + z2j ≥ bj , the point (w⋆
j , z

⋆
j) needs to lie on or above the arc

87

Chapter 3. Recovery Conditions for Special Cases

zj

wj

u2

l2

u1l1 f(u2) f(l2)

f(u1)

f(l1)
(l1, f(l1))

(u1, f(u1))

(f(l2), l2)

(f(u2), u2)

l′1 = f(u2) u′
1 = u1

u′
2 = u2

l′2 = f(u1)

Figure 3.3. Bound propagation for the continuous variables appearing in modulus
constraints.

between the two points (l′1, u
′
2) and (u′1, l

′
2) if b⋆j = 1, where

l′1 = max {l1, f(u2)}, u′1 = min {u1, f(l2)},
l′2 = max {l2, f(u1)}, u′2 = min {u2, f(l1)}.

Thus, the four values l′1, u′1, l′2 and u′2 can now be used as new and possibly
strengthened lower and upper bounds of wj and zj , respectively. If the binary
variable bj is not yet fixed to one, only the upper bounds are propagated, as bj
could be set to zero in an optimal solution, which would imply wj = zj = 0

as well. Figure 3.3 visualizes this propagation step.

(ii) Separation: If ŵj+ẑj < b̂j , the cut wj+zj ≥ bj is added to the LP relaxation.
Note that it may be reasonable to only add this cut if the violation of the
solution of the current LP relaxation is sufficiently large, that is ŵ2

j+ẑ
2
j < 1−ε,

for some small ε > 0, e.g., ε = 10−5. Otherwise, standard branching rules for
handling quadratic constraints can be applied. The cut wj+zj ≥ bj is satisfied
by every solution on the unit circle in this orthant.

(iii) Branching: If ŵj + ẑj ≥ b̂j , two branching nodes are created, defined by
inequalities fj wj+gj zj ≥ bj . The values fj ∈ R and gj ∈ R can be computed
according to Figure 3.4. Note that wj + zj ≥

√
2bj is an outer approximation

of the unit circle which is always valid. The cut fj wj + gj zj ≥ bj according
to Figure 3.4 is only valid in its corresponding branch.

Within a spatial branch-and-bound framework it makes sense to enforce the non-
convex modulus constraints only when all other constraints are feasible. A modulus
constraint wj + zj ≥ bj with j ∈ [N] is selected for enforcing by a “most infeasible”

88

3.3. Constant Modulus Constraints on Vectors

zj

wj

zj

wj

Figure 3.4. Inequalities that are added to the sub-nodes.

rule. Therefore, the following measure for the violation of a modulus constraint can
be used:

ρ(j) = b̂j − (ŵ2
j + ẑ2j),

i.e., modulus constraint with index j̄ ∈ [N] so that ρ(j̄) is maximal is chosen to be
enforced. Algorithm 1 summarizes the whole solving procedure. This procedure is
complete in the following sense: The algorithm will terminate with a point (ŵ, ẑ, b̂)

such that ŵj = ẑj = 0 = b̂j or 1− ε ≤ ŵ2
j + ẑ2j ≤ 1 and b̂j = 1. The next subsection

presents a simple greedy heuristic to produce feasible solutions.

Algorithm 1: Node solving procedure within the branch-and-bound tree
Input: Node of the branch-and-bound tree with current LP relaxation of the

problem including all previously generated cuts, propagated domains
and previously computed bounds on the objective value

1 obtain solution (ŵ, ẑ, b̂) of LP relaxation;
2 if b̂ is not integral then
3 branch on a fractional binary variable and continue with another node;
4 else if root-mean error constraint (3.33b) is violated or ŵ2

j + ẑ2j > b̂j for
some j then

5 call quadratic constraint handler and possibly continue with another
node;

6 else if ŵ2
j + ẑ2j < b̂j then

7 call modulus constraint handler to propagate bounds or branch according
to Section Handling Modulus Constraints and continue with another
node;

8 else
9 (ŵ, ẑ, b̂) is optimal for the current node;

10 end

89

Chapter 3. Recovery Conditions for Special Cases

Heuristic Method for Constant Modulus Problems

In this subsection, we present a low-complexity suboptimal heuristic for Prob-
lem (3.33), which is inspired by Shechtman et al. [222] and Studer et al. [232].

The heuristic starts with M = 1 nonzero element in the vector x ∈ Cn and
greedily increases the number of nonzeros in x by one in each iteration (in an outer
loop) until the root mean-square error bound constraint (3.33b) is met. It is also
possible to start with M = Mguess > 1 when a reasonable guess is possible or if
we have any a priori knowledge about the sparsity of x. For each value of M , a
large number (max_Iter) of suboptimal solutions γj is computed, by repeatedly
initializing x at random. These solutions γj can be computed in parallel to speed
up the heuristic. The vector x is then updated in every iteration (in an inner loop)
such that the root-mean square error e between the desired vector y and the current
iterate Ax is decreasing. If the smallest error ej⋆ among all obtained errors in the
max_Iter iterations is smaller than

√
δ, the corresponding solution γj⋆ is reported

as the solution of the heuristic. The resulting algorithm is illustrated in Algorithm 2.

3.3.3 Numerical Experiments

In this section, we evaluate the performance of the proposed modulus handling based
optimal method and suboptimal heuristic method for the problem of joint antenna
selection and phase-only beamforming considered in [97], which we described in the
beginning of Section 3.3. Recall that the goal is to minimize the number of required
phase shifters, to find an assignment of antenna elements to the phase shifters and
to design the optimal phase values for the transmit signal vector. In doing so, a
given error bound for the output at the users needs to be fulfilled. This leads to
Problem (3.24). We refer to [97] for the exact setup of the computations, and only
list the used values N ∈ {16, 32, 48, 64} for the number of antennas, K ∈ {2, 3, 4}
for the number of users and δ2 ∈ {0.1q, 0.2q} for the error bounds, where q = 1.414.
For each combination of (N,K, δ2), we create two instances. We implemented the
algorithmic approach described throughout Section 3.3.2 in C using SCIP 4.0.1 [169]
and CPLEX 12.7.1 [133] as LP solver. With this setup, we solved Problem (3.33) on
a Linux cluster with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs, having 32 GB
main memory and 10 MB cache. All computations were performed single-threaded
with a time limit of one hour (3600 s). The results are shown in Table 3.2.

The table shows the number of branch-and-bound nodes (#n) and the solving
time in seconds (t(s)) for four different algorithm variants. The first column block
lists the values used for the instance, where 1 and 2 denote the first and the sec-
ond instance, respectively, for the used combination of values. The second column
block displays the results of the default version of SCIP, which applies no special

90

3.3. Constant Modulus Constraints on Vectors

Algorithm 2: Suboptimal heuristic
Input: A, y, δ

1 Initialize M ← 1 (or Mguess);
2 repeat
3 for i = 1 to max_Iter do
4 randomly initialize x ∈ Cn such that ∥x∥0 =M and |xj | ∈ {0, 1},

j ∈ [n];
5 compute error e = ∥y −A⊤x∥2;
6 for count = 1 to max_Count do
7 assign z ← x;
8 randomly select two integers u and v such that u, v ∈ [n], |zu| = 1

and zv = 0;
9 compute the residual r = y −A⊤z + zu(a

u)⊤;
10 [z⋆u, z

⋆
v] = argmin

z̄u,t̄v

∥r − z̄u(au)⊤ + z̄v(a
v)⊤∥2;

11 if |z⋆u| ≥ |z⋆v | then

12 zu ←
z⋆u
|z⋆u|

;

13 else

14 zu ← 0 and zv ←
z⋆v
|z⋆v |

;

15 end
16 compute ê = ∥y −A⊤z∥2;
17 if ê < e then
18 update x← z and e← ê;
19 end
20 end
21 γi ← x and error Ei ← e;
22 end
23 compute i⋆ = argmini Ei;
24 E⋆ ← Ei⋆ and x̃← γi⋆ ;
25 M ←M + 1;
26 until E⋆ ≤

√
δ or M > N ;

27 return x̃

methods to handle modulus constraints, i.e., they are handled like general quadratic
constraints. In the third block, we present the results when the methods for han-
dling modulus constraints as described in Section 3.3.2 are included in SCIP as
a constraint handler. In the fourth and fifth block, the results of the same two
methods as before are shown, but an initial (not necessarily optimal) solution is
computed with the suboptimal greedy heuristic method presented in Section 3.3.2

91

Chapter 3. Recovery Conditions for Special Cases

and passed to the exact solution method. For the number of iterations of the two
inner loops, we chose max_Iter = max_Count = 1000. In all four runs, the reading
times of the problem files are included in the solving times, as are the runtimes of
the suboptimal heuristic in the third and fourth column block. The last column
block shows the sparsity M of the solution x̃ computed by the suboptimal heuristic
compared to the optimal solution x∗ computed by SCIP, as well as the solving time
of the suboptimal heuristic.

The end of the table presents the geometric means (GM), shifted geometric means
(Shifted GM) and arithmetic means (AM) of the number of nodes and the solving
time, as defined in Section 1.3, see (1.2). It turns out that the default version
of SCIP already performs quite well. For K = 2 users, the running times are
very fast even for large values of N . For K ∈ {3, 4} users and a very small error
bound δ2 = 0.1q, the instances are much harder to solve. From the shifted geometric
means presented in the bottom line, it can be seen that adding the modulus con-
straint handler to SCIP results in a significantly faster running time (about 26 %
faster). However, the number of processed nodes does not significantly change. The
shifted geometric mean of the number of nodes that were produced by the modulus
constraint handler is 787.25, which is about 24 % of the shifted geometric mean of
all nodes (3228).

Executing the suboptimal heuristic and passing its solution to SCIP improves
the performance on average, even in the default version of SCIP. Most importantly,
the number of nodes is reduced significantly, since many nodes of the branch-and-
bound tree can be pruned. Note, however, that for the easier problems the subop-
timal heuristic consumes almost all of the solving time. Again, adding the modulus
constraint handler to SCIP speeds up the solving process (about 15 % and 39%
speed-up compared to the default with and without initial solution, respectively),
but the number of nodes does not decrease. The shifted geometric mean of the
number of nodes produced by the modulus constraint handler is 255.43. Comparing
to the shifted geometric mean of the number of nodes (500) shows that about half
of the branching nodes are used to branch on binary variables.

It is worth mentioning that the suboptimal heuristic actually returns the optimal
sparsity level in all but four instances. We observe that only for large instances the
heuristic is indeed suboptimal, but these instances cannot be solved by SCIP within
the time limit, regardless of the handling of the modulus constraints. Interestingly,
one of the instances of Table 3.2 for which the heuristic computes a suboptimal
solution runs into the time limit with the default version of SCIP when this solution
is passed as starting solution. However, if the suboptimal solution is not computed
beforehand, SCIP solves this instance in roughly 700 s.

92

3.3. Constant Modulus Constraints on Vectors

Table 3.2. Analysis and performance evaluation of different solution approaches
for solving problems with constant modulus constraints.

instance default SCIP mod handling
default SCIP mod handling

subopt heur
+ subopt heur + subopt heur

N K δ2 # #nodes time #nodes time #nodes time #nodes time x∗ x̃ time

16 2 0.1q 1 469 1.6 501 1.6 7 3.5 9 3.5 2 2 3.29
16 2 0.1q 2 863 2.1 418 1.1 6 3.5 6 3.4 2 2 3.28
16 2 0.2q 1 11 0.5 11 0.5 1 3.4 1 3.3 2 2 3.28
16 2 0.2q 2 190 0.8 136 0.6 1 3.3 1 3.3 2 2 3.29
16 3 0.1q 1 3 908 9.6 2 044 4.8 998 14.0 1 118 11.4 4 4 9.47
16 3 0.1q 2 1 690 4.9 2 337 4.6 996 14.0 928 12.1 4 4 9.42
16 3 0.2q 1 1 704 7.9 1 529 3.5 47 8.8 71 8.7 3 3 7.08
16 3 0.2q 2 2 688 7.5 1 720 3.3 87 8.4 95 8.3 3 3 7.10
16 4 0.1q 1 25 507 121.8 22 684 40.7 2 374 27.7 2 470 20.9 5 5 16.39
16 4 0.1q 2 2 853 10.4 2 603 6.5 95 14.9 133 14.9 4 4 13.04
16 4 0.2q 1 2 533 11.0 1 481 3.9 289 15.6 393 15.6 4 4 13.06
16 4 0.2q 2 12 676 57.2 11 591 20.7 13 095 73.6 9 637 28.2 5 5 16.41
32 2 0.1q 1 170 7.5 204 9.6 4 4.2 4 4.2 2 2 4.04
32 2 0.1q 2 1 937 6.2 714 2.2 2 4.2 2 4.2 2 2 3.97
32 2 0.2q 1 201 2.7 203 1.4 6 4.4 8 4.3 2 2 3.98
32 2 0.2q 2 101 2.8 41 1.6 17 4.5 11 4.4 2 2 3.99
32 3 0.1q 1 12 910 52.1 5 582 16.5 77 13.5 134 12.9 3 3 8.53
32 3 0.1q 2 313 1.7 356 1.6 177 13.1 210 14.3 3 3 8.58
32 3 0.2q 1 3 387 12.0 2 671 9.6 159 13.9 198 13.8 3 3 8.52
32 3 0.2q 2 1 380 7.2 2 514 10.7 143 14.1 151 14.2 3 3 8.61
32 4 0.1q 1 96 569 559.3 13 703 51.0 154 122 652.4 57 158 156.6 4 5 19.59
32 4 0.1q 2 141 531 816.5 97 762 301.4 147 573 648.7 66 224 172.8 5 5 18.29
32 4 0.2q 1 8 070 31.9 9 874 37.2 43 15.6 42 15.0 3 3 11.75
32 4 0.2q 2 4 879 20.5 14 224 52.9 97 16.5 123 16.7 3 3 11.73
48 2 0.1q 1 496 8.7 315 8.2 1 4.9 1 4.9 2 2 4.64
48 2 0.1q 2 190 2.0 734 5.0 9 5.1 9 5.1 2 2 4.59
48 2 0.2q 1 15 1.6 447 3.1 7 5.0 7 5.0 2 2 4.58
48 2 0.2q 2 201 2.9 487 4.5 7 4.9 7 4.9 2 2 4.58
48 3 0.1q 1 2 256 18.9 8 253 49.2 259 16.3 283 16.4 3 3 9.85
48 3 0.1q 2 39 191 236.6 5 542 31.4 285 19.7 332 20.0 3 3 9.90
48 3 0.2q 1 1 810 21.8 2 777 19.5 381 20.5 484 20.8 3 3 9.87
48 3 0.2q 2 3 648 27.2 2 207 11.2 347 23.1 362 22.9 3 3 9.91
48 4 0.1q 1 104 244 992.9 56 336 354.9 168 481 2477.0 107 320 439.4 4 5 22.63
48 4 0.1q 2 70 950 465.3 28 474 177.2 4 895 64.2 6 357 62.8 4 4 17.99
48 4 0.2q 1 9 764 65.4 29 631 170.3 83 24.2 91 24.6 3 3 13.53
48 4 0.2q 2 56 580 373.8 67 515 348.5 9 933 86.9 11 707 76.0 4 4 18.09
64 2 0.1q 1 397 4.2 273 3.3 10 5.7 10 5.7 2 2 5.18
64 2 0.1q 2 360 4.0 360 3.9 11 5.7 11 5.7 2 2 5.17
64 2 0.2q 1 505 4.5 931 7.0 8 5.7 8 5.7 2 2 5.19
64 2 0.2q 2 476 4.8 481 4.8 11 6.0 11 6.0 2 2 5.19

continued on next page

93

Chapter 3. Recovery Conditions for Special Cases

instance default SCIP mod handling
default SCIP mod handling

subopt heur
+ subopt heur + subopt heur

N K δ2 # #nodes time #nodes time #nodes time #nodes time x∗ x̃ time

64 3 0.1q 1 11 498 105.5 5 982 36.5 529 33.0 568 32.6 3 3 11.17
64 3 0.1q 2 6 464 70.6 20 879 105.7 279 21.9 333 21.9 3 3 11.17
64 3 0.2q 1 830 12.2 884 11.9 519 34.2 512 34.5 3 3 11.24
64 3 0.2q 2 6 626 59.2 9 821 57.0 815 34.8 966 34.2 3 3 11.22
64 4 0.1q 1 217 176 3128.0 360 779 2932.9 20 299 172.6 24 143 152.2 4 4 20.38
64 4 0.1q 2 75 975 670.0 329 245 2982.6 >157 627 >3600.0 510 570 3492.6 4 5 25.50
64 4 0.2q 1 51 999 688.0 47 384 396.5 10 226 126.6 28 560 185.1 3 4 20.58
64 4 0.2q 2 82 051 748.6 26 076 173.8 119 35.1 123 35.4 3 3 15.24

GM 2796 21.6 2 816 16.0 164 19.6 178 17.3
Shifted GM 3308 36.5 3 228 27.5 470 26.4 500 22.4
AM 22 296 197.3 25 014 176.8 14 490 175.6 17 331 110.0

3.4 Concluding Remarks and Outlook

Throughout this chapter, we have seen various explicit settings with interesting side
constraints which all fit into the general framework from Chapter 2. This enabled
us to derive NSPs for exact uniform and individual recovery as well as NSPs and
corresponding error bounds for stable and robust recovery in a unified manner. For
constant modulus constraints, we also described a specialized algorithmic approach
to solve the resulting recovery problems to optimality. However, it remains open to
find an NSP and a corresponding error bound for stable and robust recovery in the
constant modulus setting. Of course, there are many more interesting settings and
side constraints or sparsity structures which have (or have not yet) been considered
in the literature.

For instance, it is possible to extend the block-sparsity structure from Section 3.1.2
by not only requiring that few blocks contain nonzero elements, but also that each
nonzero block itself has few nonzeros. This corresponds to a so-called two-level
“hierarchical”-sparsity structure as considered by Simon et al. [224] and Sprechmann
et al. [225]. This structure can further be generalized by introducing a recursive
tree-like structure in which each block is hierarchical sparse itself. As discussed in
Section 3.1.1, this concept can also be transferred to block-diagonal matrices by
letting all blocks along the diagonal be low-rank matrices. A recursive application
of this structure generalizes hierarchical sparsity to block-diagonal matrices. For an
overview over hierarchical sparsity and applications in communication scenarios and
quantum state tomography, i.e., the recovery of unknown quantum states, see the
recent preprint by Eisert et al. [83] and the references therein. Moreover, this sparsity
structure also generalizes the concept of “level sparsity”, which has been considered
by, e.g., Adcock et al. [5], Bastounis and Hansen [17], and Li and Adcock [156].

94

3.4. Concluding Remarks and Outlook

Note that Bastounis and Hansen [17] present an explicit NSP for level sparsity.
Apart from this hierarchical structure, it also possible to consider other simultaneous
structures, such as low-rank matrices which are also sparse. For an overview, see
Kliesch et al. [144] or Oymak et al. [196].

Moreover, there also exist different general sparsity structures which generalize
block-sparsity. For instance, Baraniuk et al. [16] introduce the concept of general
model sparsity, where a vector is presumed to lie in a union of predefined low-
dimensional subspaces. Clearly, every s-space vector x ∈ Rn lies in the union
of all s-dimensional subspaces of Rn. By disregarding some of these subspaces,
additional structure within x can be encoded. This concept of model sparsity is
closely connected to the general union of subspaces concept, as treated by, e.g.,
Blumensath and Davies [28] Eldar and Mishali [89], or Lu and Do [163]. Both
the authors in [16] and [89] introduce an adjusted restricted isometry property as
a sufficient recovery condition and consider recovery from random (subgaussian)
matrices for the concept of model sparsity and union of subspaces, respectively.
In [16], the greedy algorithm CoSaMP and iterative hard thresholding are adapted
and used for recovery, whereas in [89], an ℓ2,1-minimization problem similar to (3.8)
is employed. Moreover, it is shown that the union of subspaces model is in fact
equivalent to block-sparsity under a small assumption, so that our results from
Section 3.1.2 apply as well.

It is reasonable to believe that these sparsity structures also fit into the general
framework presented in Chapter 2, possibly with (minor) modifications. In order to
express that a vector (or matrix) is sparse in more than one sense or in more than
one level, multiple projections need to be introduced.

Until now, we have considered various different settings and have presented null
space properties for each setting which guarantees successful (uniform or individual)
recovery. These results are very appealing from a theoretical point of view, since
they give a complete answer to the question of which properties a measurement
matrix needs to be satisfied in order to be “useful” in a sense that recovery is pos-
sible. However, from a practical point of view, there remain at least two questions,
which have not yet been considered. First, can there be (families of) matrices which
actually satisfy any NSPs, or are the presented conditions only of theoretical na-
ture? This question is investigated in the next chapter. Besides, for a given fixed
measurement matrix an important aspect is to test whether the matrix satisfies an
NSP, which is treated in Section 5.1.

95

CHA PTER 4
Recovery Under Random

Measurements

Throughout the last chapter, we have analyzed recovery conditions for various spe-
cial cases, which all emerged from our general framework presented in Chapter 2.
Along the way, different examples demonstrated that these conditions are not purely
theoretical, but that there exist combinations of matrices and sparsity levels which
satisfy different versions of the null space properties. This directly leads to the
question whether these examples were mere toy examples or if there are many more
matrices which satisfy the various conditions for exact, stable and robust uniform
as well as individual recovery. For the classical cases of sparse (nonnegative) vec-
tors and low-rank (positive semidefinite) matrices, which served as running example
in Chapter 2, this question has been thoroughly investigated in the literature. It
turns out that it is extremely difficult to find deterministic matrices that satisfy
the classical NSP or other recovery conditions for sparse vectors with number of
measurements and sparsity levels close to the theoretically best possible values. For
constructions of deterministic matrices satisfying the restricted isometry property,
see Bandeira et al. [13] and DeVore [62]. The book by Vidyasagar [248] gives an
overview over the deterministic construction of measurement matrices with favor-
able properties. Interestingly, it can be shown that various types of random matrices
allow for exact, stable and robust uniform as well as individual recovery with high
probability if the number of rows is large enough, in dependence on the number
of columns and the desired sparsity level. Additionally, it is known that for ran-
dom matrices, the values for the number of rows and the sparsity levels needed for
successful recovery are very close to the theoretically best possible values. This re-
sult is especially relevant in practical applications of Compressed Sensing, since the

97

Chapter 4. Recovery Under Random Measurements

number of rows of the measurement matrix denotes the number of measurements
that are taken. Most of the time, taking many measurements is costly or simply im-
practical, so that it is desirable to take as few measurements as possible. Moreover,
random measurement matrices are relatively simple to operate in practice. Thus,
finding ways to further reduce the number of measurements needed for successful
recovery is highly relevant. If additional knowledge is available, this directly leads
to the question whether exploiting this knowledge in the recovery process leads to
favorable properties. In the last chapters, we have seen specific examples, in which a
recovery condition is satisfied when exploiting a present side constraint, and violated
otherwise. Moreover, for the case of block-sparse vectors, Theorem 3.14 presents a
family of matrices that satisfy the NSP if the nonnegativity is taken into account,
but violates the corresponding NSP if the nonnegativity is ignored. All these re-
sults indicate that exploiting the side constraints indeed lead to weaker recovery
conditions, which can be satisfied by more matrices.

In this chapter, we will discuss recovery of sparse nonnegative vectors under ran-
dom measurements. We derive a bound for the minimal number of measurements
needed for uniform recovery of sparse nonnegative vectors. In the literature, a bound
for sparse nonnegative vectors is already available, but it only guarantees uniform
recovery asymptotically, i.e., for the dimension n → ∞. In this chapter, we adapt
the proof of a well-known bound for sparse vectors to the case of sparse nonnegative
vectors, in order to obtain a nonasymptotic bound which guarantees uniform recov-
ery for all dimensions n. Unfortunately, it will turn out that the bound is weak,
since it is larger than the bound for sparse vectors. This is most likely due to some
estimations in the process of obtaining the bounds being too weak. However, we
will show empirically and numerically in simulations that the minimal number of
measurements needed for uniform recovery for sparse nonnegative vectors is indeed
smaller than for sparse vectors. This indicates that our bound is far from being
optimal and most likely can significantly be improved. The simulations highlight
the effect of nonnegativity as side constraint on the recovery conditions, by show-
ing that more (random) measurement matrices allow for uniform recovery if the
nonnegativity is exploited.

Furthermore, we also consider the recovery of block-sparse matrices under ran-
dom measurements. For block-sparse matrices, we provide the first result that ran-
dom measurement operators satisfy the corresponding NSP with high probability if
the number of measurements is sufficiently large. By that, we show that uniform
recovery of block-sparse matrices is possible with high probability under random
measurements.

In Section 4.1 we will review the existing literature and introduce the concepts
needed for an analysis of recovery under random measurements. The subsequent

98

4.1. Recovery Under Random Measurements – An Overview

Section 4.2 treats the recovery of sparse nonnegative vectors under random measure-
ments and derives a theoretical bound for the number of needed measurements, and
compares with empirical bounds obtained by sampling. Section 4.3 then treats the
recovery of block-diagonal matrices from Section 3.1 without the positive semidefi-
niteness constraint. Lastly, Section 4.4 provides an outlook. Throughout this chap-
ter, we again only consider exact uniform and individual recovery. As before, the
statements can easily be adapted to also cover stability and robustness.

4.1 Recovery Under Random Measurements – An
Overview

The first result that random matrices satisfy a recovery guarantee is due to Candès
and Tao [38, 45], where the authors show that Gaussian random matrices satisfy
the RIP. Shortly after, Mendelson et al. [178] and Baraniuk et al. [15] extended
this result to subgaussian random matrices, Bernoulli random matrices and other
matrices satisfying a certain concentration inequality. A crucial tool to show that
random matrices satisfy an NSP is Gordon’s “Escape Through a Mesh”, which first
appears in Gordon [121], and is used by Rudelson and Vershynin [215] for the first
time in Compressed Sensing in order to show that Gaussian random matrices sat-
isfy the NSP with high probability, given that the number of measurements, that
is, the number of rows of the measurement matrix is large enough in comparison
to the number of columns and the sparsity level. Stojnic [226] uses Gordon’s Es-
cape theorem together with duality to obtain tight estimations for when Gaussian
random matrices satisfy the NSPs for individual and uniform recovery of sparse
vectors as well as for individual recovery of sparse nonnegative vectors. A simpler
analysis which yields slightly less precise estimations for the NSP of Gaussian ran-
dom matrices is contained in Foucart and Rauhut [104], where Gordon’s Escape
theorem is combined with conic duality. Gordon’s Escape theorem has also been
successfully applied to individual and uniform recovery in various other settings,
e.g., block-sparse vectors [229, 230] and low-rank matrices [139, 193, 195], whereas
Kabanava et al. [139] uses the approach of Rudelson and Vershynin. Oymak and
Hassibi [193] and Oymak et al. [195] extend the approach of Stojnic. For an overview
over low-rank matrix recovery, see Davenport and Romberg [61]. Liaw et al. [158]
extend Gordon’s Escape theorem also to subgaussian matrices, since in its original
form, it can only be applied for Gaussian random matrices. Mendelson’s “Small Ball
Method” is another technique which can be used for various other types of random
matrices, see Dirksen et al. [66] for an overview over the applicability.

The publications [9, 44, 49] provide different frameworks to obtain estimations
for individual recovery in various settings, see also Tropp [241] for an overview and

99

Chapter 4. Recovery Under Random Measurements

an extension of Mendelson’s Small Ball Method, the so-called “Bowling Scheme”. A
prominent application of the results of Chandrasekaran et al. [49] is gridless Com-
pressed Sensing [233], and the results of Amelunxen et al. [9] are applied for binary
and, more general, finite valued Compressed Sensing by Keiper et al. [141]. For
a general introduction to high-dimensional probability and its use in Compressed
Sensing and related areas see Vershynin [246] or Vershynin [247]. The book by
Vidyasagar [248] also collects some results on random matrices in Compressed Sens-
ing, and the book [104] contains most of the relevant probabilistic tools needed
for the analysis of recovery with Gaussian (and to some extent also subgaussian)
random matrices.

In a different direction of work, results on random matrices satisfying the classi-
cal and the nonnegative NSP (see (NSP) and (NSP≥0)) were obtained by Donoho
and Tanner in several publications. They reformulated the respective NSP in terms
of neighborliness of certain projected polytopes [67, 73, 74], see Proposition 3.12
for the result for the nonnegative NSP. Building on results of Affentranger and
Schneider [6], Böröczky and Henk [30] as well as Vershik and Sporyshev [245] about
random (projections of) polytopes, they derive bounds for the number of measure-
ments to guarantee uniform and individual recovery [68, 75, 77, 79]. These bounds
hold asymptotically for the number of columns tending to infinity and the ratio
between the number of rows and the number columns as well as the ratio between
the number of rows and the sparsity level remains constant. This asymptotic na-
ture of the results is due to the underlying theory of neighborliness of randomly
projected polytopes. Since this direction of work is not treated within this thesis,
we refer to Donoho and Tanner [76, 78] and the corresponding paragraph in the
notes of Section 9 in [104] for an overview over the obtained results and bounds. It
is worth mentioning that the bounds obtained from Donoho and Tanner show that
there is indeed a difference between the classical NSP and the nonnegative NSP. For
both uniform and individual recovery, the nonnegative NSP is satisfied for a smaller
number of random Gaussian measurements compared to the classical NSP.

Overall, for various settings without additional side constraints, such as (block-)
sparse vectors and low-rank matrices, precise estimation of the minimal number of
measurement needed for a random measurement matrix (or operator) to satisfy the
NSPs for individual and uniform corresponding to the respective setting are known
in the literature. These results hold for various types of random matrices, such as
Gaussian, subgaussian, and also 0/1 Bernoulli matrices. In the presence of additional
side constraints, much less is known. For sparse nonnegative vectors, there are
asymptotic bounds for individual and uniform recovery available from the polytope
analysis of Donoho and Tanner. Oymak and Hassibi [192] derive conditions for
individual and uniform recovery of low-rank positive semidefinite matrices based on

100

4.1. Recovery Under Random Measurements – An Overview

Stojnic’s involved analysis. Stojnic [226, 229] derives bounds for individual recovery
of sparse nonnegative and block-sparse nonnegative vectors, and states that the same
analysis can also be applied for uniform recovery of sparse nonnegative vectors, but
does not include it into the publication [226], since

“[...] the analysis of that cases becomes a bit more tedious and certainly
loses on elegance.”3

In the next chapter, we extend the analysis of [104] using conic duality from sparse
vectors to sparse nonnegative vectors. Since the nonnegative NSP has a different
structure than the classical NSP, namely, invariance under entrywise sign changes
cannot be used, the analysis becomes more difficult. Nevertheless, we can derive a
bound for the minimal number of measurements (i.e., rows) needed for a Gaussian
random matrix to satisfy the nonnegative NSP with high probability. This bound
is non-asymptotic in contrast to the estimations that can be obtained from random
polytope theory. Unfortunately, the derived bound is larger than the corresponding
bound for sparse vectors in [104, Theorem 9.29]. However, numerical experiments
explicitly show that recovery of sparse nonnegative vectors needs fewer measure-
ments than recovery of sparse vectors. Moreover, we also provide small simulations
which indicate that if the estimations in both bounds are replaced by empirically
obtained quantities, then indeed fewer measurements seem to be needed for sparse
nonnegative vectors compared to sparse vectors. Hence, the estimations used in
this thesis for sparse nonnegative vectors can most likely be improved. Such an
improvement remains an interesting open problem.

In order to state the result about random measurements for sparse nonnegative
vectors, we first need to introduce some concepts from probability in the following.
The definitions and statements are taken from [104]. Note that we assume the
reader to be familiar with basics in probability. A good source is the monograph by
Ross [213].

Let X be a random variable and let P be a probability measure on a probability
space. The cumulative distribution function (cdf) F = FX of the random variable X
is defined as F (t) := P(X ≤ t) for t ∈ R. If there exists a function ϕ : R 7→ R+ with

P(a ≤ X ≤ b) =
∫ b

a

ϕ(t) dt

for all a < b ∈ R, then ϕ is called the probability density function (pdf) of X. It
then holds

ϕ(t) =
d

dt
F (t).

3Stojnic [226, p. 40]

101

Chapter 4. Recovery Under Random Measurements

The expectation (or mean) of X is defined as

E[X] :=

∫
Ω

X(ω) dP(ω),

where Ω is the sample space of the probability space. Throughout this chapter, we
use the Gaussian distribution. If the pdf ψ of a random variable X has the form

ψ(t) =
1√
2πσ2

exp
(
− (t− µ)2

2σ2

)
,

then X is called a normally distributed random variable or a Gaussian random
variable with mean µ and variance σ2, denoted by X ∼ N (µ, σ2). If µ = 0 and
σ2 = 1, then X is called a standard Gaussian random variable. In the following,
we denote with φ and Φ the pdf and cdf of the standard Gaussian distribution,
respectively, i.e.,

φ(t) =
1√
2π

exp
(
− t2

2

)
,

Φ(t) =
1√
2π

∫ t

−∞
exp

(
− x2

2

)
dx.

LetX1, . . . , Xn be a collection of random variables on a common probability space. If
they are independent and all have the same distribution, they are called independent
identically distributed (i.i.d.). The vector X = [X1, . . . , Xn]

⊤ ∈ Rn is called a
random vector. Correspondingly, a random matrix X ∈ Rm×n is a collection of mn
random variables Xij on a common probability space. A standard Gaussian random
vector is a vector g ∈ Rn whose components gi are i.i.d. standard normal random
variables, and a standard Gaussian random matrix G is defined analogously. In
the remaining parts of this chapter, unless noted otherwise, g and G will denote
a standard Gaussian random vector and random matrix of appropriate dimension,
respectively. The expectation of the ℓ2-norm of a standard Gaussian random vector
will play an important role, so that we denote this quantity by En. It satisfies the
bounds

n√
n+ 1

≤ En =
√
2
Γ((n+ 1)/2)

Γ(n/2)
≤
√
n, (4.1)

see, e.g., Foucart and Rauhut [104, Proposition 8.1]. Additionally, we need the
following classical result for concentration of measure. It bounds the probability
that a Lipschitz function evaluated at a Gaussian random vector deviates from its
expectation.

102

4.1. Recovery Under Random Measurements – An Overview

Theorem 4.1 ([104, Theorem 8.34], [121, Theorem 3.2]). Let f : Rn → R be a
Lipschitz function with Lipschitz constant L > 0, and let g ∈ Rn be a standard
Gaussian random vector. Then, for all t > 0

P
(
f(g)− E[f(g)] ≥ t

)
≤ exp

(
− t2

2L2

)
,

P
(
|f(g)− E[f(g)]| ≥ t

)
≤ 2 exp

(
− t2

2L2

)
.

Next, we define the Gaussian width of a set S ⊆ Rn which plays a crucial role
in the derivation of bounds on the number of measurements needed for a random
measurement matrix to satisfy an NSP with high probability.

Definition 4.2. The Gaussian width ω(S) of a set S ⊆ Rn is defined as

ω(S) := E
[
sup {g⊤z : z ∈ S}

]
,

where g is a standard Gaussian random vector.

Define the unit sphere Sn−1 := {x ∈ Rn : ∥x∥2 = 1}. Let T ⊆ Sn−1 be a
closed subset of the unit sphere and A ∈ Rm×n be a standard Gaussian random
matrix. Then, the function f : A 7→ inf {∥Ax∥2 : x ∈ T} is a Lipschitz function
with Lipschitz constant L = 1, as the proof of [104, Theorem 9.21] shows. For this
function, we obtain the following variant of Theorem 4.1 in terms of the expectation.

Theorem 4.3 ([49, Theorem 3.2], [121, Corollary 1.2]). Let T ⊆ Sn−1 be a closed
subset of the unit sphere in Rn, and let A : Rn → Rm be a random map with i.i.d.
zero-mean Gaussian entries having variance 1. Then,

E
[
inf
x∈T
∥Ax∥2

]
≥ Em − ω(T).

If T is a cone, the quantity infx∈T ∥Ax∥2 is also known in the literature as min-
imum conic singular value, see, e.g., Tropp [241]. Theorem 4.1 and the bound for
the expectation in Theorem 4.3 leads to the following bound on the probability on
a deviation of the function f .

Theorem 4.4 ([104, Theorem 9.21]). Let A ∈ Rm×n be a standard Gaussian ran-
dom matrix, and let T ⊆ Sn−1 be a subset of the unit sphere in Rn. Then, for
all t > 0

P
(
inf
x∈T
∥Ax∥2 ≤ Em − ω(T)− t

)
≤ exp

(
− 1

2 t
2
)
.

103

Chapter 4. Recovery Under Random Measurements

The result in Theorem 4.4 is known in the literature under the name “Gordon’s Es-
cape Through a Mesh”. The original form of this statement appears in Gordon [121,
Corollary 3.4], and has been refined by Rudelson and Vershynin [215]. Another vari-
ant of this result also appears in Stojnic [226]. Gordon’s Escape Through a Mesh in
Theorem 4.4 is the main ingredient to prove that (Gaussian) random measurement
matrices satisfy the NSP with high probability. Recall the definition of the classi-
cal null space property (NSP) for characterizing uniform recovery of sparse vectors
by ℓ1-minimization in Example (2.12.1):

∥vS∥1 < ∥vS∥1 ∀ v ∈ null(A) \ {0}, ∀S ⊆ [n], |S| ≤ s. (NSP)

This condition is clearly invariant under scaling the vectors v. Thus, we can assume
that ∥v∥2 = 1. Consequently, we define the set

Ts := {v ∈ Rn : ∥vS∥1 ≥ ∥vS∥1 for some S ⊆ [n], |S| ≤ s, ∥v∥2 = 1}. (4.2)

A measurement matrix A ∈ Rm×n satisfies (NSP) of order s, if ∥Ax∥2 > 0 for
all x ∈ Ts, due to the scaling invariance of the NSP. Thus, if A is a standard
Gaussian random measurement matrix and if Em−ω(Ts)− t > 0, then Theorem 4.4
directly states that the NSP is satisfied with probability at least 1− exp(− 1

2 t
2). It

now remains to upper bound the Gaussian width ω(Ts) of the unit-norm vectors
violating the NSP condition. In the literature, there exist different approaches
to derive bounds for this Gaussian width. Rudelson and Vershynin [215] show
that Ts ⊆ 2 conv{x ∈ Rn : ∥x∥0 ≤ s, ∥x∥2 = 1}, and estimate the Gaussian width
of this set. Stojnic [226] uses duality arguments for the underlying linear program
in the definition of the Gaussian width to provide sharp bounds for the Gaussian
width ω(Ts). Foucart and Rauhut [104] replace the set Ts by an appropriate cone
in order to use conic duality and an outer approximation of the corresponding dual
cone to derive a bound on the Gaussian width ω(Ts).

This general approach using Theorem 4.4 also works for different NSPs, e.g., NSPs
that characterize uniform recovery in the presence of different side constraints. In
this case, only the set Ts needs to be adapted accordingly, and its Gaussian width
needs to be estimated. Of course, this approach also covers robust and stable as
well as individual recovery, since in all these cases, again only the set Ts changes.
The case of individual recovery can even be made more concrete by noting that the
corresponding NSP that characterizes (or sometimes implies) individual recovery is
equivalent to the condition that the descent cone (or tangent cone) of the objective
function of the corresponding recovery problem at x(0) does not intersect the null
space of the measurement matrix A, see also Remark 2.35. The probability of this
event for a standard Gaussian random measurement matrix A can be bounded by

104

4.1. Recovery Under Random Measurements – An Overview

the distance of a standard Gaussian random vector from the dilated subdifferential
of the respective objective function at x(0), due to the duality relationship between
the tangent cone and the normal cone, which is the cone over the subdifferential.
This connection is exploited by Amelunxen et al. [9] and Chandrasekaran et al. [49]
in order to derive bounds for the minimal number of measurements needed for
guaranteeing individual recovery with high probability in various settings.

In the following, we briefly outline the key points of the analysis of Foucart and
Rauhut, since we will closely follow their analysis in our own analysis of sparse
nonnegative vectors in Section 4.2. For a vector v ∈ Rn, we define v∗ to be the
nonnegative rearrangement of |v|, that is v∗1 ≥ · · · ≥ v∗n ≥ 0 and there exists a
permutation σ with v∗σ(i) = |vi| for all i ∈ [n]. Furthermore, we define the cones

Ks :=
{
v ∈ Rn :

s∑
i=1

vi ≥
n∑

i=s+1

vi, vi ≥ 0 ∀ i ∈ [n]
}
,

Qs := {v ∈ Rn : v1 = · · · = vs = t, vi ≥ −t, i = s+ 1, . . . , n for some t ≥ 0}.

Then, [104, Lemma 9.32] shows Qs ⊆ K∗
s , where K∗

s is the dual cone to Ks, which
is defined as K∗

s := {x : ⟨x, z⟩ ≥ 0 ∀ z ∈ Ks}. For Ks and its dual cone, we can use
the following result about weak conic duality. For a vector g ∈ Rn and a cone K,
we have

max {⟨g, x⟩ : ∥x∥2 ≤ 1, x ∈ K} ≤ min {∥g + z∥2 : z ∈ K∗}, (4.3)

see, e.g., [104, Equation (B.40)]. Since the set Ts as defined in (4.2) is invariant under
permutation of the indices and entrywise sign changes, the Gaussian width ω(Ts)

can be written as

ω(Ts) = E
[
max

{
⟨g, z⟩ : z ∈ Ts

}]
= E

[
max

{
⟨g∗, v⟩ : v ∈ Ks, ∥v∥2 ≤ 1

}]
.

Using weak conic duality in (4.3) implies

ω(Ts) ≤ E
[
min

{
∥g∗ + x∥ : x ∈ K∗

s

}]
≤ E

[
min

{
∥g∗ + x∥ : x ∈ Qs

}]
≤ min

t≥0

{
E
[(s∑

i=1

(
g∗i + t

)2)1/2]
+ E

[
min

zs+1,...,zn≥−t

(n∑
i=s+1

(
g∗i + zi

)2)1/2]}
.

(4.4)

105

Chapter 4. Recovery Under Random Measurements

For a fixed t ≥ 0, Foucart and Rauhut [104, Section 9.3] obtain the following esti-
mates:

E
(lin)
1 := E

[(s∑
i=1

(
g∗i + t

)2)1/2] ≤ t√s+√s+√2s ln
(
en
s

)
, (4.5)

E
(lin)
2 := E

[
min

zs+1,...,zn≥−t

(n∑
i=s+1

(
g∗i + zi

)2)1/2] ≤√(n− s)√ 2
πe

exp(−t2/2)
t2 , (4.6)

where e := exp(1). Choosing t =
√
2 ln(en/s) in (4.5) and (4.6) and inserting the

resulting estimates into (4.4) yields the bound

ω(Ts) ≤
√
2s ln

(
en
s

)(
1 +

1√
2 ln(en/s)

+
1

(8πe3)1/4 ln(en/s)

)
. (4.7)

For the details, we refer to [104, Section 9.3]. Gordon’s Escape Theorem 4.4 yields
the following bound for the minimal number of measurements.

Theorem 4.5 ([104, Corollary 9.34]). Let A ∈ Rm×n be a standard Gaussian ran-
dom matrix and let s < n as well as ε > 0. If

m2

m+ 1
≥
(
ω + 2 ln

(
1
ε

))2
,

where ω is the estimation of ω(Ts) in (4.7), then A satisfies (NSP) of order s with
probability at least ε.

4.2 Analysis of Random Measurements for Sparse
Nonnegative Vectors

In this section, we will derive bounds for the minimal number of measurements m for
uniform recovery of sparse nonnegative vectors. The derivation is a direct adaption
of the analysis of Foucart and Rauhut [104] outlined above to the setting of sparse
nonnegative vectors. Since the nonnegative null space property (NSP≥0) contains a
nonnegativity constraint, the corresponding set Ts of vectors violating this NSP is
not invariant under sign changes. Hence, the derivation of bounds for the Gaussian
width of Ts is more involved than in the case of sparse vectors. Moreover, it seems
that a direct adaption of the appealing geometric approach of embedding the set of
vectors violating (NSP≥0) in an inflated sparse unit-norm ball as done by Rudelson
and Vershynin [215] is not straight-forward, since the corresponding ball remains
unknown.

106

4.2. Analysis of Random Measurements for Sparse Nonnegative Vectors

Recall that the nonnegative null space property (NSP≥0) of order s reads

vS ≤ 0 =⇒
∑
i∈S

vi < ∥vS∥1 ∀ v ∈ null(A)\{0}, ∀S ⊆ [n], |S| ≤ s. (NSP≥0)

Thus, for any s ≥ 0, the set Ts of unit-norm vectors violating (NSP≥0) is given by

Ts := {v ∈ Rn : ∥v∥2 = 1, vS ≤ 0, 1⊤v ≥ 0 for some S ⊆ [n], |S| ≤ s}. (4.8)

This set Ts is invariant under permutation of the indices, but not invariant under
sign changes. Hence, we can order the indices nonincreasingly, but we cannot order
the indices nonincreasingly according to their absolute value. For a vector x ∈ Rn,
we call x̃ the nonincreasing rearrangement of x, if x̃1 ≥ x̃2 ≥ · · · ≥ x̃n and there
exists a permutation τ of [n] with x̃i = xτ(i) for all i ∈ [n].

Note that for the null space property (NSP) for sparse vectors, the set of vectors
violating the NSP is invariant under sign changes, so that in this case, the nonin-
creasing rearrangement of (|x|1, . . . , |x|n)⊤ can be used. Since the signs do not play
a role, the analysis of the Gaussian width becomes easier in this case.

By using the nonincreasing rearrangement, we can omit the choice of the set S in
the definition of the set Ts and arrive at the convex cone Ks defined as

Ks := {v ∈ Rn : vs+1, . . . , vn ≤ 0, 1⊤v ≥ 0}.

The Gaussian width of Ts can now be computed using the convex cone Ks and the
nonincreasing rearrangement g̃ of the standard Gaussian random vector g ∈ Rn,
since we have that

ω(Ts) = E
[
max {⟨g, x⟩ : x ∈ Ts}

]
= E

[
max {⟨g̃, x⟩ : x ∈ Ks ∩ Sn−1}

]
≤ E

[
min {∥g̃ + z∥2 : z ∈ K∗

s }
]
,

where K∗
s is the dual cone of Ks, and the expectation is taken with respect to g.

The last inequality follows from weak conic duality in (4.3). The next lemma shows
an explicit formulation of the dual cone K∗

s .

Lemma 4.6. Let s ≥ 0 and Ks = {v ∈ Rn : vs+1, . . . , vn ≤ 0, 1⊤v ≥ 0}. Then,
the dual cone K∗

s of the convex cone Ks is given by

K∗
s = {v ∈ Rn : vi = t ∀ i ∈ [s], vi ≤ t ∀ i ∈ {s+ 1, . . . , n} for some t > 0}.

107

Chapter 4. Recovery Under Random Measurements

Proof. Let

Qs := {v ∈ Rn : vi = t ∀ i ∈ [s], vi ≤ t ∀ i ∈ {s+ 1, . . . , n} for some t > 0}.

In order to prove the inclusion Qs ⊆ K∗
s , let z ∈ Qs and u ∈ Ks. Then,

⟨z, u⟩ =
s∑

i=1

t ui +

n∑
i=s+1

zi ui ≥ t · 1⊤u ≥ 0,

so that z ∈ K∗
s by definition of the dual cone.

For the reverse inclusion, let z ∈ K∗
s . Then, ⟨z, u⟩ ≥ 0 has to hold for all u ∈ Ks.

Assume that there exist i ̸= j ≤ s with zi ̸= zj , and suppose zi > zj without loss
of generality. Then, w ∈ Rn with wi = −1, wj = 1 and wk = 0 for all k /∈ {i, j} is
contained in Ks, but we have ⟨z, w⟩ = −zi + zj < 0. Thus, zi = zj for all i, j ≤ s.
Moreover, zi ≥ 0 for all i ≤ s, since otherwise the vector w = (1, 0, . . . , 0)⊤ ∈ Ks

yields ⟨z, w⟩ < 0. This shows zi = t for all i ≤ s and some t ≥ 0. For the
remaining indices, assume there exists j ≥ s+ 1 with zj > z1 = t. In this case, the
vector w ∈ Rn with w1 = 1, wj = −1 and wk = 0 for all k /∈ {1, j} is contained
in Ks but again, ⟨z, w⟩ = z1− zj < 0, a contradiction. Thus, zi ≤ t for all i ≥ s+1,
which shows z ∈ Qs.

This representation of the dual coneK∗
s implies that we can estimate the Gaussian

width ω(Ts) as follows:

E
[
min {∥g̃ + z∥2 : z ∈ K∗

s }
]

=E
[
min

{(s∑
i=1

(g̃i + t)2 +

n∑
i=s+1

(g̃i + zi)
2
)1/2

: t > 0, zs+1, . . . , zn ≤ t
}]

≤E
[
min

{(s∑
i=1

(g̃i + t)2
)1/2

+
(n∑

i=s+1

(g̃i + zi)
2
)1/2

: t > 0, zs+1, . . . , zn ≤ t
}]
.

Consider a fixed t > 0, and define

E
(nng)
1 := E

[(s∑
i=1

(g̃i + t)2
)1/2]

,

E
(nng)
2 := E

[
min

zs+1,...,zn≤t

(n∑
i=s+1

(g̃i + zi)
2
)1/2]

.

(4.9)

These terms resemble the terms E(lin)
1 and E

(lin)
2 in (4.5) and (4.6), respectively,

which appeared in the analysis for sparse vectors. Besides the slightly different dual

108

4.2. Analysis of Random Measurements for Sparse Nonnegative Vectors

cone K∗
s , the nonincreasing rearrangement of g is needed for sparse nonnegative

vectors, whereas for sparse vectors, the nonincreasing rearrangement of |g| can be
used. This implies that the deriving good bounds for E(nng)

1 and E
(nng)
2 becomes

more tedious, since the sign needs to be taken into consideration. In Appendix A,
we derive the bounds

E
(nng)
1 ≤

√
min
κ>0

{
(2 + 2κ)

[
s ln

(
en
s

)
+ s ln

(
1
2

)
+ s ln

(
1 +

√
1 + 1

κ

)]}
+ 1

2s

+ t
√
s, (4.10)

E
(nng)
2 ≤

[
n(n− s) ·

((
1 + t2

)(
Φ(−t)− 1

2Φ(−t)
2
)
− tφ(−t)Φ(t)

− t√
π
Φ(−t

√
2) +

1

2
√
2π
φ(−t

√
2)
)]1/2

. (4.11)

Hence, we obtain

ω(Ts) ≤ min
t≥0

{
E

(nng)
1 + E

(nng)
2

}
, (4.12)

which leads to the following lower bound on the minimal number of measurements
needed for uniform recovery of sparse nonnegative vectors.

Theorem 4.7. Let A ∈ Rm×n be a standard Gaussian random matrix, and let ω be
the estimation of ω(Ts) defined in (4.12) with the bounds (4.10) and (4.11). If

m2

m+ 1
≥
(
ω +

√
2 ln

(
1
ε

))2
,

then every s-sparse nonnegative x ∈ Rn
+ is the unique optimal solution of the non-

negative ℓ1-minimization problem min {∥z∥1 : Az = Ax, z ≥ 0} with probability at
least 1− ε.

The proof of Theorem 4.7 is provided in Appendix A as well.

Numerical Evaluation and Discussion Before comparing the result in Theorem 4.7
to the result in Theorem 4.5 for sparse vectors, let us mention that Theorem 4.7
shows that random measurement matrices satisfy the nonnegative null space prop-
erty (NSP≥0) with high probability, given that the number of measurements is suf-
ficiently large. Hence, there exist matrices allowing for uniform recovery of sparse
nonnegative vectors with high probability.

Let us now evaluate numerically the computed bound for the minimal number
of measurements needed for a Gaussian random matrix to satisfy the nonnegative

109

Chapter 4. Recovery Under Random Measurements

NSP. Therefore, we define ω(lin) to be the bound in (4.7) for the Gaussian width of
the set Ts in (4.2) of unit-norm vectors violating the classical NSP, and ω(nng) to
be the bound in (4.12) for the corresponding Gaussian width for sparse nonnegative
vectors. For the minimum over κ and t in (4.10) and (4.12), we use the values

κ̂ =

√
n

n+ ln(m) + n ln(12)
(4.13)

and t̂ =
√
2 ln(en/s), respectively, since, empirically, κ̂ and t̂ are close to the (nu-

merically evaluated) minimum. Moreover, the value t̂ is also chosen in the analysis
of sparse vectors, and the choice of κ̂ is justified by the following argument:

(2 + 2κ)
[
ln(m) + n ln

(
1
2

)
+ n ln

(
1 +

√
1 + 1

κ

)]
≤ (2 + 2κ)

[
ln(m) + n ln

(
1
2

)
+ n

(√
1 + 1

κ

)]
≤ (2 + 2κ)

[
ln(m) + n ln

(
1
2

)
+ n

(
1 + 1

κ

)]
, (4.14)

and κ̂ is the minimum of (4.14). Recall from Theorems 4.5 and 4.7 that ω(lin)

and ω(nng) are a lower bound for the minimal number of random Gaussian measure-
ments needed to satisfy (NSP) and (NSP≥0), and thus allow for uniform recovery
of sparse and sparse nonnegative vectors, respectively.

Figure 4.1a plots ω(lin) (blue) and ω(nng) (red and yellow) as a function of the
sparsity level for n = 500. The latter bound is displayed in two variants: First, di-
rectly in the form (4.11) (red), and second, using the numerically exact value for the
integral appearing in the derivation of the bound, see (7.6) in Appendix A (yellow).
The second variant also uses the numerically evaluated minimal κ appearing in the
estimation (4.10) of E(nng)

2 . It turns out that, unfortunately, the derived bound for
sparse nonnegative vectors depicted in red is worse than the corresponding bound
for general sparse vectors in blue. Using the numerically exact value of the integral
in E(nng)

2 as well as the numerically evaluated minimal κ, the derived bound depicted
in yellow becomes slightly better, but it is still worse than the blue bound for sparse
vectors.

For a comparison, Figure 4.1a also contains empirical values for the sums of
the expectations E(lin)

1 + E
(lin)
2 (violet) as well as E(nng)

1 + E
(nng)
2 (green). These

have been obtained by sampling 1000 Gaussian random vectors g, computing the
quantity within the expectation in (4.5), (4.6) as well as (4.9), respectively, and
taking the empirical mean of the results. First of all, these results show that both
the bound for the linear and the nonnegative case are not precise and rather far from
being optimal. Furthermore, empirically, there is a clear difference between the two

110

4.2. Analysis of Random Measurements for Sparse Nonnegative Vectors

0 50 100 150 200 250

0

20

40

60

80

100

120

(a) Comparison of the bounds and empirical values for the Gaussian width of the sets Ts

of unit-norm vectors violating (NSP) and (NSP≥0), for n = 500.

0 50 100 150 200 250

0

10

20

30

40

50

60

70

80

(b) Comparison of bounds and empirical values for E
(lin)
1 and E

(nng)
1 for n = 500.

0 50 100 150 200 250

0

5

10

15

20

25

30

35

(c) Comparison of bounds and empirical values for E
(lin)
2 and E

(nng)
2 for n = 500.

Figure 4.1. Comparison of the bounds for the minimal number of measurements
needed for uniform recovery of sparse vectors and sparse nonnegative vectors,
for n = 500.

111

Chapter 4. Recovery Under Random Measurements

bounds and this time, the green bound for sparse nonnegative vectors is smaller
than the violet bound for sparse vectors. Thus, empirically, under the additional
side constraint x ≥ 0, fewer measurements are needed for guaranteeing uniform
recovery via the nonnegative NSP. Finally, Figure 4.1a displays results for directly
simulating the Gaussian widths of the sets Ts for sparse (light blue) and sparse
nonnegative vectors (dark red), respectively, see (4.2) and (4.8). These results have
been obtained by randomly generating 100 Gaussian random vectors, solving the
convex optimization problem max {⟨g, x⟩ : ∥x∥2 ≤ 1, x ∈ Ts} and taking the
empirical mean of the solutions. The results show again that the Gaussian width
for sparse nonnegative vectors depicted in light blue is smaller than the Gaussian
width for sparse vectors depicted in dark red, at least for small sparsity levels s.

Figures 4.1b and 4.1c contain a separate comparison of the bounds on E
(lin)
1

(blue), and E
(nng)
1 (red, yellow) as well as E(lin)

2 (blue), and E
(nng)
2 (red, yellow),

see (4.5), (4.6), (4.10) and (4.11), respectively. We again add an empirical simula-
tion of the respective expectations (violet, green), which are obtained as described
above. For n = 500, the resulting bounds are plotted as a function of s. In case
of E(nng)

1 , the bound is plotted once using κ̂ as defined in (4.13) (red) and once
using the numerically evaluated minimum over κ (yellow). The bound for E(nng)

2 is
also displayed in two variants: First, directly in the form (4.11) (red), and second,
using the numerically exact value for the integral appearing in the derivation of the
bound, see (7.6) in Appendix A (yellow). As can be seen, the red bound on E(nng)

1

is indeed smaller than the blue bound on E
(lin)
1 , even if κ̂ is used. However, both

the red and the yellow bound on E(nng)
2 are significantly larger than the blue bound

on E
(lin)
2 . One particular estimation that may be responsible for this difference is

the inequality in (7.5), see Appendix A. The same inequality is also used in the esti-
mation of the bound on E(lin)

2 in (4.6) (see [104, p. 296]). The difference is, however,
that for sparse vectors, the n − s smallest entries of g in absolute value contribute
to E(lin)

2 , whereas for E(nng)
2 , the smallest entries of g are used. This already shows

that one can expect E(nng)
2 > E

(lin)
2 , which is also confirmed by the empirical values

for E(nng)
2 in green and E(lin)

2 in violet. Hence, the weak estimate (7.5) carries much
more weight in the case of sparse nonnegative vectors, which leads to ω(nng) being
larger than ω(lin). Consequently, improving on this inequality would most likely
result in a major improvement of the overall bound for sparse nonnegative vectors.

Altogether, even if the theoretical bound in Theorem 4.7 for sparse nonnegative
vectors is larger than its counterpart in Theorem 4.5 for general sparse vectors,
our empirical simulations show that fewer measurements for uniform recovery of
sparse nonnegative vectors can be expected, in comparison to general sparse vec-
tors. In order to underline this observation a bit further, Figure 4.2 shows empirical
results for individual recovery of sparse and sparse nonnegative vectors in the di-

112

4.2. Analysis of Random Measurements for Sparse Nonnegative Vectors

(a) Results for sparse vectors. (b) Results for sparse nonnegative vectors.

Figure 4.2. Empirical success of individual recovery for sparse and sparse nonneg-
ative vectors and different types of random matrices for n = 100. The heatmap
shows the normalized recovery error (4.15).

mension n = 100 using four different types of random matrices. We present results
for individual recovery at this point, since this is more natural for conducting sim-
ulations. For each combination of the number of measurements m ∈ [100] and the
sparsity level s ∈ [100], we have drawn 25 random matrices, and an s-sparse Gaus-
sian random vector x ∈ R100 for each matrix. Then, we solved the recovery problem
and computed

∥x− x∗∥2
∥x∥2

, (4.15)

where x∗ denotes the optimal solution of the recovery problem. This experiment has
been repeated for four different types of random matrices, namely Gaussian matrices
with Aij ∼ N (0, 1), rectified Gaussian matrices with Aij ∼ NR(0, 1), Bernoulli ma-
trices with Aij ∼ Unif({0, 1}) and Rademacher matrices with Aij ∼ Unif({−1, 1}),
where Unif(C) denotes the uniform distribution on the set C. A rectified Gaussian
distribution is obtained from the standard Gaussian distribution by setting all neg-
ative elements to zero, i.e., if X ∼ N (0, 1), then Y = max {0, X} ∼ NR(0, 1) is
a rectified Gaussian random variable. The plots in Figure 4.2 show the resulting
values of (4.15) for each type of random matrix for sparse and sparse nonnegative
vectors. As can be seen, the normalized error (4.15) is zero with high probability in
the top left corner in all cases, and increases for larger sparsity levels s and smaller

113

Chapter 4. Recovery Under Random Measurements

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Figure 4.3. Comparison of the transition between failure and success for sparse and
sparse nonnegative vectors for n = 100 and different types of random matrices.

number of measurements m. Moreover, the plots show a clear phase transition from
failure to success of the recovery process with high probability. It turns out that this
transition does not depend on the type of the random matrices, but the phase tran-
sition in case of sparse nonnegative vectors occurs for smaller values of m, compared
to sparse vectors. To underline this point, Figure 4.3 shows the comparison of the
phase transitions for sparse and sparse nonnegative vectors. The empirical phase
transition for sparse vectors is depicted using solid lines in blue (Gaussian), red
(rectified Gaussian), green (Bernoulli) and black (Rademacher), whereas the dashed
lines depict the phase transition for sparse nonnegative vectors. These phase tran-
sitions are obtained by identifying for each s the minimal value of m such that
individual recovery was successful with high probability for all values m′ ≥ m. This
comparison reveals that again, for sparse nonnegative vectors fewer measurements
are needed for successful individual recovery with high probability, in comparison
to sparse vectors.

Thus, both for individual and uniform recovery, explicitly exploiting the side con-
straint x ≥ 0 in the recovery process by using nonnegative ℓ1-minimization has a
positive impact by reducing the number of measurements, i.e., rows of the mea-
surement matrix in order to guarantee successful recovery. In the next chapter, we

114

4.3. Analysis of Random Measurements for Block-Sparse Matrices

will consider approaches to testing whether a given measurement matrix satisfies
the linear or nonnegative NSP, which guarantees uniform recovery. There, we will
also present empirical results for Gaussian random matrices to satisfy these NSPs.
These results are the counterpart of the results in Figures 4.2a and 4.2b, since
the NSPs characterize uniform recovery. However, computations to test the (non-
negative) NSP are considerably more expensive than solving the (nonnegative) ℓ1-
minimization problem for a given measurement matrix and sparse (nonnegative)
vector. Thus, we can only use the small value n = 20. Nevertheless, the results in
Figure 5.1 will confirm the results obtained in this chapter, by showing again that
there is a difference between sparse and sparse nonnegative vectors in the number
of measurements needed to guarantee uniform recovery.

4.3 Analysis of Random Measurements for
Block-Sparse Matrices

In this section, we will analyze the recovery of block-diagonal matrices under random
measurements. We use the null space properties from Section 3.1 to derive bounds
for the minimal number of measurements needed to guarantee uniform recovery with
high probability. In order to simplify the analysis, we assume symmetric matrices
and that the block-structure in X consists of k blocks of equal size d1 × d2. Again,
we will use Gordon’s Escape Theorem 4.4. Note that this formulation holds for the
vector space Rn, but it can be easily adapted to the matrix space Rm×n as well,
see, e.g., Kabanava et al. [139] and also the recent overview by Fuchs et al. [108,
Theorem 2.1].

Theorem 4.8 (Gordon’s Escape Through a Mesh for Rm×n, [108, Theorem 2.1]).
Let A ∈ Rm×n be a Gaussian random measurement operator as defined in Sec-
tion 3.1.1, and let T be a subset of the (Frobenius) unit sphere S(Rm×n) in Rm×n.
Then, for all t > 0

P
(

inf
X∈T
∥A(X)∥2 ≤

√
m− 1− ω(T)− t

)
≤ exp

(
− 1

2 t
2
)
.

Using the Frobenius inner product defined in (1.1), the definition of the Gaussian
width in Definition 4.2 can be adapted accordingly to

ω(S) := E
[
sup {⟨G,Z⟩F : Z ∈ S}

]
,

where S ⊆ Rm×n and the expectation is taken over standard Gaussian random
matrices G ∈ Rm×n. By Theorem 3.6, the following null space property of order s

115

Chapter 4. Recovery Under Random Measurements

characterizes uniform recovery of all s-block-sparse block-diagonal matrices:∑
i∈S

∥VBi∥∗ <
∑
i∈S

∥VBi∥∗ (NSP∗
∗,1)

for all V ∈ (null(A) ∩ Sn) \ {0} and all S ⊆ [k], |S| ≤ s. For a block-structured
matrix X let X̃ be the nonincreasing block-rearrangement of X, that is, let X̃ be
the matrix with the blocks XBi

of X reordered such that ∥X̃B1
∥∗ ≥ · · · ≥ ∥X̃Bk

∥∗
and XBi

= X̃B[τ(i)]
for all i ∈ [k] and a permutation τ of [k] . Then, (NSP∗

∗,1) can
be reformulated as

s∑
i=1

∥ṼBi∥∗ <
k∑

i=s+1

∥ṼBi∥∗ ∀V ∈ (null(A) ∩ Sn) \ {0}. (4.16)

Due to the scaling invariance of this condition, we can scale V to have a unit norm
of 1 with respect to the mixed nuclear-ℓ2-norm, that is

∥V ∥∗,2 =
(k∑

i=1

∥VBi∥2∗
)1/2

= 1.

Thus, the set Ts of unit-nuclear-norm matrices violating the condition (4.16) is given
by

Ts =
{
V ∈ Sn block-structured :

s∑
i=1

∥ṼBi
∥∗ ≥

k∑
i=s+1

∥ṼBi
∥∗, ∥V ∥∗,2 = 1

}
. (4.17)

Let Ks be the convex hull of s-block-sparse matrices with unit norm with respect
to the mixed nuclear-ℓ2-norm, i.e.,

Ks := conv{X ∈ Sn block-structured : ∥X∥∗,2 = 1, ∥X∥∗,0 ≤ s}. (4.18)

In the following we show that Ts is contained in 2Ks and subsequently estimate
the Gaussian width of Ks. This is a direct adaption of the corresponding state-
ments for sparse vectors [215, Lemma 4.5], block-sparse vectors [228] and low-rank
matrices [139, Lemma 3.4].

Lemma 4.9. Let s ≥ 1. For Ts and Ks as in (4.17) and (4.18), respectively, we
have Ts ⊆ 2Ks.

116

4.3. Analysis of Random Measurements for Block-Sparse Matrices

Proof. Let V ∈ Ts be a block-structured matrix and let Ṽ be the nonincreasing
rearrangement of V with respect to the nuclear norms of the blocks. Then,

s∑
i=1

∥ṼBi
∥∗ ≤

√
s
(s∑

i=1

∥ṼBi
∥2∗
)1/2

≤
√
s
(k∑

i=1

∥ṼBi
∥2∗
)1/2

=
√
s, (4.19)

which implies

k∑
i=s+1

∥ṼBi
∥∗ ≤

s∑
i=1

∥ṼBi
∥∗ ≤

√
s.

Now suppose that ∥ṼBj
∥∗ > 1/

√
s for some index j > s. Due to the nonincreasing

ordering of the blocks, we have ∥ṼBj
∥ ≤ ∥ṼBi

∥ for all i ∈ [s]. This yields

s∑
i=1

∥ṼBi∥∗ ≥ s∥ṼBj∥∗ >
√
s,

which is a contradiction to (4.19). Thus, we have ∥ṼBj∥∗ ≤ 1/
√
s for all j > s. This

shows that

V ∈ BS
∗,2 ×

(√
sBS

∗,1 ∩ 1√
s
BS

∗,∞

)
,

where S is the set of indices of the s blocks with largest nuclear norm ∥VBi
∥∗, and

BS
∗,p := {V ∈ RS×S : ∥V ∥∗,p = 1}, p ∈ {1, 2,∞}.

Here, RS×S denotes the space of matrices consisting of blocks indexed by the ele-
ments of S. By varying the set S over all possible index sets with s elements, we
obtain

V ∈
⋃

E⊆[k], |E|≤s

BE
∗,2 ×

(√
sBE

∗,1 ∩ 1√
s
BE

∗,∞

)
=:W.

Clearly, the extreme points of W are those matrices V with V = V ′ + V ′′ such
that V ′ ∈ RE , ∥V ′∥∗,2 = 1 and V ′′ ∈ RE has exactly s nonzero blocks, each with
nuclear norm 1/

√
s for some E ⊆ [k] with |E| = s. Since Ks is a symmetric and

convex set with 0 in its interior, there is a norm ∥·∥K such that Ks is the unit-
norm ball with respect to ∥·∥K , see, e.g., Rockafellar [211, Theorem 15.2]. Thus,
the maximum of ∥·∥K over W is attained at an extreme point of W , and for any

117

Chapter 4. Recovery Under Random Measurements

extreme point V = V ′ + V ′′ of W , we have

∥V ′ + V ′′∥K ≤ ∥V ′∥K + ∥V ′′∥K ≤ 1 + 1 = 2,

since clearly V ′, V ′′ ∈ Ks. This shows max {∥V ∥K : V ∈ W} ≤ 2, which in turn
implies Ts ⊆W ⊆ 2Ks.

This result can now be used to estimate the Gaussian width ω(Ts) of Ts. There-
fore, let G ∈ Rn×n be a block-structured Gaussian random matrix with k blocks of
equal size d1 × d2. Then, the Frobenius inner product ⟨G,X⟩F of G and X ∈ Sn
satisfies the inequality

⟨G,X⟩F =

k∑
i=1

⟨GBi , XBi⟩F ≤
k∑

i=1

∥GBi∥F ∥XBi∥F ≤
k∑

i=1

∥GBi∥F ∥XBi∥∗

≤
k∑

i=1

max
i∈[k]
{∥GBi

∥F } ∥XBi
∥∗ = ∥G∥F,∞∥X∥∗,1.

This implies

ω(Ts) ≤ 2ω(Ks) = 2E
[
max {⟨G,X⟩F : ∥X∥∗,0 ≤ s, ∥X∥∗,2 = 1}

]
≤ 2E

[
max {∥G∥F,∞∥X∥∗,1 : ∥X∥∗,2 = 1, ∥X∥∗,0 ≤ s}

]
≤ 2E

[
max {∥G∥F,∞

√
s∥X∥∗,2 : ∥X∥∗,2 = 1, ∥X∥∗,0 ≤ s}

]
= 2
√
sE
[
∥G∥F,∞

]
= 2
√
sE
[
max {∥vec(GBi)∥2 : i ∈ [k]}

]
≤ 2
√
s
(
E
[
max {∥vec(GBi)∥22 : i ∈ [k]}

])1/2
≤ 2
√
s
(√

2 ln(k) +
√
d1 · d2

)
,

where we used the Jensen inequality in Lemma 7.2 in the penultimate inequality,
and [104, Proposition 8.2] for the last inequality. This bound only scales with the
blocksize d1 × d2 and the number of blocks k, but not directly in the overall size of
the matrix X, i.e., in kd1 and kd2, respectively.

In order to show P(infX∈Ts
∥A(X)∥2 > 0) ≥ 1 − ε, we use t =

√
2 ln(1ε) in

Theorem 4.8. It remains to estimate the minimal number of measurements m so
that

√
m− 1− ω(Ts)−

√
2 ln(1ε) ≥ 0.

118

4.3. Analysis of Random Measurements for Block-Sparse Matrices

This is true if

√
m− 1 ≥ 2

√
s
(√

2 ln(k) +
√
d1 · d2

)
+
√
2 ln(1ε),

which yields the lower bound

m ≥
(
2
√
s
(√

2 ln(k) +
√
d1 · d2

)
+
√
2 ln(1ε)

)2
+ 1.

Putting the derivation above together, we have proved the following.

Theorem 4.10. Let A : Sn → Rm be a Gaussian random measurement operator. If

m ≥
(
2
√
s
(√

2 ln(k) +
√
d1 · d2

)
+
√
2 ln(1ε)

)2
+ 1,

then, with probability at least 1 − ε, every s-block-sparse matrix X is the unique
optimal solution of min {∥Z∥∗,1 : A(Z) = A(X), Z ∈ Sn}.

The lower bound on the number of measurements in Theorem 4.10 only scales
with the number of blocks k and the dimension of the blocks d1 · d2 separately,
but not in the overall dimension k · d1 · d2 of the matrices. This is in contrast to
regular sparsity, where the corresponding lower bound scales in the dimension n

of the sparse vectors, see Theorem 4.5. Thus, the lower bound takes the specific
block-structure into account.

Of course, it also possible to use a similar approach as for sparse nonnegative
vectors in Section 4.2. This would require to transform the set Ts defined in (4.17)
into a convex cone and find (an inner approximation) of its dual cone. Similarly to
the case of nonnegative vectors, we can use the convex cone

Ks = {V ∈ Sn :

s∑
i=1

∥VBi
∥∗ ≥

k∑
i=s+1

∥VBi
∥∗}.

Since only the nuclear norm of the blocks VBi
but not the entries of the blocks

themselves appear in the NSP condition, the computation can in principle be reduced
to the case of vectors, where the entries of the vector v are the nuclear norms of the
blocks in V . Similarly, the Gaussian random matrix reduces to a random vector,
whose entries are no longer standard Gaussian random variables. By using the
emerging distribution instead of the standard Gaussian distribution, the same proof
idea as in the case of vectors could in principle be applied, see [104, Theorem 9.29].

The recovery for positive semidefinite block-structured matrices under random
Gaussian measurements is unfortunately considerably harder to analyze. Recall

119

Chapter 4. Recovery Under Random Measurements

that the corresponding null space property (NSP∗
∗,1,⪰0) in Definition 3.3 reads

VBi ⪯ 0 ∀ i ∈ S =⇒
∑
i∈S

1⊤λ(VBi) <
∑
i∈S

∥VBi∥∗ (4.20)

for all V ∈ (null(A) ∩ Sn)\{0} and all S ⊆ [k], |S| ≤ s, where λ(VBi
) is the

vector of eigenvalues of VBi
. Clearly, this condition is also invariant under per-

mutation of the blocks. However, in contrast to the NSP for block-structured ma-
trices in (NSP∗

∗,1), not only the nuclear norm of the blocks but also the signs of
the eigenvalues appear in the NSP condition in (4.20). Thus, it is not clear in
which way the blocks in V need to be ordered so that the set S can be elimi-
nated from the condition, since this ordering necessarily has to take the signs of
the eigenvalues within the blocks into consideration. A natural ordering would be
lexicographically sorting the blocks with respect to the largest eigenvalue. How-
ever, this ordering cannot be used to maximize the inner product ⟨G,V ⟩F over the
set of matrices V violating the NSP (4.20), as the following toy example demon-
strates. Consider two block-structured matrices G and V ∈ S4 with eigenval-
ues λ(G) = ([2,−1], [6,−20])⊤ and λ(V) = ([10, 10], [−1,−1])⊤. Sorting the matri-
ces blockwise with respect to the largest eigenvalue yields λ(Ĝ) = ([6,−20], [2,−1])⊤
and λ(V̂) = ([10, 10,], [−1,−1])⊤. However, ⟨G,V ⟩F = 24 > −124 = ⟨Ĝ, V̂ ⟩F, so
that the sorting does not increase the inner product. Consequently, abstracting to
the eigenvalues of the blocks and then using an approach to analyze the NSP under
Gaussian random measurements similar to the case of nonnegative vectors in Sec-
tion 4.2 can only be applied if the correct ordering has been identified. This also
implies that even simulating the Gaussian width becomes a complicated optimiza-
tion problem.

Moreover, as already mentioned in the case of sparse nonnegative vectors, a simple
approach using an embedding of the set of matrices violating the NSP into a convex
set of sparse unit-norm matrices as in Lemma 4.9 is also not possible, since the
correct convex set Ks has not yet been identified.

4.4 Concluding Remarks and Outlook

The empirical evaluation of the Gaussian width of the set of vectors violating the
linear and the nonnegative NSP in Figure 4.1a and the results for individual recov-
ery of sparse and sparse nonnegative vectors in Figures 4.2, 4.2a and 4.2b indicates
that fewer measurements seem to be needed for the uniform recovery of sparse non-
negative vectors in comparison to uniform recovery of all sparse vectors. However,
the numerical evaluation in Figure 4.1a of the bound for the minimal number of

120

4.4. Concluding Remarks and Outlook

measurements needed for uniform recovery of sparse nonnegative vectors derived
in Theorem 4.7 shows that this bound is worse than the corresponding bound for
sparse vectors. Thus, it remains an open question to improve on the bound in Theo-
rem 4.7. As outlined in the discussion in Section 4.2, especially one inequality seems
to leave much room for improvement. A more precise estimation most likely needs
more involved results on rectified Gaussian random variables and vectors.

Another major open question is the derivation of bounds for uniform recovery of
positive semidefinite block-structured matrices. Since the NSP for positive semidef-
inite block-structured matrices only depends on the eigenvalues of the blocks, it
makes sense to first consider uniform recovery for block-structured nonnegative vec-
tors and then generalize the result to matrices. However, as described above, the
correct ordering for the blocks has not yet been identified. Moreover, in the litera-
ture, to the best of the author’s knowledge, for block-sparse nonnegative vectors only
individual recovery has been analyzed under random measurements by Stojnic [229].

Apart from the results for uniform recovery, it would also be interesting to de-
rive results for individual recovery. To do so, the methods developed in [9, 49]
could be employed. Note that individual recovery of sparse nonnegative vectors
under Gaussian random measurements has been treated in [226], but the case of
(positive semidefinite) block-structured matrices has not yet been considered in the
literature. These two cases should be easy adaptions of the block-sparse and block-
sparse nonnegative case, which has been analyzed in [229, 230]. A generalization of
all these considerations would be to prove a statement of recovery under random
measurements in the general framework from Chapter 3. As a starting point, the
framework of atomic “norms” [49] or decomposable norms [44] could be used and
the corresponding statements for individual recovery in these frameworks extended
to uniform recovery.

In a different direction of research, it would be interesting to see if the polytope
approach from Donoho and Tanner for analyzing recovery under random measure-
ments also works for more settings than sparse (nonnegative) vectors. In the case of
matrices, a direct adaption would replace the unit-norm ball of the ℓ1-norm by the
unit-norm ball of the nuclear norm. This set is known to be a spectrahedron, see
Saunderson et al. [216, Theorem 1.2]. However, the projection of a spectrahedron
is not necessarily a spectrahedron in general, see Ramana and Goldman [208, Sec-
tion 3.1], as opposed to polytopes. Moreover, it seems that a block-structure cannot
be easily represented using polytopes.

On top of that, analyzing random matrices for the two remaining special cases
treated in Chapter 3, namely integrality and constant modulus constraints is also left
open for future research. In case of constant modulus constraints, this would require
to generalize the probabilistic tools to the complex setting, or, to employ a explicit

121

Chapter 4. Recovery Under Random Measurements

split into real and imaginary parts. Since these parts cannot be considered, e.g.,
sorted, independently but a coupling between these two parts need to be maintained,
it is not as straight-forward to apply the methodology used within this chapter. For
integrality constraints, the corresponding NSP is not even invariant under scaling of
the vectors, so that we cannot assume that the set Ts of integral vectors violating
the corresponding NSP is bounded and a subset of the unit sphere. Thus, again,
the methodology is not applicable, since we cannot operate on a subset of the unit
sphere. Instead, we would need to derive bounds for the ℓ2-norm of the vectors x
in the null space of a (Gaussian) random measurement matrix A with x ∈ Ts.
Moreover, even if it is possible to obtain such a bound, the set Ts is still not convex
and not even a cone. It would certainly be interesting to see if the general approach
using Gordon’s Escape Theorem 4.4 can be modified to work in this case as well, or
if it is even possible to introduce the integrality constraint into the analysis based
on polytope geometry from Donoho and Tanner.

122

CHA PTER 5
Computing Recovery

Conditions

In the last chapter, we have considered the question whether there exist matrices
which can satisfy the NSP conditions for individual and uniform recovery for various
special cases presented in Chapter 3. Recall that a measurement matrix A allows for
individual recovery, if a single fixed s-sparse element is successfully recovered by the
corresponding recovery program using A. In contrast, uniform recovery means that
the corresponding recovery program using a fixed A successfully recovers all s-sparse
elements. We have seen that if the number of measurements, is large enough, then a
Gaussian random matrix satisfies the corresponding NSP with high probability. In
case of sparse vectors, the number of measurements is given by the number of rows
of the measurement matrix. Moreover, by exploiting additional side constraints such
as nonnegativity or positive semidefiniteness this number of minimal measurements
decreases. Thus, from a theoretical point of view, the presented NSP conditions for
different special cases, with and without additional side constraints, are meaningful
in the sense that they can be satisfied by matrices and that exploiting side constraints
has a positive effect. For a thorough analysis of NSP conditions it now remains to
consider the question of how to verify that a given matrix satisfies an NSP condition
in practice. This will be done in this chapter. First, we shortly present the case of
the classical NSP for sparse vectors, which has been treated by d’Aspremont and
El Ghaoui [59], where an SDP formulation for testing the NSP of a measurement
matrix was proposed. We complement this by deriving two slightly different MIP
formulations for testing the NSP. Afterwards, we extend this formulation to the
NSPs for recovering sparse nonnegative vectors and block-sparse vectors with and
without additional nonnegativity. For the NSP for sparse vectors and the NSP for

123

Chapter 5. Computing Recovery Conditions

sparse nonnegative vectors, we present computational results for varying sizes of the
measurement matrix and sparsity levels.

For a very small dimension n = 20, we consider Gaussian random measurement
matrices A ∈ Rm×n, that is, random matrices, where all entries are independent
standard normal random variables. We show empirically that these random ma-
trices satisfy the nonnegative NSP with high probability for more combinations of
sparsity level s and number of measurements m, in comparison to the NSP for recov-
ery of sparse vectors. This supplements the consideration in the previous chapter,
where a bound for the minimal number of measurements needed for a Gaussian
random matrix to satisfy the nonnegative NSP was derived. The numerical eval-
uations, and especially the empirical comparison of individual recovery for sparse
(nonnegative) vectors, show a difference in the number of measurements needed for
successful recovery between sparse vectors and sparse nonnegative vectors. Since
the (nonnegative) NSP characterizes uniform recovery of (nonnegative) sparse re-
covery, the results in this chapter add an empirical comparison of uniform recovery,
which confirms the results for individual recovery obtained in the previous chap-
ter. Afterwards, we shortly comment on the NSPs for recovery of low-rank (positive
semidefinite) matrices and block-diagonal (positive semidefinite) matrices, for which
it does not seem to be as easy to formulate them as a MIP or an MISDP. Currently,
only immediate nonlinear formulations are known.

In Section 5.2 we consider another condition which is sufficient for uniform recov-
ery of sparse vectors, the restricted isometry property. This condition can be for-
mulated as an MISDP, which was established by Gally and Pfetsch [111]. Chapter 6
shortly introduces general MISDPs and presents several presolving techniques for
general MISDPs, which is based on joint work with Marc E. Pfetsch [174]. Further
specialized components that can be exploited when solving the MISDP formulation
of the restricted isometry property are then derived in Section 5.3. A numerical
evaluation of these components follows at the end of Chapter 6.

5.1 A Mixed-Integer Programming Formulation for
the Null Space Property

Recall from Example (2.12.1) that the null space property (NSP) for characterizing
uniform recovery reads

∥vS∥1 < ∥vS∥1 ∀ v ∈ null(A) \ {0}, ∀S ⊆ [n], |S| ≤ s. (NSP)

124

5.1. A MIP Formulation for the NSP

By adding ∥vs∥1 to both sides of the inequality and scaling ∥v∥1 = 1, (NSP) can be
written as

max {∥vS∥1 : Av = 0, ∥v∥1 ≤ 1, |S| ≤ s} < 1

2
, (5.1)

which can equivalently be formulated as

max {y⊤v : Av = 0, ∥v∥1 ≤ 1, ∥y∥∞ ≤ 1, ∥y∥1 ≤ s} <
1

2
, (5.2)

see, e.g., [59], which follows from homogeneity and the ℓ∞-norm being the dual
norm of the ℓ1-norm. The quantity in (5.1) is also known as null space constant
(NSC). Recall that checking whether a given matrix satisfies the NSP is NP-hard,
see Tillmann and Pfetsch [237]. Thus, not much attention has been paid to the
problem of computing the exact NSC for a given matrix. Cho et al. [53] propose
an approach to compute the exact NSC based on a branch-and-bound approach.
Moreover, lower and upper bounds for the NSC are derived using an SDP relaxation
in [59] as well as an LP relaxation in Juditsky and Nemirovski [135]. Bounds for
the corresponding NSC for sparse nonnegative vectors are obtained by Juditsky
et al. [136].

In the following, it is our goal to formulate the optimization problem (5.2) as a
MIP. This allows us to check in practice whether a given measurement matrix A

satisfies the NSP and thus admits uniform recovery of sparse vectors. We discuss two
slightly different formulations and compare them numerically. In a similar spirit,
Tillmann [236] derives a MIP formulation for computing the spark of a matrix.
Recall that the spark is a recovery condition for sparse recovery using the ℓ0-norm.

To start, any optimal solution (y∗, v∗) of Problem (5.2) has y∗i ∈ {±1} for exactly s
indices i ∈ [n] and y∗j = 0 otherwise. Thus, y∗ selects entries of v∗, which then
form the set S in (NSP). Consequently, the variables yi in the objective function
can assumed to satisfy yi ∈ {0,±1} for all i ∈ [n]. Moreover, in any optimal
solution (y∗, v∗), the signs of v∗i and y∗i coincide for all i ∈ [n] with y∗i ̸= 0. The ℓ1-
norm constraint on v can be modeled as a linear constraint by using a variable split.
For v ∈ R, define its positive part v+ and negative part v− as

v+ := max {0, v}, v− := max {0,−v}.

Clearly, when introducing variables v+i and v−i instead of vi, we need to ensure
that v+i and v−i are not simultaneously nonzero. Such a constraint which models that
for a set of variables x1, . . . , xn, at most one variable xi ̸= 0, i ∈ [n], whereas xj = 0

for all j ̸= i, is called an sos1-constraint, which we denote with sos1(x1, . . . , xn).
It can be modeled by adding the set of constraints xi · xj = 0 for all i ̸= j. In

125

Chapter 5. Computing Recovery Conditions

the presence of bounds, an sos1-constraint can be linearized by adding additional
binary variables. Assume that −∞ < ℓi ≤ xi ≤ ui < ∞ holds for all i ∈ [n], and
let di ∈ {0, 1} for i ∈ [n] be binary variables. Then, the constraint sos1(x1, . . . , xn)
can be modeled by adding the following constraints:

n∑
i=1

di ≤ 1, ℓi di ≤ xi ≤ ui di ∀ i ∈ [n], di ∈ {0, 1} ∀ i ∈ [n]. (5.3)

Using a variable split into positive and negative part together with an sos1-
constraint, the constraint ∥v∥1 ≤ 1 can be equivalently formulated as

n∑
i=1

(
v+i + v−i

)
≤ 1, sos1(v+i , v

−
i) ∀ i ∈ [n], v+i , v

−
i ∈ [0, 1] ∀ i ∈ [n].

Due to the simple bounds v+i , v
−
i ∈ [0, 1], Inequalities (5.3) for modeling the con-

straint sos1(v+i , v
−
i) simplify to

v±i ≤ d
±
i , d+i + d−i ≤ 1, d±i ∈ {0, 1} ∀ i ∈ [n]. (5.4)

As already mentioned, every optimal solution (y∗, v∗) of Problem (5.2) satisfies
y∗i ∈ {0,±1}, and if y∗i ̸= 0, then the signs of y∗i and v∗i coincide. Thus, when
using the variable split vi = v+i − v

−
i , we can assume yi to be binary and write the

objective function as
∑n

i=1

(
yi v

+
i + yi v

−
i

)
. In order to linearize the bilinear terms

in the objective function, we use the standard McCormick relaxation [176]. To do
so, we introduce new variables w±

i ∈ [0, 1] which replace the bilinear terms yiv±i
for i ∈ [n] and add the inequalities

w±
i ≤ yi, w±

i ≤ v
±
i , w±

i ≥ yi + v±i − 1

for all i ∈ [n]. Since the sum
∑n

i=1(w
+
i +w−

i) is maximized in the objective function,
the last set of inequalities w±

i ≥ yi + v±i − 1 can be omitted, and the obtained
relaxation is in fact exact, that is, if yi = 1, then w±

i = v±i and yi = 0 implies
w±

i = 0. Overall, this leads to the following MIP formulation of (5.2):

max

n∑
i=1

(
w+

i + w−
i

)
s.t. A(v+ − v−) = 0,

n∑
i=1

(
v+i + v−i

)
≤ 1,

n∑
i=1

yi ≤ s,

w±
i ≤ yi, w±

i ≤ v
±
i , v±i ≤ d

±
i d+i + d−i ≤ 1 ∀ i ∈ [n],

yi ∈ {0, 1}, d±i ∈ {0, 1}, w±
i , v

±
i ∈ [0, 1] ∀ i ∈ [n].

(5.5)

126

5.1. A MIP Formulation for the NSP

In this formulation, the sos1-constraint on v+i , v
−
i (or, to be more precise, its lin-

earization using the binary variables d±i) cannot be omitted, since otherwise set-
ting v±1 = w±

1 = 1
2 , y1 = 1, and setting all remaining variables to zero yields a feasible

solution with an objective value of 1, independent of the choice of A. This is due to
the fact that the linearized objective function

∑n
i=1(w

+
i +w−

i) =
∑n

i=1 yi · (v
+
i +v−i)

is equal to y⊤v only if the sos1-constraints on v±i are satisfied.

However, it is possible to modify this formulation, so that the sos1-constraints
become superfluous. This can be achieved by splitting the variables yi also into a
positive and negative part y±i , and using the objective function

n∑
i=1

(
y+i v

+
i + y−i v

−
i − y

+
i v

−
i − y

−
i v

+
i

)
.

By introducing auxiliary variables w(1)
i = y+i v

+
i , w(2)

i = y−i v
−
i , w(3)

i = y+i v
−
i

and w(4)
i = y−i v

+
i , we obtain the following alternative formulation

max

n∑
i=1

(
w

(1)
i + w

(2)
i − w

(3)
i − w

(4)
i

)
(5.6a)

s.t. A(v+ − v−) = 0,

n∑
i=1

(
v+i + v−i

)
≤ 1,

n∑
i=1

(
y+i + y−i

)
≤ s, (5.6b)

w
(1)
i ≤ y+i , w

(2)
i ≤ y−i , w

(3)
i ≤ y+i , w

(4)
i ≤ y−i ∀ i ∈ [n], (5.6c)

− 1 + y+i + w
(1)
i ≤ v+i ≤ w

(1)
i + 1− y+i ∀ i ∈ [n], (5.6d)

− 1 + y−i + w
(2)
i ≤ v−i ≤ w

(2)
i + 1− y−i ∀ i ∈ [n], (5.6e)

− 1 + y+i + w
(3)
i ≤ v−i ≤ w

(3)
i + 1− y+i ∀ i ∈ [n], (5.6f)

− 1 + y−i + w
(4)
i ≤ v+i ≤ w

(4)
i + 1− y−i ∀ i ∈ [n], (5.6g)

y±i ∈ {0, 1}, w
(1)
i , w

(2)
i , w

(3)
i , w

(4)
i , v±i ∈ [0, 1] ∀ i ∈ [n], (5.6h)

which does not need the sos1-constraints sos1(v+i , v
−
i) and sos1(y+i , y

−
i) for all i ∈ [n],

as proven in the next lemma.

Lemma 5.1. There always exists an optimal solution of Problem (5.6) which satis-
fies the sos1-constraints

sos1(v+i , v
−
i), sos1(y+i , y

−
i) ∀ i ∈ [n]. (5.7)

Proof. Let (ŷ±, ŵ(1), ŵ(2), ŵ(3), ŵ(4), v̂±) be an optimal solution of Problem (5.6)
so that there exists an index i ∈ [n] with v̂+i , v̂

−
i > 0. Without loss of generality

127

Chapter 5. Computing Recovery Conditions

we assume v̂+i ≥ v̂−i . In order to show that there always exists another optimal
solution with the same objective value which satisfies the sos1-constraints (5.7), we
distinguish between different cases for the value of the binary variables ŷ±i .

If ŷ+i = ŷ−i = 0, then Constraint (5.6c) implies ŵ(1)
i = ŵ

(2)
i = ŵ

(3)
i = ŵ

(4)
i = 0.

The constraint
∑

i(v̂
+
i + v̂−i) ≤ 1 in (5.6b) implies that setting ṽ+i := v̂+i − v̂

−
i ≥ 0

and ṽ−i := 0 is also feasible and does not change the objective value. Furthermore, ṽ±

clearly satisfies the sos1-constraints (5.7).
If ŷ+i = 1 and ŷ−i = 0, then ŵ(1)

i = v̂+i > 0 by Constraint (5.6d) and ŵ(3)
i = v̂−i > 0

by Constraint (5.6f). Thus, the term ŵ
(1)
i − ŵ(3)

i = v̂+i − v̂
−
i is contained in the

objective function. Again, ṽ+i := v̂+i − v̂−i ≥ 0 and ṽ−i := 0 is also feasible and
does not change the objective value, since ŵ(1)

i − ŵ
(3)
i = ṽ+i − ṽ

−
i = v̂+i − v̂

−
i in this

case. Again, the sos1-constraints (5.7) are satisfied by ṽ±. The same holds for the
case ŷ−i ̸= 0 and ŷ+i = 0.

Lastly, if ŷ+i = ŷ−i = 1, then ŵ
(1)
i = ŵ

(4)
i = v̂+i > 0 and ŵ

(2)
i = ŵ

(3)
i = v̂−i > 0,

so that the contribution of index i to the objective function is 0. This implies that
defining ṽ+i := v̂+i − v̂

−
i ≥ 0, ṽ−i = 0, as well as ỹ+i := 1, ỹ−i = 0 and setting w̃(j)

i

accordingly yields a feasible solution which strictly increases the objective value,
which is a contradiction to the optimality of (ŷ±, ŵ(1), ŵ(2), ŵ(3), ŵ(4), v̂±), so that
this case cannot occur.

Overall, there always exists an optimal solution of the MIP formulation (5.6) with
the same objective value which satisfies the sos1-constraints on v±i for all i ∈ [n].

As another approach to circumvent the bilinear term y⊤v in the objective function
of Problem (5.2), d’Aspremont and El Ghaoui [59] use a change of variables V = vv⊤,
Y = yy⊤ and Z = yv⊤ to lift the problem into a higher-dimensional space. Using
that X = xx⊤ if and only if X ⪰ 0 and rank(X) = 1 for a matrix X and a vector x,
Problem (5.2) becomes the SDP

max tr(Z) (5.8a)

s.t. AV A⊤ = 0, ∥V ∥1 ≤ 1, ∥Y ∥∞ ≤ 1, ∥Y ∥1 ≤ s2 ∥Z∥1 ≤ s, (5.8b)(
V Z⊤

Z Y

)
⪰ 0, rank

(
V Z⊤

Z Y

)
= 1, (5.8c)

V, Y ∈ Sn, Z ∈ Rn×n. (5.8d)

The rank-constraint in (5.8c) ensures that in an optimal solution of Problem (5.8),
we have V = vv⊤, Y = yy⊤ and Z = yv⊤. The norms in (5.8b) are to be understood
entrywise, i.e., ∥Y ∥∞ = max {|Yij | : 1 ≤ i, j ≤ n} and ∥Y ∥1 =

∑
i,j |Yij |. Dropping

the rank-constraint yields an SDP relaxation. Importantly, the constraint ∥Z∥1 ≤ s
is redundant only in the rank-constrained SDP (5.8), but not in the SDP relaxation

128

5.1. A MIP Formulation for the NSP

Table 5.1. Results for the MIP formulation of the linear NSP on a testset of 100
Gaussian random matrices.

formulation #opt #nodes time

MIP (5.5) (linearized sos1) 16 4 190 605.8 2686.74
MIP (5.10) (explicit sos1) 22 3 291 349.2 2278.98
MIP (5.6) (without sos1) 100 27 355.8 36.43

without the rank-constraint. In [59], the tightness and performance of the SDP
relaxation is analyzed theoretically and numerically.

In order to evaluate the performance of the proposed MIP formulations (5.5)
and (5.6), we generate 100 standard Gaussian random matrices A ∈ Rm×n with
Aij ∼ N (0, 1). Namely, there are five matrices per combination (n,m, s) with

n ∈ {20, 40, 60, 80, 100}, m ∈ {7, 15}, s ∈ {2, 3}. (5.9)

For each random matrix, we use three formulations for testing the NSP. First, we
solve (5.5), where the sos1-constraints on v±i , i ∈ [n] are linearized. Then, we
solve (5.5) where the sos1-constraints on v±i , i ∈ [n] are directly added as sos1-
constraint without a linearization, i.e.,

max

n∑
i=1

(
w+

i + w−
i

)
s.t. A(v+ − v−) = 0,

n∑
i=1

(
v+i + v−i

)
≤ 1,

n∑
i=1

yi ≤ s,

w±
i ≤ yi, w±

i ≤ v
±
i , sos1(v+i , v

−
i) ∀ i ∈ [n],

yi ∈ {0, 1}, w±
i , v

±
i ∈ [0, 1] ∀ i ∈ [n].

(5.10)
The sos1-constraints can be handled by, e.g., using methods by Fischer and
Pfetsch [96]. For a brief description of the handling of sos1-constraints in the solver
SCIP [219], see the corresponding section in the release report of SCIP 3.2 [113].

Lastly, we solve (5.6), which does not need any sos1-constraints. For our com-
putations, we use SCIP 7.0.4 [114] with SoPlex 5.0.2 as LP solver. All tests
were performed on a Linux cluster with 3.5 GHz Intel Xeon E5-1620 Quad-Core
CPUs, having 32 GB main memory and 10 MB cache. All computations were run
single-threaded and with a time limit of one hour. Table 5.1 shows the number of
instances solved to optimality as well as the shifted geometric means of the num-
ber of processed nodes and the solution time in seconds, with a shift of 100 nodes
and 1 second. Using the formulation (5.5) with linearized sos1-constraints can only

129

Chapter 5. Computing Recovery Conditions

solve 16 out of the 100 instances within the time limit, namely only those instances
with (n,m, s) ∈ {(20, 7, 2), (20, 15, 2), (20, 15, 3)} and one of the five instances of
type (n,m, s) = (20, 7, 3). For all other instances, at least a nontrivial primal bound
greater than 0 is found. Note that if this primal bound is already larger than 1

2 , this
suffices to show that the NSP is violated.

If the sos1-constraints are added as explicit constraints to SCIP, 22 instances can
be solved within the time limit, namely all 20 instances with n = 20 and two of
the five instances with (n,m, s) = (40, 7, 2). Again, for all other instances, at least
a nontrivial primal bound is found. Using the formulation (5.6) which does not
need sos1-constraint clearly outperforms both sos1-based formulations by almost
two orders of magnitude in terms of the solution time as well as the number of
used nodes. Moreover, all 100 instances are solved to optimality. This shows that
introducing additional (continuous) variables is very beneficial because it allows to
significantly reduce the number of needed integral variables, since no sos1-constraints
are needed.

Overall, seven matrices satisfy the NSP, namely all matrices with parameters
(n,m, s) = (20, 15, 2), one matrix with (n,m, s) = (20, 15, 3), and one matrix
with (n,m, s) = (40, 15, 2). Additionally, we also tested the SDP formulation (5.8).
Since the exact formulation with the rank1-constraint cannot be solved for any of
the sizes in (5.9), we omit the rank1-constraint and compare the bound of the result-
ing relaxation with the optimal solution computed with the MIP formulation (5.6).
Since these results were run in Matlab using cvx [122], and on a different computer
than the experiments with the MIP formulations, we do not report or compare the
solution times. Within a time limit of one hour, 99 of the 100 instances could be
solved to optimality. It turns out that for all instances, the SDP relaxation indeed
produces a larger optimal solution than the exact MIP formulation. However, for
five of the matrices which satisfy the NSP, the SDP-bound is smaller than 1

2 , which
also suffices to show that the NSP holds.

If the number of rows and the sparsity levels are increased, the MIPs become
much harder to solve. For each of the 20 combinations of (n,m, s) as depicted
in Table 5.2, we also create five Gaussian random matrices, and solve the three
different MIP formulations with the same setup as before. Table 5.3 shows the
number of solved instances and the shifted geometric means of the number of
used nodes and the solution times. It turns out that only increasing the num-
ber of rows and/or the sparsity level already leads to instances which cannot be
solved by the MIP formulation (5.6) anymore. Only the instances with n = 20,
those with (n,m) = (40, 15), (n,m, s) = (80, 20, 3) and two of the instances
with (n,m, s) = (100, 30, 3) could be solved to optimality within a time limit of
one hour. The other two formulations (5.5) and (5.10) even failed to solve all in-

130

5.1. A MIP Formulation for the NSP

Table 5.2. Sparsity levels and sizes of the random matrices used for evaluating the
MIP formulation of the linear and nonnegative NSP.

#cols n #rows m sparsity s

20 7 {2, 3}
15 {3, 5}

40 15 {3, 4}
25 {5, 7}

60 15 {4, 6}
40 {7, 8}

80 20 {3, 5}
60 {5, 10}

100 30 {3, 6}
80 {5, 15}

Table 5.3. Results for the MIP formulation of the linear NSP on a testset of 100
larger Gaussian random matrices and larger sparsity levels.

formulation #opt #nodes time

MIP (5.5) (linearized sos1) 12 4 032 423.5 3084.67
MIP (5.10) (explicit sos1) 16 2 290 380.5 2597.86
MIP (5.6) (without sos1) 37 432 792.1 705.02

stances with n = 20. The MIP formulations only verified the NSP for two matrices,
both with (n,m, s) = (20, 15, 3). The SDP relaxation shows for six more matrices
that the NSP holds by producing an optimal value < 1

2 , namely for all matrices
with (n,m, s) = (100, 80, 5) and one matrix with (n,m, s) = (80, 60, 5). However,
for most other matrices, the MIP formulations ended up with a primal bound larger
than 1

2 after the time limit, which certifies that the NSP does not hold for these
matrices. For seven matrices, we could not verify within the time limit whether or
not the NSP holds.

As a conclusion, the formulation (5.6), which does not need sos1-constraints
clearly outperforms both the formulations (5.5) and (5.10) with sos1-constraints
in terms of solved instances, used nodes and solution time. If the handling of the
sos1-constraints is left to SCIP, then this helps to solve more instances and speeds
up the solution process, in comparison to linearizing the sos1-constraints. Thus, for
testing whether a given measurement matrix satisfies the NSP for uniform recovery
of sparse vectors, the formulation (5.6) should be used. Moreover, since the exact
solution value of the optimization problem is not important, the computations can
be safely stopped once a primal solution with solution value larger than 1

2 is found,

131

Chapter 5. Computing Recovery Conditions

or if the dual bound gets smaller than 1
2 . In the latter case, the optimal solution

value is guaranteed to be smaller than 1
2 as well, so that the NSP is satisfied, whereas

a feasible solution with solution value larger than 1
2 is a certificate that the NSP is

violated. By exploiting this fact, it is expected that the time needed for testing the
NSP can be reduced even further, and it remains an open question to analyze the
impact of this criterion for early termination.

Nonnegative NSP Analogously to the classical NSP, also the nonnegative NSP
can be formulated as a MIP. Recall from Example (2.12.2) that the nonnegative null
space property (NSP≥0), which characterizes uniform recovery of sparse nonnegative
vectors x ∈ Rn

+, reads

vS ≤ 0 =⇒
∑
i∈S

vi < ∥vS∥1 ∀ v ∈ null(A)\{0}, ∀S ⊆ [n], |S| ≤ s.

(NSP≥0)

This NSP is equivalent to the condition

max {∥v+S ∥1 : vS ≤ 0, Av = 0, ∥v∥1 ≤ 1, v = v+ − v−,

sos1(v+i , v
−
i), i ∈ [n], |S| ≤ s} < 1

2
.

(5.11)

The constraint vS ≤ 0 ensures that v has at most s = |S| nonnegative entries, and
that ∥v+S ∥1 = ∥v+∥1 =

∑n
i=1 v

+
i . Thus, the objective function in (5.11) is already

linear and does not need to be reformulated. Using the reformulation of sos1(v+i , v
−
i)

in (5.4) yields the following MIP formulation of (5.11):

max

n∑
i=1

v+i

s.t. A(v+ − v−) = 0,

n∑
i=1

(v+i + v−i) ≤ 1,

n∑
i=1

d+i ≤ s,

v±i ≤ d
±
i , d+i + d−i ≤ 1, d±i ∈ {0, 1}, v±i ∈ [0, 1] ∀i ∈ [n].

(5.12)

We first use the same 100 small random matrices as in the last section to evaluate
the performance of the MIP formulation (5.12) for the nonnegative NSP, see (5.9)
for the combinations of (m,n, s). Again, we also test the MIP formulation (5.11),
where the sos1-constraints are not linearized, but explicitly added as sos1-constraint
in SCIP. Table 5.4 shows the number of optimally solved instances as well as the
shifted geometric means of the solution times and the number of processed nodes

132

5.1. A MIP Formulation for the NSP

Table 5.4. Results for the MIP formulation of the nonnegative NSP on a testset of
100 Gaussian random matrices.

formulation # opt #nodes time

MIP (5.12) (linearized sos1) 100 2415.3 4.69
MIP (5.11) (explicit sos1) 92 18 839.6 22.43
MIP (5.6) (linear NSP) 100 27 355.8 36.43

Table 5.5. Results for the MIP formulation of the nonnegative NSP on a testset of
100 larger Gaussian random matrices and larger sparsity levels.

formulation # opt # nodes time

MIP (5.12) (linearized sos1) 61 113 724.7 177.86
MIP (5.11) (explicit sos1) 41 415 479.3 765.10
MIP (5.6) (linear NSP) 37 432 792.1 705.02

for the two formulations. Moreover, for comparison, we add the numbers of the best
MIP formulation (5.6) of the linear NSP.

It turns out that this time, linearizing the sos1-constraints is clearly better than
adding them explicitly as sos1-constraints. The formulation (5.12) solves all 100
instances to optimality within the time limit, whereas using explicit sos1-constraints
fails to solve 8 instances within the time limit. In comparison to the linear NSP,
it turns out that testing the nonnegative NSP is clearly faster, and reduces the
number of used nodes and the solution time by almost one order of magnitude.
The nonnegative NSP is satisfied by 14 matrices, namely the seven matrices which
already satisfy the linear NSP and all matrices with (n,m, s) = (20, 15, 3) as well as
four of the five matrices with (n,m, s) = (40, 15, 2).

When using the larger matrices with sizes depicted in Table 5.2, this again leads
to instances which are much harder to solve. The formulation (5.12) with linearized
sos1-constraints can only solve 61 instances within a time limit of one hour, and
using explicit sos1-constraints in SCIP results in 41 optimally solved instances.
The shifted geometric means of the number of nodes and the solution times are
displayed in Table 5.5. As before, linearizing the sos1-constraints leads to a better
performance, in contrast to the case of the linear NSP in the previous paragraph.
Moreover, also the larger matrices demonstrate that testing the nonnegative NSP
seems to be easier than testing the linear NSP. Overall, the nonnegative NSP could
be verified for 16 matrices: all matrices with (n,m, s) = (20, 15, 3), two matrices
with (n,m, s) = (20, 15, 5), four matrices with (n,m, s) = (40, 25, 5) and all matrices
with (n,m, s) = (100, 30, 3). We could not make a statement about whether the

133

Chapter 5. Computing Recovery Conditions

1 2 3 4 5 6 7 8 9

5

7

9

11

13

15

17

19

1 2 3 4 5 6 7 8 9

5

7

9

11

13

15

17

19

0

0.2

0.4

0.6

0.8

1

Figure 5.1. Empirical probability that a Gaussian random matrix satisfies the
linear NSP and the nonnegative NSP for n = 20.

nonnegative NSP holds for all 30 matrices with

(n,m, s) ∈ {(60, 40, 7), (60, 40, 8), (80, 60, 5), (80, 60, 10), (100, 80, 5), (100, 80, 15)}

from the best primal and dual bounds obtained within the time limit. Note that
among them there are 6 matrices which were shown to satisfy the linear NSP by
using the SDP relaxation (5.8) without the rank1-constraint. Since the linear NSP
implies the nonnegative NSP, at least these 6 matrices also satisfy the nonnegative
NSP.

The results obtained for the two testsets of Gaussian random matrices again
indicate that the nonnegative NSP may be satisfied for a larger combination of
values (n,m, s) than the linear NSP, as we have already seen in the numerical com-
parison in Chapter 4. In order to further support this finding, we test the linear and
the nonnegative NSP for a fixed value of n and all numbers of rows m and sparsity
levels s with 5 ≤ m ≤ n. Since the linear NSP cannot be satisfied for s ≥ m

2 , we
only consider values s < m

2 . In order to be able to solve most of the instances in a
reasonable amount of time, we choose n = 20. For each combination of (m, s), we
created five Gaussian random matrices with Aij ∼ N (0, 1) for all (i, j) ∈ [m]× [n].
For each combination (m, s), we compute the empirical probability that an m× 20

matrix satisfies the linear NSP and the nonnegative NSP of order s by dividing the
number of instances for which the respective NSP holds by 5 (which is the number
of instances per type). The results are visualized in the heatmap in Figure 5.1. Note
that the number of rows m is the number of measurements that are taken. Even
if the sample size of 5 matrices per size m × 20 and the sparsity level s < m

2 are
small, there is a clear difference between the empirical probabilities for the linear

134

5.1. A MIP Formulation for the NSP

and nonnegative NSP being satisfied. The results indicate that for a fixed spar-
sity level s, fewer measurements are needed to satisfy the nonnegative NSP with
high probability than to satisfy the linear NSP. Consequently, uniform recovery of
every s-sparse nonnegative vector is guaranteed for a smaller number of measure-
ments m, compared to uniform recovery of every vector, which is in line with the
empirical observations in Chapter 4. Moreover, Figure 5.1 again shows a clear phase
between transition violating and satisfying the NSP with high probability, which we
also observed for individual recovery in Chapter 4.

In the next two sections, we consider the NSP for uniform recovery of block-sparse
and block-sparse nonnegative vectors. Since those NSPs resemble the corresponding
NSPs without block-structure that we discussed previously, the MIP formulations
are variants of the models presented above in (5.5) and (5.12). For this reason, we
drop the details and only shortly explain the derivation of the models.

Block-Linear NSP In the setting of Section 3.1.2, let the matrix A ∈ Rm×n and
the vector x ∈ Rn be block-structured, i.e.,

x =
(
x[1], . . . , x[k]

)
∈ Rn, v[i] ∈ Rni , i ∈ [k], n1 + · · ·+ nk = n,

A =
(
A[1], . . . , A[k]

)
∈ Rm×n, A[i] ∈ Rm×ni , i ∈ [k],

and let x[S] denote the vector where all blocks with index not in S have no nonzero
entries. We can assume that the null space of A also consists of block-structured
vectors v ∈ Rn. Recall that the null space property (NSPq,1), which characterizes
uniform recovery in the case of block-structured vectors, is given by

∥v[S]∥q,1 < ∥v[S]∥q,1. (NSPq,1)

Similar to the classical case without additional block-structure, this condition can
be reformulated as follows:

∥v[S]∥q,1 < ∥v[S]∥q,1 ∀ v ∈ N (A)\{0}, ∀S ⊆ [k], |S| ≤ s,

⇔ max
{
∥v[S]∥q,1 : Av = 0, ∥v∥q,1 ≤ 1, |S| ≤ s

}
<

1

2
,

⇔ max
{ k∑

i=1

yi ∥v[i]∥q : Av = 0, ∥v∥q,1 ≤ 1, ∥y∥∞ ≤ 1, ∥y∥1 ≤ s
}
<

1

2
. (5.13)

Analogously to the linear NSP, this follows from homogeneity and the definition of
the dual norm. For q = 1, i.e., if an ℓ1-norm is used on the blocks v[i], i ∈ [k], a
variable split on v can be used to formulate the constraint ∥v∥q,1 ≤ 1. This leads to

135

Chapter 5. Computing Recovery Conditions

the bilinear objective function

k∑
i=1

ni∑
j=1

yi (v[i]
+
j + v[i]−j). (5.14)

In order to remove the bilinearity and to obtain a MIP, the objective function
in (5.14) can be reformulated in two different ways by introducing auxiliary variables
w[i]±j or w[i]± for all i, j as follows:

w[i]±j = yi · v[i]±j =⇒ w[i]±j ≤ yi, w[i]±j ≤ v[i]
±
j , w[i]±j ∈ [0, 1], (5.15)

w[i]± = yi ·
ni∑
j=1

v[i]±j =⇒ w[i]± ≤ yi ni, w[i]± ≤
ni∑
j=1

v[i]±j , w[i]
± ∈ [0, ni]. (5.16)

Inequalities (5.15) use variables for each i, j, whereas in Inequalities (5.16), the vari-
ables are aggregated over j. Using the reformulation in (5.4) for the sos1-constraints
on v[i]+j and v[i]−j , which are needed due to the variable split, we obtain the following
two MIP formulations:

max

k∑
i=1

ni∑
j=1

(
w[i]+j + w[i]−j

)
s.t. A(v+ − v−) = 0,

k∑
i=1

ni∑
j=1

(
v[i]+j + v[i]−j

)
≤ 1,

k∑
i=1

yi ≤ s, (5.17)

w[i]±j ≤ yi, w[i]±j ≤ v[i]
±
j , v[i]±j ≤ d[i]

±
j ∀i ∈ [k], j ∈ [ni],

d[i]+j + d[i]−j ≤ 1, v[i]±j ∈ [0, 1], w[i]±j ∈ [0, 1] ∀i ∈ [k], j ∈ [ni],

d[i]±j ∈ {0, 1}, yi ∈ {0, 1} ∀i ∈ [k], j ∈ [ni],

as well as

max

k∑
i=1

(
w[i]+ + w[i]−

)
s.t. A(v+ − v−) = 0,

k∑
i=1

ni∑
j=1

(
v[i]+j + v[i]−j

)
≤ 1,

k∑
i=1

yi ≤ s, (5.18)

w[i]± ≤ yi ni, w[i]± ≤
ni∑
j=1

v[i]±j , v[i]±j ≤ d[i]
±
j ∀i ∈ [k], j ∈ [ni],

d[i]+j + d[i]−j ≤ 1, v[i]±j ∈ [0, 1], w[i]± ∈ [0, ni] ∀i ∈ [k], j ∈ [ni],

d[i]±j ∈ {0, 1}, yi ∈ {0, 1} ∀i ∈ [k], j ∈ [ni].

136

5.1. A MIP Formulation for the NSP

Block-Linear Nonnegative NSP In the presence of an additional nonnegativity
constraint on the block-structured vector, the corresponding NSP reads

v[S] ≤ 0 =⇒
∑
i∈S

1⊤v[i] < ∥v[S]∥1,1 ∀S ⊆ [k], |S| ≤ s, (NSP1,1,≥0)

see Corollary 3.8. As in the case of the nonnegative null space property (NSP≥0),
the constraint v[S] ≤ 0 ensures that at most s = |S| blocks can contain nonnegative
entries. Thus, we can again use a linear objective function and write (NSP1,1,≥0) as

max
{ k∑

i=1

1⊤v[i]+ : A(v) = 0, ∥v∥1,1 ≤ 1, v[S] ≤ 0, v = v+ − v−,

sos1(v[i]+j , v[i]
−
j), i ∈ [k], j ∈ [ni], |S| ≤ s

}
<

1

2
.

This can be modeled as the following MIP:

max

k∑
i=1

ni∑
j=1

v[i]+j

s.t. A(v+ − v−) = 0,

k∑
i=1

ni∑
j=1

(
v[i]+j + v[i]−j

)
≤ 1,

k∑
i=1

yi ≤ s, (5.19)

d[i]+j + d[i]−j ≤ 1, v[i]±j ≤ d[i]
±
j ,

ni∑
j=1

d[i]+j ≤ yi ni ∀i ∈ [k], j ∈ [ni],

d[i]±j ∈ {0, 1}, v[i]±j ∈ [0, 1] ∀i ∈ [k], j ∈ [ni],

where we used (5.4) to model the sos1-constraints on v[i]±j . The constraints∑k
i=1 yi ≤ s and

∑ni

j=1 d[i]
+
j ≤ yi ni together ensure that at most s blocks con-

tain nonnegative elements, since for at most s blocks, some d[i]+j is allowed to attain
the value 1, so that v[i]+j can be nonzero.

We conducted experiments with the same matrix sizes and sparsity levels as for
the linear and nonnegative NSP. The number of blocks and blocksizes are depicted
in Table 5.6, where {34, 42} means that four blocks of size three and two blocks of
size four were used. Again, we generated five Gaussian random matrices A ∈ Rm×n

with Aij ∼ N (0, 1) for each combination (m,n, s) listed in Table 5.6. For each
random matrix, we test the MIPs (5.17) and (5.18) in two variants: Either the
linearized sos1-constraints or explicit sos1-constraints are used. The setup is exactly
the same as in the previous paragraphs for the linear and the nonnegative NSP.

137

Chapter 5. Computing Recovery Conditions

Table 5.6. Sparsity levels and sizes of the random instances used for evaluating the
MIP formulations of the block-linear and block-linear nonnegative NSP.

#cols n #rows m sparsity s #blocks k blocksizes

20 7 {2, 3} 5 4
15 {3, 5} 6 {34, 42}

40 15 {3, 4} 8 5
25 {5, 7} 10 4

60 15 {4, 6} 10 6
40 {7, 8} 20 3

80 20 {3, 5} 18 {410, 58}
60 {5, 10} 20 4

100
30 {3, 6} 21 {410, 58, 6, 6, 8}
80 5 20 5
80 15 25 4

Table 5.7a lists the number of solved instances within the time limit of one hour
and the shifted geometric means of the number of nodes and the solution time in
seconds. As can be seen, using (5.16) to linearize the objective function solves
more instances within the time limit and reduces the solution time, as well as the
number of used nodes. Moreover, if the sos1-constraints are explicitly added to
SCIP, this improves the performance of both formulations. The number of nodes is
significantly reduced and the solving time is about 20 % faster. However, the same
number of instances can be solved. Interestingly, the fastest formulation (5.18) with
explicit sos1-constraints can solve one instance less than the formulation (5.16) with
linearized sos1-constraints.

Table 5.7b displays the results for the block-nonnegative NSP for the same 100
Gaussian random matrices. Listed are the number of solved instances within the
time limit of one hour as well as the shifted geometric means of the number of nodes
and the solution time in seconds. We solved (5.19) once with the linearized sos1-
constraints and once using explicit sos1-constraints. Clearly, the MIP formulation
of block-nonnegative NSP can be solved significantly faster than the MIP formula-
tion of the block-linear NSP. Moreover, for the block-nonnegative NSP, using the
linearized sos1-constraint is clearly faster. It also uses fewer nodes and solves more
instances than using explicit sos1-constraints. Unfortunately, we could not find a
single matrix satisfying either the block-linear or the block-linear nonnegative NSP.

The findings for the solution times are in line with the results in the previous
paragraph. For the nonnegative NSP and the block-nonnegative NSP, using the
linearized sos1-constraints is more effective, whereas for the linear NSP and the

138

5.1. A MIP Formulation for the NSP

Table 5.7. Results for the MIP formulation of the block-linear and the block-
nonnegative NSP on a testset of 100 Gaussian random matrices.

(a) Block-linear NSP.

formulation #opt #nodes time

MIP (5.17) (linearized sos1) 50 81 319.6 131.0
MIP (5.18) (linearized sos1) 55 68 430.4 115.4
MIP (5.17) (explicit sos1) 50 29 757.2 102.0
MIP (5.18) (explicit sos1) 54 33 537.5 91.0

(b) Block-linear nonnegative NSP.

formulation # opt # nodes time

MIP (5.19) (linearized sos1) 90 2384.0 10.3
MIP (5.19) (explicit sos1) 74 3671.4 18.7

block-linear NSP, explicit sos1-constraints should be used to improve the perfor-
mance. Furthermore, the MIP formulation of the (block-) nonnegative NSP can be
solved significantly faster than the MIP formulation of the (block-) linear NSP.

It would be interesting to investigate whether there also exists an SDP reformula-
tion of the MIP formulation for the nonnegative NSP and the block-linear (nonneg-
ative) NSP, similar to the case of the linear NSP. An exact SDP formulation most
likely would contain a rank1-constraint as well, but dropping this constraint would
give a relaxation which can be used to certify the respective NSP. However, due to
the explicit sign constraint vS ≤ 0 in (NSP≥0) and the block-structure in the block-
linear (nonnegative) NSP, an SDP formulation seems not to be as straight-forward
as in the linear case, where a simple variable change X = xx⊤ was sufficient.

Low-rank Matrix NSP In principle, the same ideas that we used above for the
linear, nonnegative and block-linear (nonnegative) NSP can also be applied to ob-
tain formulations for the null space properties characterizing uniform recovery of
low-rank (positive semidefinite) and block-diagonal (positive semidefinite) matrices.
However, it seems to be difficult to derive an MISDP formulation. This is due to the
fact that the mentioned null space properties for matrix recovery contain conditions
on the eigenvalues (or, in general, singular values) of a matrix in the null space of
the measurement operator. This means, any valid formulation needs to control the
eigenvalues of a matrix but must also ensure that the corresponding matrix is in
the null space. For simplicity of the following considerations, we assume that all
matrices are real symmetric n× n matrices.

139

Chapter 5. Computing Recovery Conditions

For the case of low-rank matrix recovery without any additional side constraint,
the corresponding null space property (NSP∗) is given as

∥λS(V)∥1 < ∥λS(V)∥1 ∀V ∈
(
null(A) ∩ Sn

)
\ {0}, ∀S ⊆ [n], |S| ≤ s, (NSP∗)

where λ(V) denotes the vector of eigenvalues of V , see Example (2.12.3). Using [190,
Theorem A.4], this condition is equivalent to

max
V, Y ∈Sn

{⟨Y, V ⟩F : A(V) = 0, ∥V ∥∗ ≤ 1, ∥Y ∥2 ≤ 1, ∥Y ∥∗ ≤ s} <
1

2
, (5.20)

where ∥Y ∥2 := max {|λi(Y)|} denotes the operator norm of Y , i.e., the largest
eigenvalue in absolute value. Using the Schur complement, the operator norm ∥X∥2
can be written as follows:

∥X∥2 ≤ s ⇔ s2 I−XX⊤ ⪰ 0 ⇔
(
sI X

X⊤ sI

)
⪰ 0. (5.21)

Recht et al. [210, Proposition 2.1] prove that the nuclear and the operator norm are
dual to each other. The proof uses SDP duality and also shows that the nuclear
norm can be computed using one of the following SDPs:

∥X∥∗ = max ⟨X,Y ⟩F = max ⟨X,Y ⟩F = min 1
2

(
tr(W1) + tr(W2)

)
s.t.

(
I Y

Y ⊤ I

)
⪰ 0 s.t. ∥Y ∥2 ≤ 1 s.t.

(
W1 X

X⊤ W2

)
⪰ 0.

Thus, the constraint ∥V ∥∗ ≤ 1 is equivalent to the existence of W1, W2 ∈ Sn
with tr(W1) + tr(W2) ≤ 2 and (

W1 X

X⊤ W2

)
⪰ 0.

The constraint ∥Y ∥∗ ≤ s can be reformulated analogously. By (5.21), the remaining
constraint ∥Y ∥2 ≤ 1 is equivalent to(

I X

X⊤ I

)
⪰ 0.

This shows that (5.20) is a bilinear SDP formulation for the matrix null space
property (NSP∗), which is analogous to the bilinear formulation (5.2) for the NSP
for sparse vectors above. There, we used sos1-constraints for the entries of a vector
to overcome the bilinearity. However, there is no direct analog for matrices, since

140

5.2. An MISDP Formulation for the RIP

there is no natural ordering for the eigenvalues of a matrix, as opposed to the entries
of a vector. Thus, there is no easy way to split a matrix V into two matrices V +

and V − with only positive and negative eigenvalues, respectively, and to ensure that
all eigenvalues of V + and V − are eigenvalues of the original matrix V as well. Of
course, a simple “brute-force” approach to deal with this problem is to explicitly use
the eigenvalue decomposition V = UDU⊤, where U is a orthogonal matrix and D

is a diagonal matrix containing the eigenvalues. This yields the following “trilinear”
problem to compute the null space property (NSP∗):

max

n∑
i=1

(
yi λ

+
i + yi λ

−
i

)
s.t. A(UDU⊤) = 0,

n∑
i=1

yi ≤ s,
n∑

i=1

(
λ+i + λ−i

)
≤ 1,

sos1(λ+i , λ
−
i), λ±i ∈ [0, 1], yi ∈ {0, 1} ∀ i ∈ [n],

U unitary, D = Diag(λ1, . . . , λn).

This is a mixed-integer nonlinear problem (MINLP), which has the matrix entries
of U as well as the eigenvalues of V as variables. Since V = UDU⊤, the entries of V
appear implicitly as variables. For the recovery of low-rank positive semidefinite
matrices and for the recovery of block-diagonal (positive semidefinite) matrices, the
same problem emerges, so that it remains an open question to find an MISDP
formulation without bilinearities for these NSPs.

In the next section, we consider the restricted isometry property, which is an-
other well-known condition that guarantees uniform recovery of sparse vectors by ℓ1-
minimization.

5.2 A Mixed-Integer Semidefinite Programming
Formulation for the Restricted Isometry
Property

As outlined in Chapter 1, null space properties are not the only conditions which
guarantee uniform recovery of sparse vectors using ℓ1-minimization. Another well-
known example of such a condition is the restricted isometry property (RIP). Histor-
ically, the RIP was developed prior to the NSP as a condition for uniform recovery
of sparse vectors. In contrast to the NSP, it is only a sufficient condition for uniform
recovery. In this section, we turn our attention towards the RIP, and consider an
approach to test this condition for a given measurement matrix A. It is known that

141

Chapter 5. Computing Recovery Conditions

this problem can be formulated as an MISDP. In the following, we shortly intro-
duce the RIP and its implications for the recovery of sparse vectors. Afterwards, we
present an MISDP formulation of the RIP, and consider special components that
can be used in the solution process. Numerical experiments for the MISDP formu-
lation of the RIP and the special components are postponed to the next chapter.
There, we introduce several presolving techniques for general MISDPs and evaluate
their impact numerically on various classes of MISDPs with a special focus on the
MISDP formulation of the RIP.

The RIP has been introduced by Candès and Tao in [38, 45], who showed in [38]
that it can be used to guarantee exact uniform recovery of sparse vectors by ℓ1-
minimization. The extension of this result to stable and robust uniform recovery is
due to Candès et al. [39]. An MISDP formulation for computing the RIP has been
obtained by Gally and Pfetsch [111], which builds upon an asymmetric version of
the RIP introduced by Foucart and Lai [103]. Computational results for the MISDP
formulation of the RIP can be found in [111], [145] and in Section 6.6, which is taken
from [174].

Definition 5.2. Let s ≥ 0 be a nonnegative integer. A matrix A ∈ Rm×n satisfies
the restricted isometry property (RIP) of order s with constant δ ≥ 0, if

(1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22 (5.22)

holds for all s-sparse x ∈ Rn, i.e., for all x ∈ Σs := {x ∈ Rn : ∥x∥0 ≤ s}. The
smallest constant δ such that (5.22) holds for all x ∈ Σs is called the s-th restricted
isometry constant (RIC) δs.

Candès [41] obtained the well-known sufficient condition δ2s <
√
2− 1 for stable

and robust uniform recovery of s-sparse vectors using ℓ1-minimization. Since then,
this condition has been refined, improved and modified numerous times, see, e.g.,
the notes at the end of Chapter 6 in [104] for further references. Cai and Zhang [37]
obtained the sharp recovery guarantee δ2s < 1/

√
2 for sparse vectors and also low-

rank matrices.

It is known that the problem of computing the RIC δs is NP-hard, see Tillmann
and Pfetsch [237]. In order to formulate an MISDP to compute the RIC δs for a
given matrix A ∈ Rm×n and a given sparsity level s, it is useful to split the lower
and upper bound in (5.22) into two separate conditions. This leads to the following
lower and upper restricted isometry constants, which were proposed by Foucart and
Lai [103].

142

5.2. An MISDP Formulation for the RIP

Definition 5.3. Let A ∈ Rm×n and s ≥ 0 be a nonnegative integer. The lower and
upper restricted isometry constants αs and βs order s of A are defined as

αs := max {α ≥ 0 : α2∥x∥22 ≤ ∥Ax∥22 ∀x ∈ Σs}, (5.23)

βs := min {β ≥ 0 : β2∥x∥22 ≥ ∥Ax∥22 ∀x ∈ Σs}, (5.24)

respectively. The quotient γs := β2
s/α

2
s for αs ̸= 0 is called the restricted isometry

ratio (RIR).

The lower/upper RIC from Definition 5.3 is a generalization of the RIC from
Definition 5.2, since a RIC of δs implies that the RIR is at most (1+δs)/(1−δs), and
a lower/upper RIC αs and βs, respectively, implies a RIC δs = max {1−α2

s, β
2
s −1}.

Foucart and Lai [103] show the corresponding sufficient condition γ2s ≤ 4
√
2− 3 for

uniform recovery.
By scaling the vector x ∈ Σs to be of unit norm, the (squared) lower and upper

RIC in (5.23) and (5.24) can be equivalently written as

α2
s = min {∥Ax∥22 : ∥x∥22 = 1, ∥x∥0 ≤ s}, (5.25)

β2
s = max {∥Ax∥22 : ∥x∥22 = 1, ∥x∥0 ≤ s}. (5.26)

Let x⋆ be an optimal solution of either of the two problems and S = supp(x⋆)

be its support with k := ∥x⋆∥0. Consider the submatrix AS ∈ Rm×k indexed by
columns in S. Then Ã = A⊤

SAS ∈ Rk×k is symmetric positive semidefinite. By the
Rayleigh-Ritz theorem (see, e.g., , Horn and Johnson [130, Thm. 4.2.2]) we have

max
y∈Rk

{∥Ãy∥22 : ∥y∥22 = 1} = λmax(Ã)
2,

min
y∈Rk

{∥Ãy∥22 : ∥y∥22 = 1} = λmin(Ã)
2,

(5.27)

i.e., computing the lower and upper RIC as defined in (5.23) and (5.24) are sparse
eigenvalue problems, which are of interest in their own regard. Moreover, the prob-
lem (5.26) is also known as sparse principal component analysis (SPCA), which
has been widely studied in the literature as well. Since this is not the topic of
this thesis, we only refer to Zou et al. [258], where SPCA was introduced, and to
Bertsimas et al. [24] for a problem-specific approach to solve SPCA at scale. Note
that [174, Appendix A.4] also shows that the lower and upper RICs as defined
in (5.25) and (5.26) are in fact sparse eigenvalue problems.

An MISDP Formulation for the RIP Recall that X ⪰ 0 denotes that the matrix X
is symmetric and positive semidefinite. Moreover, Sn denotes the set of symmet-

143

Chapter 5. Computing Recovery Conditions

ric n × n matrices. Consider the semidefinite lifting X = xx⊤, which is equivalent
to X ⪰ 0 and rank(X) = 1. By using this lifting, the formulation of the lower and
upper RIC α2

s and β2
s in (5.25) and (5.26) can be written as the following rank-1

constrained SDP:

max /min ⟨A⊤A,X⟩F
s.t. tr(X) = 1, ∥vec(X)∥0 ≤ s2, X ⪰ 0, rank(X) = 1,

where vec(X) denotes the vectorization of the matrix X, that is, the vector obtained
by concatenating all columns of X into a vector. The rank-constraint implies that
every optimal solution X∗ satisfies X∗ = x∗(x∗)⊤ for a vector x∗ ∈ Rn. The ℓ0-
constraint ∥vec(X)∥0 ≤ s2 can be modeled by introducing binary variables zi. Then,
we arrive at the following formulation, which is due to Gally and Pfetsch [111]:

max /min ⟨A⊤A,X⟩F (5.28a)

s.t. tr(X) = 1, (5.28b)

− zj ≤ Xij ≤ zj for i, j ∈ [n], (5.28c)
n∑

i=1

zi ≤ k, (5.28d)

X ⪰ 0, (5.28e)

rank(X) = 1, (5.28f)

z ∈ {0, 1}n. (5.28g)

This is an MISDP formulation for computing the upper and lower RIC α2
s and β2

s .
The additional rank-constraint on X can be dropped without losing exactness of
the formulation, since in [111] (and Li and Xie [157] as well as Bertsimas et al. [24])
it is proved that there exists an optimal rank-1 solution X∗. Thus, X∗ = x∗(x∗)⊤

for some x∗ ∈ Rn with ∥x∗∥0 ≤ k. Let S = supp(x∗). Then x∗S is an eigenvector
for a maximal or minimal eigenvalue of A⊤

SAS , depending on the objective sense,
see (5.27). Moreover, in [111] it is also shown that the bounds in (5.28c) can be
strengthened to

− 1
2zj ≤ Xij ≤ 1

2zj (5.29)

for all i ̸= j ∈ [n]. However, the bounds on the diagonal entries Xii cannot be
tightened.

For a discussion of MISDPs, we refer to the subsequent Chapter 6. There, several
presolving routines for general MISDPs are introduced and solution approaches for
general MISDPs are reviewed. The presolving methods are numerically tested on

144

5.3. Special Components for the MISDP Formulation of the RIP

five different classes of MISDPs, among them the MISDP (5.28) for testing the
RIP. In the next section, we instead present special methods that can applied or
exploited when solving the MISDP (5.28) for testing the RIP. A numerical evaluation
of the presented methods also follows in Chapter 6 together with the analysis of the
introduced presolving methods.

5.3 Special Components for the MISDP
Formulation of the RIP

Now we consider special components for solving the MISDP formulation (5.28) of the
lower and upper RIC α2

s and β2
s . The content of this section is based on unpublished

joint work with Marc E. Pfetsch.

Complete Description of the Feasible Set One interesting question is whether
one can describe the convex hull of the feasible set. For this define

S :=
{
(X, z) ∈ Sn+ × [0, 1]n : tr(X) = 1,

n∑
i=1

zi ≤ k, 0 ≤ Xii ≤ zi ∀ i ∈ [n]
}
,

which is the relaxation of (5.28). Note that since Xii = 0 implies Xij = 0 for
all j ∈ [n], the constraints −zj ≤ Xij ≤ zj are implied by 0 ≤ Xii ≤ zi, so that they
can in principle be omitted. The integer hull of S is

SI := conv
{
(X, z) ∈ Sn+ × {0, 1}n : tr(X) = 1,

n∑
i=1

zi ≤ k, 0 ≤ Xii ≤ zi ∀ i ∈ [n]
}
.

In general, we have S ̸= SI : If k = 1, then all off-diagonals have to be zero in SI ,
but not necessarily in S. In order to prove S ̸= SI in the general case k ≥ 2 the
valid inequality in the next lemma will be used. We define the set

C :=
{
(X, z) ∈ Sn+ × {0, 1}n : tr(X) = 1,

n∑
i=1

zi ≤ k, 0 ≤ Xii ≤ zi ∀ i ∈ [n]
}
.

(5.30)

Furthermore, we use the short notation
∑

i ̸=j to denote a sum which ranges over
all (i, j) ∈ [n]× [n] with i ̸= j.

145

Chapter 5. Computing Recovery Conditions

Lemma 5.4. Let (X, z) ∈ C, where C is defined as in (5.30). Then

−k + 1 ≤
∑
i ̸=j

Xij ≤ k − 1. (5.31)

Proof. For i, j ∈ [n], let v = ei − ej ∈ Rn. Then, because X ⪰ 0, we get

0 ≤ v⊤Xv = Xii +Xjj − 2Xij ⇔ 2Xij ≤ Xii +Xjj . (5.32)

Define I = {(i, j) ∈ [n] × [n] : i ̸= j, Xii ̸= 0, Xjj ̸= 0}. Then, summing all
off-diagonal positions (i, j) ∈ [n]× [n] with i ̸= j yields

∑
i ̸=j

Xij =
∑

(i,j)∈I

Xij ≤
∑

(i,j)∈I

1
2 (Xii +Xjj) =

1
2

n∑
i=1

∑
j:(i,j)∈I

(
Xii +Xjj

)
=

n∑
i=1

∑
j:(i,j)∈I

Xii ≤ (k − 1)

n∑
i=1

Xii = k − 1,

where the first inequality is due to (5.32). The third equality follows, since (i, j) ∈ I
implies (j, i) ∈ I as well, and the last inequality uses that at most k diagonal entries
of X are nonzero. Finally, the last equality is due to tr(X) = 1. Using X ⪰ 0 and
v = ei + ej ∈ Rn yields

0 ≤ v⊤Xv = Xii +Xjj + 2Xij ⇔ 2Xij ≥ −
(
Xii +Xjj).

Then, as above,∑
i̸=j

Xij =
∑

(i,j)∈I

Xij ≥
∑

(i,j)∈I

− 1
2

(
Xii +Xjj

)
≥= −k + 1.

Using Lemma 5.4, we can show S ̸= SI for k ≥ 2.

Lemma 5.5. Let 2 ≤ k ≤ n− 1 and

ẑ :=
[

k
k+1 , . . . ,

k
k+1︸ ︷︷ ︸

k+1

, 0, . . . , 0
]⊤
, X̂ :=

(
1

k+11k+1 0n−k−1

0k+1 0n−k−1

)
,

where 1k and 0k are all-one resp. all-zero matrices of dimension k × k. Then
(X̂, ẑ) ∈ S, but (X̂, ẑ) /∈ SI .

Proof. By definition, we have (X̂, ẑ) ∈ SI , if there exists a convex combina-
tion in terms of (X, z) ∈ C. If X̂ is written as convex combination of matri-

146

5.3. Special Components for the MISDP Formulation of the RIP

ces X ∈ C, then X̂ also needs to satisfy the bounds in (5.31) by Lemma 5.4.
However,

∑
i ̸=j X̂ij = k, so that X̂ /∈ SI .

Note that after adding the inequality
∑

i̸=j Xij ≤ k − 1 to (5.28), Corollary 2.32
in [110] shows that there still exists an optimal rank-1 solution X∗ of (5.28). How-
ever, if we add another valid inequality then we might lose this property. Conse-
quently, dropping the rank-constraint would no longer yield an exact RIP formula-
tion, but only a relaxation.

Nonnegativity by the Perron-Frobenius Theorem If the matrix A is component-
wise nonnegative, we can apply the Perron-Frobenius theorem.

Theorem 5.6 (Perron-Frobenius Theorem, see Gantmacher [115, Chapter 2,
Thm. 3]). A nonnegative matrix A has a nonnegative maximal eigenvalue λ ≥ 0.
The corresponding eigenvectors have nonnegative entries.

Recall that the problem of computing the lower and upper RIC α2
s and β2

s are
sparse eigenvalue problems, see (5.25) and (5.26). Thus, Theorem 5.6 implies the
following.

Lemma 5.7. Let A ≥ 0 componentwise. Then, there exists an optimal solution x∗

of max {∥Ax∥22 : ∥x∥22 = 1, ∥x∥0 ≤ s} which has nonnegative entries.

Proof. Let x∗ be an optimal solution of max {∥Ax∥22 : ∥x∥22 = 1, ∥x∥0 ≤ s}
with S = supp(x∗). By (5.27), x∗S is an eigenvector for a maximal eigenvalue of
the symmetric positive semidefinite matrix A⊤

SAS . Either x∗S ≥ 0 componentwise,
or there exists another maximal eigenvalue with a corresponding nonnegative eigen-
vector x̃S by Theorem 5.6. Setting x̃S to zero outside of S yields the vector x̃, which
is an optimal solution of max {∥Ax∥22 : ∥x∥22 = 1, ∥x∥0 ≤ s} as well.

This implies that we can restrict X ≥ 0 when computing the upper RIC β2
s and

write
0 ≤ Xij ≤ zj for i, j ∈ [n]

instead of (5.28c) if A ≥ 0 componentwise. Since Lemma 5.7 only holds for the
maximization problem (5.26), but not the minimization problem (5.25), adding the
constraint Xij ≥ 0 if A ≥ 0 is not feasible for computing the lower RIC α2

s.

Sparsification of Eigenvector Cuts In general, MISDPs can be solved by branch-
and-bound algorithms, where in each node, either an SDP or an LP relaxation is
solved, see Section 6.1 for a brief description. If the LP relaxation is used, then the

147

Chapter 5. Computing Recovery Conditions

positive semidefiniteness constraint needs to be ensured by adding linear cuts. Such
cuts, which are called eigenvector cuts, can be generated by using eigenvectors to
negative eigenvalues of the current relaxation solution. If X∗ is a relaxation solution
which is not positive semidefinite, let v∗ be an eigenvector to a negative eigenvalue
of X∗. Then,

(v∗)⊤Xv∗ ≥ 0

is a valid linear inequality, which cuts X∗ off, see Section 6.1 for more details. These
inequalities are typically dense, i.e., they contain many nonzero coefficients. It is
known that adding dense cuts can lead to stronger relaxations, but also increases the
time needed to solve them, whereas sparse cuts can result in significant performance
increases, see, e.g., Dey and Molinaro [63]. Moreover, Blekherman et al. [27] show
that the cone of positive semidefinite matrices can be well-approximated by k × k
minors, which motivates to employ k-sparse eigenvector cuts. Such sparse eigen-
vector cuts for the MISDP (5.28) can be obtained by exploiting that the original
formulation (5.24) and (5.25) are sparse eigenvalue problems, as already done in
Lemma 5.7 in order to derive nonnegativity of X if A ≥ 0 componentwise. Sparsi-
fying eigenvector cuts has been considered by Qualizza et al. [207], and computing
multiple sparse eigenvector cuts directly has been proposed by Dey et al. [64]. Both
papers mainly considered SDP relaxations of quadratic problems, but the technique
proposed in [64] can also be applied for the MISDP formulation (5.28) for the RIP
to generate sparse eigenvector cuts.

The main idea is to repeatedly compute a single sparse eigenvector cut with
support set I. This cut is not added, but used to obtain eigenvector cuts for the
submatrix restricted to the support set I. These cuts are automatically as sparse as
the original sparse cut. However, the authors in [64] empirically observe that using
only one support set has no significant effect on the performance. Thus, they propose
an iterative procedure that varies the considered support set. This is achieved by
subtracting the rank-1 matrix formed by the computed sparse eigenvector and the
corresponding unit norm eigenvalue from the current matrix. Afterwards, a sparse
eigenvector cut for the updated matrix is computed, which possibly leads to a new
support set J . This procedure is shown to terminate in a finite number of iterations,
see [64, Lemma 3]. In order to solve the sparse eigenvalue problem, the Truncated
Power Method (TPower) by Yuan and Zhang [255] can be used. This method is
an efficient heuristic with theoretical guarantees for computing the largest sparse
eigenvalue, that is, the largest eigenvalue so that the corresponding eigenvector is
sparse.

For the RIP problem, it is meaningful to use the sparsity level of the lower and
upper RIC as desired sparsity for the eigenvector cuts. In the numerical experiments

148

5.3. Special Components for the MISDP Formulation of the RIP

in the next chapter, we will see that this significantly speeds up the solution time
for the LP-based branch-and-bound approach.

Minimization Variant In the following, we show that the problems of computing
the lower and upper RIC are equivalent in the sense that the minimization problem
in (5.25) for the lower RIC can be transformed into an instance of the maximization
problem (5.26) for the upper RIC.

Lemma 5.8. The problem (5.25) for computing the lower RIC can be transformed
to an instance of the problem (5.26) for computing the upper RIC.

Proof. Define λ := λmax(A
⊤A). Since A⊤A is positive semidefinite, we have λ ≥ 0.

Then we can rewrite (5.25) as

min
x∈Rn

{x⊤A⊤Ax : ∥x∥22 = 1, ∥x∥0 ≤ x}

= min
x∈Rn

{x⊤(A⊤A− λ I)x+ λx⊤x : ∥x∥22 = 1, ∥x∥0 ≤ k}

= min
x∈Rn

{x⊤(A⊤A− λ I)x : ∥x∥22 = 1, ∥x∥0 ≤ k}+ λ

= λ− max
x∈Rn

{x⊤(λ I −A⊤A)x : ∥x∥22 = 1, ∥x∥0 ≤ k}.

The matrix λ I −A⊤A is positive semidefinite, since

v⊤(λ I −A⊤A)v = λv⊤v − v⊤A⊤Av︸ ︷︷ ︸
≤λ v⊤v

≥ 0

for all v ∈ Rn. Thus, there exists Â with Â⊤Â = λ I − A⊤A. Then solving
Problem (5.26) with Â instead of A yields the value of (5.25).

As a consequence of this theorem, also the problem of computing the lower RIC
is equivalent to the sparse PCA problem. However, the matrix λ I−A⊤A is usually
not nonnegative, so that Theorem 5.6 cannot be applied.

A numerical evaluation of the presented methods will follow at the end of the next
chapter, which treats presolving techniques for general MISDPs. The impact of the
introduced presolving methods is tested on different MISDPs, among them the RIP-
formulation (5.28), so that it is meaningful to evaluate the special components for
the RIP introduced in this section also in combination with the general presolving
techniques. This evaluation is conducted in in Section 6.6.4.

149

CHA PTER 6
Presolving for Mixed-Integer

Semidefinite Optimization

In the last chapter, we have introduced a mixed-integer semidefinite program to test
whether a given measurement matrix satisfies the RIP and thus allows for uniform
recovery of sufficiently sparse vectors x ∈ Rn. Moreover, we discussed several prop-
erties of this MISDP formulation. In general, different approaches to solve MISDPs
based on branch-and-bound methods are known, which are shortly introduced in
Section 6.1. However, few additional techniques that can be exploited throughout
the solution process have been investigated in the literature. This motivates to
search for presolving or propagation routines, similar to the MIP case, where such
techniques are widely applied with overwhelming success. Thus, we introduce sev-
eral methods that can be used for presolving for and propagation in general MISDPs
in this chapter. All proposed methods are implemented in the general MISDP solver
SCIP-SDP [220] and we will evaluate these methods numerically. The content of
this chapter is taken from the preprint [174], which is accepted for publication in an
international journal, and is joint work with Marc E. Pfetsch.

Presolving is one of the cornerstones of generic mathematical optimization solvers.
It changes an instance into an equivalent one that is hopefully easier to solve. This
can often be achieved by removing variables or constraints as well as tightening
coefficients or bounds of variables. As in the literature, we use the terms presolving
and preprocessing interchangeably.

In SCIP [219], which employs a branch-and-bound approach, presolving is ap-
plied in rounds before the solution process starts. In each round of this so-called
root node presolving, various methods are tried. These methods include general
techniques and also techniques for specific types of constraints such as linear con-

151

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

straints. Presolving ends if a limit of rounds is reached or if a round did not find
any further deductions such as tighter bounds or removed variables or constraints.
Using more than one round for presolving implies that the methods influence each
other. If a constraint is added, the next round may take this new constraint into
account and find further reductions. Consequently, using several presolving tech-
niques may lead to simplifications of the problem which could not have been deduced
by one of the techniques alone. Moreover, presolving not only happens before the
solution process starts, but also within the branch-and-bound tree. Whenever a
node is finished and the algorithm moves to a new node, so-called node presolving
is applied for the relaxation within this node. Since this relaxation typically differs
slightly from the relaxation of its parent nodes, it is meaningful to apply presolving.
For all constraints which can be handled by SCIP, such as linear constraints, the
same presolving as in SCIP is automatically applied by SCIP-SDP as well, since
SCIP-SDP builds upon SCIP. However, this does not include presolving for SDP
constraints. In this chapter, we introduce several new presolving techniques which
specifically take the SDP constraint into account.

If the underlying solution process can in principle result in an exponential runtime
behavior, such presolving can have an impressive impact. For instance, Bixby and
Rothberg [26] report a slowdown factor of 10.8 when solving MIPs with disabled
root node presolving for CPLEX 8.0; this factor was confirmed by Achterberg and
Wunderling [3] for CPLEX 12.5. For mixed-integer nonlinear programs (MINLPs),
Puranik and Sahinidis [205] demonstrate the importance of presolving and bound
tightening: using presolving significantly speeds up the solution process and in-
creases the number of solved instances within the time limit for the solvers BARON,
COUENNE, and SCIP. It turns out that bound tightening is essential for strength-
ening relaxations of nonconvex problems. Note that the instances in all of these
publications come from publically available benchmark libraries and are quite di-
verse and generic. Indeed, presolving is very useful for instances that have been
generated by modeling languages. The impact of presolving of course depends on
the particular instances and might be less effective for instances that come from a
less generic source or are tuned (“presolved”) by humans.

In this chapter, we consider general MISDPs of the form:

inf b⊤y

s.t.
m∑

k=1

Ak yk −A0 ⪰ 0,

ℓi ≤ yi ≤ ui ∀ i ∈ [m],

yi ∈ Z ∀ i ∈ I,

(6.1)

152

with symmetric matrices Ak ∈ Sn for k ∈ [m]0 := {0, . . . ,m}, b ∈ Rm, and
bounds ℓi ∈ R ∪ {−∞} as well as ui ∈ R ∪ {∞} for all i ∈ [m] := {1, . . . ,m}.
The set of indices of integer variables is given by I ⊆ [m]. Recall that for a symmet-
ric matrix M ∈ Sn, the notation M ⪰ 0 indicates that M is positive semidefinite.
We use the notation A(y) :=

∑m
k=1A

k yk −A0 for y ∈ Rm throughout this chapter.
Note that in some applications, e.g., reformulations of combinatorial optimization
problems, it is more natural to have a positive semidefinite matrix variable X ⪰ 0,
which leads to an equivalent “primal” version of (6.1). In the following remark we
outline the equivalence and also explain how to reformulate an MISDP in one form
into the other. Our presentation and implementation in the solver SCIP-SDP (see
below in Section 6.1), however, is based on the form in (6.1).

Remark 6.1. Apart from the so-called “dual” form (6.1) of an MISDP, one can also
consider the corresponding “primal” form:

sup ⟨A0, X⟩F
s.t. ⟨Ai, X⟩F = bi ∀ i ∈ [m],

Lij ≤ Xij ≤ Uij ∀ i, j ∈ [n],

Xij ∈ Z ∀ (i, j) ∈ I × I,
X ⪰ 0,

(6.2)

where ⟨A,B⟩F is the Frobenius inner product defined in (1.1). The bounds are given
by Lij ∈ R ∪ {−∞}, Uij ∈ R ∪ {∞} for all i, j ∈ [m].

We note that (6.1) and (6.2) are equivalent: Indeed, starting from (6.1), one can
define Z =

∑n
i=1A

i yi −A0. The “primal” variables are

X =

(
Z 0

0 Diag(y)

)
∈ R(n+m)×(n+m),

where Diag(y) denotes a diagonal matrix containing y on the diagonal (possibly y has
to be split into two nonnegative variables). The n2 equations Z =

∑n
i=1A

i yi −A0

can then be written in the form ⟨Bi, X⟩F = di for appropriate matrices Bi and
scalars di, i ∈ [n2].

Conversely, given (6.2), using the Gauss algorithm on the equations ⟨Ai, X⟩F = bi,
one can express the n2 variables in X by introducing r := n2 − m variables y as
X =

∑r
i=1B

i yi−B0 with appropriate matrices Bi, i ∈ [r]0. In both directions, the
objective and variable bounds can be chosen appropriately. These transformations
often simplify for particular problems. Besides, the relaxations of (6.1) and (6.2)
are dual to each other, i.e., the relaxation of (6.1) provides an upper bound for the
relaxation of (6.2).

153

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

While for specific types of MISDPs, several presolving methods are known, this
chapter focuses on presolving for generic MISDPs. We introduce several new tech-
niques and provide a computational evaluation of different variants. Often these
methods can be seen as a generalization of presolving for mixed-integer programs.
We note that several methods that we describe can be performed in node presolving
as well. In particular, this includes propagation of variable bounds, i.e., tightening
of some variable bounds based on the bounds of other variables.

This chapter is structured as follows. Section 6.1 starts with a description of so-
lution approaches for (6.1) and reviews the literature on presolving techniques for
MIPs. Furthermore, known and easy presolving methods for MISDPs are mentioned.
We then present several valid linear inequalities in Section 6.2. These can be added
during presolving and are then used for further presolving steps. In Section 6.3,
we turn our attention to presolving based on 2 × 2 minors of positive semidefi-
nite matrices A(y). This involves variable bounds derived separately from upper
bounds on diagonal and off-diagonal entries. As a next step, we present a method
to tighten variable bounds in Section 6.4. We prove that iteratively applying this
bound tightening converges to a best bound, which can also be computed by solving
a single SDP (Section 6.4.1). Such a best bound is the tightest bound which holds
for any solution of the MISDP. Instead of solving the possibly large SDP to compute
a best bound we furthermore show that each single bound tightening application
corresponds to an SDP with one variable, which can be solved using a semismooth
Newton method, see Section 6.4.2. With similar techniques, one can also compute
the tightest scaling of the constraint matrices Ak that does not change the feasible
region; this generalizes coefficient tightening, see Section 6.5. Then, as one of the
main contributions of this chapter, our computational results in Section 6.6 compare
the different presolving methods and their combination. The results show that, for
the considered instances, presolving in the root node has limited effect, but node
presolving – and bound tightening in particular – can result in a significant speed-up
of up to 22% in comparison to no presolving. Moreover, on one hand, presolving
has a different impact on different types of instances. On the other hand, since the
methods only take a negligible amount of time, they can easily be applied without
much overhead. In conclusion, the techniques investigated in this chapter provide a
very good basis for future applications of generic MISDP.

6.1 Presolving and MISDPs – An Overview

We start with a brief review of the three main techniques for solving (6.1):
1. SDP-based branch-and-bound: One can adapt the general nonlinear branch-

and-bound process, as already proposed by Dakin [58] in 1965, by branching

154

6.1. Presolving and MISDPs – An Overview

on fractional variables and solving SDPs in each node. Two of the first solvers
based on this idea are YALMIP [160] and SCIP-SDP [220], see the next
paragraph for details on SCIP-SDP, and Gally et al. [112] for an analysis of
subproblem properties in the tree.

2. LP-based branch-and-bound: The second technique was proposed by Sherali
and Fraticelli [223], see also Krishnan and Mitchell [148]. It applies a linear
programming based cutting-plane algorithm for solving the continuous sub-
problems in each node of the tree while branching on fractional variables, see
the subsequent paragraph for more details. This LP-based approach is also
implemented in SCIP-SDP (see Mars [173] and Gally [110] for computational
results) and YALMIP. A corresponding convergence analysis was performed
by Kobayashi and Takano [145].

3. Outer approximation: Outer approximation, proposed by Duran and Gross-
mann [80], was investigated for mixed-integer conic problems by Lubin
et al. [164] and is implemented in the solver Pajarito [54]. We will not in-
vestigate this approach in this chapter, but will present results for the first
two.

Notes on SCIP-SDP All the techniques that will be presented in this chapter, have
been implemented in version 4.0 of the solver SCIP-SDP, which is a framework for
solving mixed-integer semidefinite programs of the form (6.1). It is publically avail-
able at https://wwwopt.mathematik.tu-darmstadt.de/scipsdp/ and is based on
SCIP, available at https://scipopt.org/.

SCIP-SDP was initiated by Sonja Mars and Lars Schewe, see Mars [173], and
then continued by Gally et al. [112] and Gally [110]. It features interfaces to the SDP
solvers DSDP, MOSEK [181], and SDPA [254]. Major work has been put into the
improvement of SCIP-SDP by Marc E. Pfetsch and the author of this thesis dur-
ing the preparation of the material on presolving for MISDPs. In particular, all of
the presolving routines that are introduced in this chapter have been implemented.
On top of that, several further changes and additions, which are not connected to
presolving have been conducted, which led to version 4.0 of SCIP-SDP. SCIP-
SDP 4.0 contains about 50 000 lines of C-code, most of which have been touched
since the last version 3.2. For a description of the many further changes and im-
provements for SCIP-SDP 4.0, see the corresponding section in the release report of
SCIP 8 [25]. We remark that we slightly relaxed the feasibility and optimality toler-
ances in SCIP-SDP 4.0. Table 6.1 shows a comparison between SCIP-SDP 3.2 and
4.0 on the same testset as used by Gally et al. [112] which consists of 194 instances.
Reported are the number of optimally solved instances, as well as the shifted geo-
metric means of the number of processed nodes and the CPU time in seconds. We

155

https://wwwopt.mathematik.tu-darmstadt.de/scipsdp/
https://scipopt.org/

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

Table 6.1. Performance comparison of SCIP-SDP 4.0 vs. SCIP-SDP 3.2 on a
testset of 194 instances.

#opt #nodes time

SCIP-SDP 3.2 185 617.3 42.9
SCIP-SDP 4.0 187 497.3 26.6

use MOSEK 9.2.40 [181] for solving the continuous SDP relaxations. The tests
were performed on a Linux cluster with 3.5 GHz Intel Xeon E5-1620 Quad-Core
CPUs, having 32 GB main memory and 10 MB cache. All computations were run
single-threaded and with a time limit of one hour. The conclusion from these re-
sults is that SCIP-SDP 4.0 has significantly improved since the last version. In the
remaining parts of this chapter, our implementation always refers to SCIP-SDP.

Notes on the LP-based Approach When solving general MISDPs of the form (6.1)
with a cutting-plane approach, the positive semidefiniteness of A(y) needs to be
enforced through linear cuts. To do so, it is possible to use the following character-
ization of positive semidefiniteness:

m∑
k=1

Ak yk −A0 ⪰ 0 ⇔ v⊤A(y) v = v⊤
(m∑

k=1

Ak yk −A0
)
v ≥ 0 ∀ v ∈ Rn.

Thus, if a given relaxation solution y∗ violates the SDP constraint A(y∗) ⪰ 0, there
exists v∗ ∈ Rn with (v∗)⊤A(y∗) v∗ < 0. Consequently, the valid linear inequality

(v∗)⊤
(m∑

k=1

Ak yk −A0
)
v∗ ≥ 0

cuts the relaxation solution y∗ off. These cuts are sometimes called eigenvector cuts
or eigencuts, since a simple choice for v∗ is an eigenvector for the smallest eigenvalue
of A(y∗), which is negative if the SDP constraint is violated. Of course, it is also
possible to directly add several eigenvector cuts, for example, one for each negative
eigenvalue of A(y∗).

In SCIP-SDP, there are two possibilities to add eigenvector cuts. The first variant
separates eigenvector cuts during the solution of the LP relaxation, that is, eigen-
vector cuts are added whenever a feasible solution of the LP relaxation does not
satisfy the positive semidefiniteness constraint. This setting will be denoted by LPA
in our experiments. The second variant, denoted by LPE, only enforces eigenvector
cuts, that is, these cuts are only added, if an optimal solution of the LP relaxation

156

6.1. Presolving and MISDPs – An Overview

satisfies the integrality constraints, but still violates the positive semidefiniteness
constraint (a “lazy-cut” approach).

Although it is not the focus of this chapter, let us comment on the computations
by Kobayashi and Takano [145] who compare the SDP-based approach in SCIP-
SDP with their own implementation of two algorithms using an LP-based approach.
The best performing method in [145] is to use LP relaxations in which eigenvalue
cuts are only generated if all integer variables attain integral values (the lazy-cut
approach). This method is quite similar to our method of only enforcing integral
solutions (LPE-MIX2), see Section 6.6. The results of our computations differ in
several aspects from [145]: For the LP-based approach, it is faster to also separate
eigenvector cuts for fractional solutions and not only for integer valued solutions.
Our implementation based on SDP relaxations is much faster on average than the
LP-based approach. Note that in [145] an older version of SCIP-SDP with DSDP
was used on the NEOS server. Here, we compare on the same machines, use an
improved implementation, and use MOSEK as an SDP solver. Moreover, we test
on similar but larger instances compared to [145], see Section 6.6.1.

Finally, let us remark that an approximation of SDPs by linear inequalities may
need to be very large in the worst case, as shown in the next corollary by com-
bining results from the literature. This is in contrast to second-order cone pro-
grams, for which ε-approximate extended formulations of polynomial size in the
input and log(1/ε) exist, see Ben-Tal and Nemirovski [22].

Corollary 6.2. There are SDPs of dimension n × n for which any polyhedral ap-
proximation is of size 2Ω(n).

Proof sketch. Braun et al. [32] proved that one may need polyhedral extended for-
mulations with extension complexity 2Ω(n) to construct tight approximations of the
feasible regions of SDPs in Rn×n. The proof is based on constructing instances
whose nonnegative rank is 2Ω(n). Moreover, as shown by Braun et al. [33], the
nonnegative rank deviates from the minimal number of inequalities in a polyhedral
description in the original dimension n× n by at most 1.

Literature Overview

We first note that SDP relaxations can be preprocessed to improve their numerical
stability, for example by facial reduction techniques, see, e.g., Permenter and Par-
rilo [198, 199], Permenter et al. [200]. However, such features so far have neither
been implemented into the SDP solver MOSEK, which we use in our computations,
nor in our code.

157

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

In the following literature review, we concentrate on presolving techniques for
problems containing integer variables, since this is the main focus of this chapter.

For MIPs, many presolving methods are known, see for instance Brearley et al. [34]
and Crowder et al. [57]. We note that details are not needed for understanding the
contributions of this chapter. We will, however, add some pointers to MIP-presolving
techniques later and refer to the following literature for more information. An
overview and new techniques were presented by Savelsbergh [217] and for a more
recent overview, see Mahajan [168]. Achterberg [1] discusses the implementation
of presolving in detail. Further recent contributions are introduced in Achterberg
et al. [4] and Gemander et al. [117]. The last three publications describe the meth-
ods implemented in the framework SCIP. Presolving is even more important for
MINLPs, see, e.g., Vigerske [249], Belotti et al. [20], Vigerske and Gleixner [250],
and Puranik and Sahinidis [205].

Several presolving methods for MISDPs have been proposed by Mars [173], Gally
et al. [112], and Gally [110]; we explain the most relevant ones in the following. Be-
yond the mentioned references, we are not aware of any other presolving techniques
for MISDPs.

Standard Presolving

Several known presolving steps are (relatively) straightforward to perform. For in-
stance, possibly present linear inequalities in (6.1) can be presolved as for MIPs (see
above for references). The following basic MISDP-specific methods have been intro-
duced by Mars [173, Section 3.3.2] and partly extended by Gally [110]: Fixed vari-
ables can be removed by appropriately adjusting the constant matrix A0. Similarly,
(multi-)aggregated variables, i.e., variables that affinely depend on other variables,
can be substituted, possibly adjusting the affected matrices Ak, k ∈ [m]0. Further-
more, one can check whether all matrices Ak for k ∈ [m]0 are diagonal. In this case,
the SDP constraint A(y) ⪰ 0 can be replaced by corresponding linear inequalities.
All these steps are automatically performed in our implementation.

Further presolving steps treat rather rare cases and are therefore not implemented:
Zero matrices Ak and their corresponding variables yk can be removed. Moreover,
duplicate constraints A(y) ⪰ 0 or duplicated blocks within A(y) ⪰ 0 can be detected
and removed. Redundant constraints A(y) ⪰ 0 can be detected in several special
cases, e.g., if all variables are binary, all Ak, k ∈ [m], are positive semidefinite and A0

is negative semidefinite. If m = 1 in the SDP constraint A(y) ⪰ 0, i.e., there is only
one variable, the feasible region is an interval (see Section 6.4.2); thus, the SDP con-
straint can be removed and the variable bounds can be adjusted. Furthermore, if all
matrices Ak, for k ∈ [m]0, contain the same 0 rows and columns, the dimension can

158

6.2. Linear Inequalities Implied by the SDP Relaxation

be reduced. This last step is automatically performed in our implementation, each
time an instance is passed to an SDP solver. Furthermore, Mars [173, Section 3.3.2]
discusses methods to detect block structures in the SDP constraint. Under certain
conditions, one can also apply dual presolving. For example, if for some k ∈ [m] the
matrix Ak is positive semidefinite and disjoint from the rest (i.e., Ak has no com-
mon nonzero with the other matrices), one can fix yk to its upper or lower bound,
depending on the objective coefficient.

More expensive presolving includes so-called probing, see, e.g., Savelsbergh [217].
Probing tentatively fixes binary variables to 0 and 1 and then checks whether prop-
agation of variable bounds leads to infeasibilities. If this happens, one can fix the
binary variable to the opposite value. Moreover, implications between binary vari-
ables can be detected. Probing is automatically performed in our implementation,
but the propagation methods often do not seem to be strong enough to allow for
many probing reductions. One further method is optimality based bound tightening
(OBBT) in which one maximizes/minimizes variables over a relaxation of the prob-
lem to determine lower and upper variable bounds, see, e.g., Gleixner et al. [120] for
a recent variant. This method was adapted for MISDPs by Gally [110] and usually
reduces the number of nodes in the tree, but increases running times. It is therefore
not considered in the following. Dual fixing is a node presolving method, which is a
generalization of reduced cost fixing, and is always used in our implementation, see
Gally et al. [112].

We finally note that node presolving has secondary effects. For instance, it affects
conflict analysis, which in this context summarizes techniques that derive so-called
conflict constraints, i.e., linear, set covering or more general disjunctive constraints,
based on the information that a certain node in the branch-and-bound tree is in-
feasible. We refer to Achterberg [2], Witzig [251] and Witzig et al. [252] for more
information. If SDP relaxations are used, the generated conflicts only arise from
the so-called conflict graph analysis, which applies if the infeasibility of the node
has been determined by propagation of variable bounds. Preliminary computations
showed that this does not significantly change the performance. In the LP-based
approach, however, conflict analysis also uses LP infeasibility proofs and seems to
have a negative impact, see the results in Section 6.6.

6.2 Linear Inequalities Implied by the SDP
Relaxation

The following inequalities are known from the literature and can be added to (6.1) as
linear inequalities. All these inequalities are implied by the SDP relaxation of (6.1),

159

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

but might be useful for standard presolving with respect to linear constraints or
when solving a linear relaxation.

• Mars [173, Section 3.3.2] observed that the constraint A(y) ⪰ 0 implies that
the diagonal entries of A(y) are nonnegative (Diagonal Greater equal Zero,
DGZ), i.e., for all i ∈ [n]:

m∑
k=1

(Ak)ii yk − (A0)ii ≥ 0. (DGZ)

• If Ak
ii = Ak

jj = 0 for all k ∈ [m] and A0
iiA

0
jj ≥ 0 for some i ̸= j ∈ [n], then

the following inequality based on products of 2× 2 minors (2-Minor Product,
2MP) is valid, see Gally [110, Prop. 5.11]:

m∑
k=1

Ak
ij yk ≥ A0

ij −
√
A0

iiA
0
jj . (2MP)

Furthermore, if exactly one Ak
ij ̸= 0, then this yields upper or lower bounds for

the corresponding variable yk, depending on the sign of Ak
ij . Further similar

inequalities can be found in Gally [110, Prop. 5.13].

We also obtain the following slight generalization of the “diagonal-zero-implication
cuts (DZI)” introduced by Gally [110], based on an observation of Mars [173]. These
inequalities build on the presence of integral variables.

Lemma 6.3. Let i, j ∈ [n] with i ̸= j and A0
ij ̸= 0 as well as A0

ii ≥ 0. If Ak
ij = 0

for all k ∈ [m], Ak
ii = 0 for all continuous variables k ∈ [m] \ I, and ℓk ≥ 0 for all

integer variables k ∈ I, the following inequality is valid:∑
k∈I:
Ak

ii>0

yk ≥ 1. (DZI)

Proof. Any y feasible for (6.1) satisfies A(y) ⪰ 0 and therefore also A(y)ii ≥ 0 as
well as A(y)jj ≥ 0. The 2× 2 minor w.r.t. i, j yields A(y)ii ·A(y)jj − (A(y)ij)

2 ≥ 0.
By assumption A(y)ij = A0

ij ̸= 0. This implies that A(y)ii ·A(y)jj > 0 and therefore
A(y)ii > 0 (and A(y)jj > 0). Since Ak

ii = 0 for all k ∈ [m]\I and ℓk ≥ 0 for all k ∈ I,
we obtain:

0 < A(y)ii =

m∑
k=1

Ak
ii yk −A0

ii =
∑
k∈I

Ak
ii yk −A0

ii ≤
∑
k∈I:
Ak

ii>0

Ak
ii yk −A0

ii.

160

6.3. Presolving Techniques Based on 2 by 2 Minors

Since A0
ii ≥ 0, this implies that at least one variable yk with k ∈ I and Ak

ii > 0 has
to be positive, i.e., at least 1.

Another family of valid inequalities are the so-called 2-Minor Linear Constraints
(2ML), which are a special case of eigenvector cuts (see Section 6.1). For a positive
semidefinite matrix Z ⪰ 0, these inequalities are given by

Zii + Zjj − 2Zij ≥ 0, (6.3)

Zii + Zjj + 2Zij ≥ 0. (6.4)

They are obtained by restricting to the 2 × 2 minor w.r.t. i and j and multiplying
from left and right by (1,−1)⊤ and (1, 1)⊤, respectively. If Z = A(y), we obtain for
the first inequality

m∑
k=1

Ak
ii yk −A0

ii +

m∑
k=1

Ak
jj yk −A0

jj − 2
(m∑

k=1

Ak
ij yk −A0

ij

)
≥ 0

⇔
m∑

k=1

(
Ak

ii +Ak
jj − 2Ak

ij

)
yk ≥ A0

ii +A0
jj − 2A0

ij ,

(2ML)

and similarly for the second inequality. As above, these inequalities are implied by
the SDP constraint A(y) ⪰ 0, but might be used for propagation. Of course, any
other eigenvector cut is also a valid inequality, but constraints (2ML) are relatively
easy and sparse, at least in primal form (6.3) and (6.4).

6.3 Presolving Techniques Based on 2 × 2 minors

In this section, we develop methods that are based on taking 2 × 2 minors of a
positive semidefinite matrix.

Using Bounds on the Diagonal

Lemma 6.4. Consider Z ⪰ 0 with 0 ≤ Zii ≤ Uii for all i ∈ [n]. Then

−
√
Uii Ujj ≤ Zij ≤

√
Uii Ujj (6.5)

holds for all i, j ∈ [n].

Proof. Since Z is positive semidefinite, we have ZiiZjj − Z2
ij ≥ 0. Rewriting this

inequality yields Z2
ij ≤ ZiiZjj ≤ Uii Ujj . Taking the square root gives the claim.

161

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

Remark 6.5.

• The bounds in Lemma 6.4 are tight, even for a rank-1 matrix Z: consider the
rank-1 all-ones matrix.

• Inequality (6.3) yields Zij ≤ 1
2 (Zii +Zjj) ≤ 1

2 (Uii +Ujj). This derived bound
is dominated by (6.5), because

Zij ≤
√
Uii · Ujj ≤ 1

2

(
Uii + Ujj

)
,

using the inequality between the arithmetic and geometric mean.

Lemma 6.4 can partly be translated to the matrix pencil format A(y) by defining

Ũij :=
∑

k∈[m]:Ak
ij>0

Ak
ij uk +

∑
k∈[m]:Ak

ij<0

Ak
ij ℓk −A0

ij . (6.6)

Thus, for any ℓ ≤ y ≤ u, we have A(y)ij ≤ Ũij . This directly yields the following
lemma.

Lemma 6.6. For any solution y ∈ Rm of (6.1), we have

−
√
Ũii Ũjj ≤ A(y)ij ≤

√
Ũii Ũjj (6.7)

for all i, j ∈ [n].

The downside of Inequalities (6.7) is that they can be quite weak if A(y)ij depends
on many variables. We therefore concentrate on the case in which each entry A(y)ij
depends on one variable only, that is, there exists k = k(i, j) ∈ [m] such that
A(y)ij = Ak

ij yk −A0
ij with Ak

ij ̸= 0. In this case, Inequalities (6.7) are equivalent to

−
√
Ũii Ũjj +A0

ij

Ak
ij

≤ yk ≤

√
Ũii Ũjj +A0

ij

Ak
ij

, (PropUB)

if Ak
ij > 0 and similarly if Ak

ij < 0. If k ∈ I, i.e., variable yk is integral, the lower
bound can be rounded up and the upper bound down. In our implementation, these
inequalities are used in presolving and possibly for propagation of variable bounds
in every node, which is denoted by Propagate Upper Bounds (PropUB). Again, since
Inequalities (PropUB) are valid for the SDP relaxation, integral variables have to
be present or a linear relaxation has to be solved in order for Inequalities (PropUB)
to be computationally useful.

162

6.3. Presolving Techniques Based on 2 by 2 Minors

By using trace constraints, one can also compute different bounds on the off-
diagonal elements as follows; this slightly strengthens [111, Lemma 1].

Lemma 6.7. Consider Z ⪰ 0 with tr(Z) ≤ α. Then

−α
2 ≤ Zij ≤ α

2 (6.8)

holds for all i, j ∈ [n] with i ̸= j.

Proof. Since Z ⪰ 0, again we have Z2
ij ≤ ZiiZjj . By the trace constraint and the

fact that the diagonal entries are nonnegative, Zii +Zjj ≤ α. Moreover, we obtain:

Zii Zjj ≤ Zii(α− Zii) = αZii − Z2
ii.

Taking the derivative and equating 0 yields a maximal point Z⋆
ii =

α
2 . Consequently,

Z2
ij ≤ Zii Zjj ≤ αZ⋆

ii − (Z⋆
ii)

2 = α2

2 −
α2

4 = α2

4 .

Taking the square root shows the claim.

Inequalities (6.8) can again be transferred to A(y) ⪰ 0, but with the same dis-
advantages. Therefore, we only use these inequalities in the case that A(y)ij only
depends on a single variable. As before, integrality of variables can be exploited for
rounding the bounds.

Using Bounds on the Off-Diagonal

We now derive affine inequalities that depend on 2× 2 minors. The following result
is motivated by and generalizes the special case in Nohra et al. [189].

Lemma 6.8. Consider a positive semidefinite matrix Z ∈ Sn+ with L ≤ Z ≤ U ,
where the inequalities are meant componentwise. Then for all i and j ∈ [n]:

Ujj Zii ≥ 2Lij Zij − L2
ij and Ujj Zii ≥ 2Uij Zij − U2

ij . (6.9)

Proof. We first obtain

(Zij − Lij)
2 ≥ 0 ⇔ Z2

ij ≥ 2Lij Zij − L2
ij .

The 2 × 2 minor for i and j gives Zjj Zii − Z2
ij ≥ 0. Together with Zii ≥ 0, this

yields
2Lij Zij − L2

ij ≤ Z2
ij ≤ Zjj Zii ≤ Ujj Zii.

163

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

The second inequality arises similarly.

Remark 6.9.

• Inequalities (6.9) are implied by the SDP constraint, so that they can only
be useful when solving LPs or for integral variables. Moreover, assume that
Lij < 0 and Uij > 0, which is typical for i ̸= j. Then these inequalities
are nontrivial, that is, the right-hand-side is nonnegative, if Zij ≤ Lij/2 and
Zij ≥ Uij/2, respectively.

• Note that cuts like (6.3) or (6.4) do not take the lower and upper bounds into
account. Thus, Inequalities (6.9) might further strengthen an LP relaxation.

• However, if we use Zii ≤ Uii, the last inequality in (6.9) yields (if Uij > 0):

Zij ≤
Ujj Uii + U2

ij

2Uij
. (6.10)

The right hand-side is stronger than Zij ≤ Uij if Uii Ujj ≤ U2
ij . If U is pos-

itive semidefinite, this never happens. Thus, Inequalities (6.9) are preferable
over (6.10).

We transfer Inequalities (6.9) to the form A(y) ⪰ 0 as in Lemma 6.6. For the
second inequality in (6.9), we obtain:

2 Ũij A(y)ij − Ũjj A(y)ii ≤ Ũ2
ij

⇔
m∑

k=1

2 Ũij A
k
ij yk −

m∑
k=1

Ũjj A
k
ii yk ≤ Ũ2

ij +

m∑
k=1

2 Ũij A
0
ij −

m∑
k=1

Ũjj A
0
ii,

(2MV)

where Ũij and Ũjj are defined as in (6.6). These inequalities are referred to as
2-Minor Variable Bounds (2MV).

A particular case in which Inequalities (6.9) might be useful arises in SDP re-
laxations of quadratic programs, see Lovász and Schrijver [162] or Luo et al. [165],
or in truss topology optimization, see (TTD). A quadratic program in the vari-
able x can be transformed into an SDP by introducing a matrix variable X and
replacing X = xx⊤. Thus, a quadratic term xQx⊤ with a matrix Q is equivalent
to ⟨Q,X⟩F, which is linear in X. In order to obtain an SDP, the exact nonconvex
equality X = xx⊤ is relaxed to X − xx⊤ ⪰ 0. By using the Schur complement, this
is equivalent to (

t x⊤

x X

)
⪰ 0.

164

6.4. Bound Tightening Based on SDP Constraints

Corollary 6.10. Consider (X,x, t) ∈ Rn×n ×Rn ×R satisfying(
t x⊤

x X

)
⪰ 0, ℓ ≤ x ≤ u, ℓ(t) ≤ t ≤ u(t),

where t is a scalar variable. Then for all i ∈ [n]:

u(t)Xii ≥ 2 ℓi xi − ℓ2i and u(t)Xii ≥ 2ui xi − u2i .

6.4 Bound Tightening Based on SDP Constraints

In this section, we investigate how SDP constraints A(y) ⪰ 0 can be used to tighten
variable bounds. For an index k ∈ [m], define

Pk := {i ∈ [m] \ {k} : Ai ⪰ 0}, Nk := {i ∈ [m] \ {k} : Ai ⪯ 0},

as well as

µ
k
:=

inf
{
µ : Ak µ+

∑
i∈Pk

Ai ui +
∑
j∈Nk

Aj ℓj −A0 ⪰ 0
}

if
ui <∞, i ∈ Pk,

ℓi > −∞, i ∈ Nk,

−∞ otherwise,
(6.11)

µk :=

sup

{
µ : Ak µ+

∑
i∈Pk

Ai ui +
∑
j∈Nk

Aj ℓj −A0 ⪰ 0
}

if
ui <∞, i ∈ Pk,

ℓi > −∞, i ∈ Nk,

+∞ otherwise.
(6.12)

Both µ
k

and µk might be ±∞, even if all bounds are finite, for instance, if Ak is
negative or positive definite, respectively. Moreover, both might be simultaneously
finite. The two SDPs in (6.11) and (6.12) only contain a single variable and can be
solved with the technique discussed in Section 6.4.2 below.

The following lemma shows that the lower or upper bounds of the variables can
be tightened, depending on the semidefiniteness of the coefficient matrices. This
procedure is denoted by TB in our experiments.

Lemma 6.11 (Tighten Bounds (TB)). Let all Ak, k ∈ [m], be positive or negative
semidefinite. Then, A(y) ⪰ 0 implies that µ

k
≤ yk ≤ µk for all k ∈ [m]. Finite

bounds can be rounded for integral variables.

165

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

Proof. Suppose that yk < µ
k

or yk > µk. Then, by definition of µ
k

and µk, there
exists x ∈ Rn with

0 > x⊤
(
Ak yk +

∑
i∈Pk

Ai ui +
∑
i∈Nk

Ai ℓi −A0
)
x

= x⊤Akx yk +
∑
i∈Pk

x⊤Aix︸ ︷︷ ︸
≥0

ui +
∑
i∈Nk

x⊤Aix︸ ︷︷ ︸
≤0

ℓi − x⊤A0x

≥ x⊤Akx yk +
∑
i∈Pk

x⊤Aix yi +
∑
i∈Nk

x⊤Aix yi − x⊤A0x

= x⊤
(m∑

i=1

Ai yi −A0
)
x,

which is a contradiction to A(y) ⪰ 0. Thus, µ
k
≤ yk ≤ µk.

Remark 6.12.
• The conditions of Lemma 6.11 are frequently fulfilled for instances that we

consider later in the numerical experiments in Section 6.6; namely for 75 out
of 185 instances in our testset, all matrices Ak are positive semidefinite, see
Section 6.6.1. If some matrices are indefinite, a derivation of valid bounds is
currently unknown.

• It is easy to include lower and upper bounds ℓk and uk, respectively, into
bound tightening by adding the constraint ℓk ≤ µ ≤ uk to (6.11) and (6.12).
This makes the problems bounded if the bounds are finite, see Section 6.4.2.

• If all Ak, k ∈ [m]0, are diagonal matrices, A(y) ⪰ 0 specializes to a linear
inequality a⊤y − a0 ≥ 0 with a ∈ Rm and a0 ∈ R. If ak > 0, we obtain

yk ≥ µk =
1

ak

(
a0 −

∑
i:ai>0
i ̸=k

ai ui −
∑

j:aj<0

aj ℓj

)
,

which is linear bound tightening, i.e., Lemma 6.11 generalizes the linear case.
• We note that Inequalities (6.5) are implied by Lemma 6.11. This can be

seen as follows: Assume that we have a matrix Z ⪰ 0 with some finite lower
bounds L ∈ Rn×n (the exact values are not important, but they make (6.12)
finite). Write Z =

∑n
i,j=1E

ij Zij ⪰ 0, where Eij ∈ Rn×n is 0 except for
positions (i, j) and (j, i), where it is 1. Then the optimal value µ̄ of (6.12)
for variable Zij yields that the 2 × 2 minor for i and j is nonnegative, i.e.,
Uii Ujj − µ̄2 ≥ 0, which is (6.5). In comparison to the bounds of Lemma 6.11,
the ones in (6.5) (or (6.7)) can be computed more efficiently and depend on
fewer variable bounds.

166

6.4. Bound Tightening Based on SDP Constraints

6.4.1 Convergence of Bound Tightening

Lemma 6.11 can be applied iteratively and we investigate the convergence of this
process. We assume that all coefficient matrices Ak, k ∈ [m], are positive or nega-
tive semidefinite and that the initial bounds ℓ(0) and u(0) are finite for all variables.
Moreover, in each iteration, we incorporate the bounds ℓ and u obtained in the pre-
vious iteration (or the initial bounds for the first iteration) in (6.11) and (6.12) by
using max {ℓ, µ(ℓ, u)} and min {u, µ(ℓ, u)}. Thus, (6.11) and (6.12) always yield fi-
nite bounds. The analysis in this section uses similar arguments as Belotti et al. [19].

Let µ(ℓ, u) and µ(ℓ, u) ∈ Rm be the lower and upper bounds derived from
Lemma 6.11 for each variable, where the constraint ℓk ≤ µ ≤ uk is incorporated
into (6.11) and (6.12). Define the interval set I := {(ℓ, u) ∈ Rn ×Rn : ℓ ≤ u} with
the following ordering for (ℓ, u), (ℓ′, u′) ∈ I:

(ℓ, u) ≤I (ℓ′, u′) ⇔ ℓ′ ≤ ℓ, u ≤ u′.

Thus, if (ℓ, u) ≤I (ℓ′, u′), then the bounds (ℓ, u) are at least as tight as (ℓ′, u′). Let

F : I → I, (ℓ, u) 7→
(
max {ℓ, µ(ℓ, u)},min {u, µ(ℓ, u)}

)
,

where min/max is applied componentwise. Thus, F represents one step of bound
tightening according to Lemma 6.11, making sure that the bounds do not get weaker.

Lemma 6.13. F is a contraction, i.e., F (ℓ, u) ≤I (ℓ, u) for all (ℓ, u) ∈ I, and
monotone, i.e., (ℓ, u) ≤I (ℓ′, u′) implies F (ℓ, u) ≤I F (ℓ

′, u′).

Proof. By definition of the max and min operations, F is a contraction. For mono-
tonicity, we concentrate on the upper bounds (the lower bounds are similar). Let
f(ℓ, u) := min {u, µ(ℓ, u)} and similarly for f(ℓ′, u′). Assume for a contradiction
that (ℓ, u) ≤I (ℓ′, u′) (and thus ℓ′ ≤ ℓ, u ≤ u′), but µ := f(ℓ, u)k > f(ℓ′, u′)k =: µ′

for some k ∈ [m]. Thus, the matrix Ak µ+
∑

i∈Pk
Ai u′i +

∑
j∈Nk

Aj ℓ′j − A0 is not
positive semidefinite by definition of µ′. Therefore, there exists x ∈ Rn with

0 > x⊤
(
Ak µ+

∑
i∈Pk

Ai u′i +
∑
i∈Nk

Ai ℓ′i −A0
)
x

= x⊤Akxµ+
∑
i∈Pk

x⊤Aix︸ ︷︷ ︸
≥0

u′i +
∑
i∈Nk

x⊤Aix︸ ︷︷ ︸
≤0

ℓ′i − x⊤A0x

≥ x⊤Akxµ+
∑
i∈Pk

x⊤Aixui +
∑
i∈Nk

x⊤Aix ℓi − x⊤A0x

= x⊤
(
Ak µ+

∑
i∈Pk

Ai ui +
∑
i∈Nk

Ai ℓi −A0
)
x,

167

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

which is a contradiction to the last matrix in parentheses being positive semidefinite
by definition of µ = min {uk, µ(ℓ, u)k}.

Theorem 6.14. The operator F has a unique greatest fixed point gfix(F), defined
as gfix(F) := sup {(ℓ, u) ∈ I : (ℓ, u) ≤I F (ℓ, u)}.

Proof. Note that I forms a complete lattice. We always have F (ℓ, u) ≤I (ℓ, u),
since F is a contraction. Thus, the interval set {(ℓ, u) ∈ I : (ℓ, u) ≤I F (ℓ, u)} con-
tains all fixed points. The result then follows by the Knaster-Tarski Theorem [234],
see, e.g., Fritz [106, Theorem 20.4].

As in [19], we define the size |(ℓ, u)| of the interval (ℓ, u) ∈ I as
∑m

i=1 ui − ℓi.
Then [19] shows that |gfix(F)| ≥ |(ℓ, u)| for all fixed points (ℓ, u) of F . Thus,
gfix(F) is the solution of

max
{
|(ℓ, u)| : (ℓ, u) ≤I F (ℓ, u), (ℓ, u) ≤I (ℓ(0), u(0))

}
,

where (ℓ(0), u(0)) denote the initial bounds. This can be written as the following
SDP:

max

m∑
i=1

ui − ℓi

s.t. Ak ℓk +
∑
i∈Pk

Ai ui +
∑
j∈Nk

Aj ℓj −A0 ⪰ 0 ∀k ∈ [m],

Ak uk +
∑
i∈Pk

Ai ui +
∑
j∈Nk

Aj ℓj −A0 ⪰ 0 ∀k ∈ [m],

ℓ(0) ≤ ℓ, u ≤ u(0), ℓ ≤ u.

(6.13)

Let (ℓ⋆, u⋆) be an optimal solution of (6.13). Then this solution is a fixed point:
By the constraints, we have ℓ⋆ ≥ µ and u⋆ ≤ µ. Thus, these bounds would not be
tightened by F . Moreover, let {(ℓk, uk)} be the sequence of bounds produced by
iteratively applying F as long as this changes some bounds. Since F is monotone,
the interval size |(ℓk, uk)| is decreasing. Thus, the sequence {(ℓk, uk)} will converge
to the optimal solution (ℓ⋆, u⋆).

In our implementation, we iteratively apply Lemma 6.11 as long as this changes
bounds of variables, instead of solving the SDP (6.13), because (6.13) is quite ex-
pensive to solve. Moreover, we can round bounds of integer variables after each
iteration. Note that rounding for integer variables complicates the analysis of fixed
points. Indeed, Bordeaux et al. [29] show that deciding the existence of an integral
fixed point is NP-complete.

As we shall see, bound tightening is often successful deeper in the tree using
bounds tightened by other components of the solver.

168

6.4. Bound Tightening Based on SDP Constraints

6.4.2 Computing Tightening Scalings

While in the linear case the values µ
k

and µk can be computed easily, in the general
case, it amounts to solving an SDP with one variable. For this, let us rewrite (6.11)
and (6.12) in the presence of scalar lower and upper bounds ℓ and u, respectively,
objective direction γ ∈ {±1}, and appropriate A, B ∈ Rn×n as

µ⋆ := inf {γ µ : µA−B ⪰ 0, ℓ ≤ µ ≤ u}. (6.14)

Problem (6.14) can be solved in different ways. In fact, there are several special
cases in which (6.14) – with infinite bounds – is easy to solve, for instance, if A = 0 or
B = 0. If A is positive definite, there exists an invertible matrix V with V ⊤AV = In,
where In is the n×n identity matrix. It is then easy to see that µ⋆ = λmax(V

⊤BV),
the maximal eigenvalue of V ⊤BV . If there exists µ̂ with µ̂A − B ≻ 0, Pong and
Wolkowicz [203] as well as Jiang et al. [134] ([203] cites Lancaster and Rodman [152])
describe an algorithm based on Cholesky decomposition; these articles arise in the
context of generalized trust region problems. In one final special case, the matrices A
and B are simultaneously diagonizable. Then, there exists an invertible matrix V

with V ⊤(µA − B)V = µC − D, where C and D are diagonal matrices. After
computing this decomposition, Problem (6.14) is easy to solve.

Here, we are interested in the general case of Problem (6.14). Inspired by Stra-
bić [231] and Higham et al. [129], we consider a semismooth Newton method. We
state and prove the following for completeness.

Lemma 6.15. Let A, B ∈ Sn. Then, the function f : R→ R, µ 7→ λmin(µA− B)

is concave and hence continuous.

Proof. For a symmetric matrix C ∈ Sn, the variational characterization of the
minimal eigenvalue reads λmin(C) = min {x⊤Cx : ∥x∥2 = 1}, see also (5.27). Thus,
for C, D ∈ Sn,

λmin(C +D) = min
∥x∥2=1

x⊤(C +D)x

≥ min
∥x∥2=1

x⊤Cx+ min
∥x∥2=1

x⊤Dx = λmin(C) + λmin(D).
(6.15)

In order to show concavity of f , let α ∈ [0, 1] and µ1, µ2 ≥ 0. Then, by using (6.15),

f
(
αµ1 + (1− α)µ2

)
= λmin

(
α(µ1A−B) + (1− α)(µ2A−B)

)
≥ λmin

(
α(µ1A−B)

)
+ λmin

(
(1− α)(µ2A−B)

)
= α f(µ1) + (1− α) f(µ2).

169

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

Lemma 6.15 implies that Problem (6.14) is convex. Moreover, if the optimal value
of (6.14) is finite, it is attained: Otherwise, assume γ = 1 and that there exists a
sequence (µk) of feasible points with µk → µ⋆, where µ⋆ is the value of (6.14). Since
f is continuous, we obtain f(µk) → f(µ⋆) and hence f(µ⋆) ≥ 0, i.e., µ⋆ is feasible.
Moreover, the following lemma shows how to obtain supergradients for (6.14).

Lemma 6.16. Let µ̂ ∈ R and v̂ be a unit eigenvector for λmin(µ̂ A − B). Then
v̂⊤Av̂ is a supergradient, i.e.,

λmin(µA−B) ≤ λmin(µ̂ A−B) + (µ− µ̂) v̂⊤Av̂

for all µ ∈ R. In particular, if v̂⊤Av̂ = 0, then λmin(µ̂ A−B) is maximal.

Proof. Since v̂ is a unit eigenvector for λmin(µ̂ A−B), we have

λmin(µ̂ A−B) = v̂⊤(µ̂ A−B)v̂.

This implies

v̂⊤(µA−B)v̂ = v̂⊤(µ̂ A−B)v̂ + (µ− µ̂) v̂⊤Av̂
= λmin(µ̂ A−B) + (µ− µ̂) v̂⊤Av̂,

where µ ∈ R. Using the variational characterization of the minimal eigenvalue yields
λmin(µA−B) ≤ v̂⊤(µA−B)v̂, since v̂ has unit norm. This concludes the proof.

Algorithm 3 provides the details of the resulting semismooth Newton method for
solving Problem (6.14) for the case γ = 1; the algorithm for γ = −1 is very similar.
Furthermore, the following considerations explain the crucial steps of Algorithm 3.

• In the case of Step 3, we use Lemma 6.16 for µ̂ = u, v̂ = w to get

λmin(µA−B) ≤ λ︸︷︷︸
<0

+(µ− u)︸ ︷︷ ︸
≤0

v̂⊤Av︸ ︷︷ ︸
>0

< 0

for every µ. Therefore, the problem is infeasible.
• In Step 7, if λ > 0, then µ = ℓ is feasible and clearly the optimal solution.
• In Step 10, we have λ < 0 and v⊤Av ≤ 0. Again using Lemma 6.16 for µ̂ = ℓ

and v̂ = v, we obtain

λmin(µA−B) ≤ λ︸︷︷︸
<0

+(µ− ℓ)︸ ︷︷ ︸
≥0

v̂⊤Av︸ ︷︷ ︸
<0

< 0

for all µ, and the problem is infeasible.

170

6.4. Bound Tightening Based on SDP Constraints

• Step 14 computes µk+1 such that λk + (µk+1 − µk)(v
k)⊤Avk = 0, i.e., the

eigenvalue estimation via Lemma 6.16 becomes 0 (this is akin to the Newton
iteration).

• Note that because of the while conditions, the sequence (µk) is strictly
monotonously increasing.

Remark 6.17. We can apply general convergence theory, for instance, Theo-
rem 7.5.3 in [93] (see also Qi and Sun [206]), which proves that the semismooth
Newton method converges Q-superlinearly to a zero µ⋆ of f(µ) = λmin(µA − B),
given that the derivative ∂f(µ⋆) = (vk)⊤Avk is nonsingular and the starting point
lies near µ⋆. Since f is concave, f is semismooth and the theorem can be applied.

Algorithm 3: Semismooth Newton method
Input: Matrices A and B, scalar lower and upper bounds ℓ < u
Output: Solution of min {µ : µA−B ⪰ 0, ℓ ≤ µ ≤ u} or “infeasible”

1 compute unit eigenvector w for minimal eigenvalue λ of Au−B;
2 if λ < 0 and w⊤Aw > 0 then
3 return “infeasible”;
4 end
5 compute unit eigenvector v for minimal eigenvalue λ of Aℓ−B;
6 if λ ≥ 0 then
7 return ℓ;
8 end
9 if v⊤Av ≤ 0 then

10 return “infeasible”;
11 end
12 µ0 ← ℓ, λ0 ← λ, v0 ← v, k ← 0;
13 while λk < 0 and (vk)⊤Avk > 0 do
14 µk+1 = µk − λk

(vk)⊤Avk ;
15 if µk+1 > u then
16 break;
17 end
18 compute unit eigenvector vk+1 for minimal eigenvalue λk+1 of

Aµk+1 −B;
19 k ← k + 1;
20 end
21 if λk < 0 then
22 return “infeasible”
23 end
24 return µk

171

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

As noted above, since we start with µ0 = ℓ, after Steps 7 and 10, the sequence
(µk) is strictly monotonously increasing. Therefore, the process always globally
converges. However, if ∂f(µk) or ∂f(µ⋆) becomes singular, we cannot rely on Q-
superlinear convergence.

6.5 Coefficient Tightening Based on SDP
Constraints

Apart from tightening variable bounds, an SDP constraint A(y) ⪰ 0 can also be used
to scale individual matrices Ak, which is demonstrated in this section. In the linear
case, tightening the coefficients of a linear inequality involving integer variables is
used to reduce the number of fractional solutions to this constraint, whereas the
feasible integral solutions remain unchanged. Moreover, it may lead to a stronger
continuous relaxation. In order to tighten coefficients in an SDP constraint A(y) ⪰ 0,
define

µ̃k = min {µ : Ak µ−A0 ⪰ 0, ℓk ≤ µ ≤ uk}

and µ̂k = min {µ̃k, 1} for k ∈ [m]. The following lemma describes a way to “tighten”
matrices Ak, which we denote by TM in our experiments.

Lemma 6.18 (Tighten Matrices (TM)). Let Ak ⪰ 0 for all k ∈ [m], and let ℓk ≥ 0

for all k ∈ [m]. Furthermore, let yk ∈ {0, 1} for all k ∈ I, i.e., assume all integer
variables are binary variables. Then, for all y ∈ Rm with ℓ ≤ y ≤ u:

A(y) ⪰ 0 ⇔
m∑

k=1

µ̂k A
k yk −A0 ⪰ 0,

where we define µ̂k = 1 for k /∈ I.

Proof. First assume that
∑m

k=1 µ̂k A
k yk − A0 ⪰ 0. Since Ak ⪰ 0 and ℓk ≥ 0 for

all k ∈ [m] by assumption, we get 0 ≤ µ̂k ≤ 1. Then for all x ∈ Rn

0 ≤ x⊤
(m∑

k=1

µ̂k A
k yk−A0

)
x =

m∑
k=1

µ̂k x
⊤Akx yk︸ ︷︷ ︸

≥0

−x⊤A0x ≤ x⊤
(m∑

k=1

Ak yk−A0
)
x,

which implies that A(y) ⪰ 0.
We now assume that A(y) ⪰ 0. By removing terms with yk = 0 for k ∈ I, we

can assume that yk = 1 for all k ∈ I. Thus,
∑

k∈I A
k +

∑
k/∈I A

k yk − A0 ⪰ 0.
Since Ak ⪰ 0 and ℓk ≥ 0 for all k ∈ [m] by assumption,we get 0 ≤ µ̂k ≤ 1. If

172

6.6. Computational Experiments

µ̂k = 1 for all k ∈ I then the statement is directly clear, since µ̂k = 1 for k /∈ I by
definition. Therefore assume that there exists k ∈ I with µ̂k = µ̃k < 1. Without
loss of generality assume further that µ̂j = 1 for all j ∈ I \ {k}. But then already
µ̂k A

k − A0 ⪰ 0. Since yj ≥ ℓj ≥ 0 and µ̂j = 1 for all j ∈ [m] \ {k} by assumption,
we have µ̂jA

jyj ⪰ 0 for all j ∈ [m] \ {k}. Thus, adding these terms yields

µ̂k A
k −A0 +

∑
j∈[m]\{k}

µ̂j A
j yj ⪰ 0,

which shows the claim.

Remark 6.19. In the linear case with a linear inequality a⊤y − a0 ≥ 0, where
a ∈ Rn

+, a0 ∈ R, and the variables y are binary, coefficient tightening would
tighten coefficient aj to min {aj , a0}. If aj > a0 ≥ 0, then µ̃j = a0/aj < 1. Thus,
Lemma 6.18 would change coefficient aj to µ̃j · aj = a0, i.e., the same tightening.
In this sense, Lemma 6.18 generalizes coefficient tightening from the linear case, see
also Remark 6.12.

6.6 Computational Experiments

In this section, we empirically demonstrate the impact of the presented presolving
routines for the SDP-based branch-and-bound approach and the LP-based cutting-
plane approach.

We use SCIP-SDP 4.0 for solving the MISDPs, where all the routines men-
tioned in the previous sections are implemented. SCIP-SDP interfaces with
SCIP 7.0.4 [114], and we use MOSEK 9.2.40 [181] for solving the continuous
SDP relaxations in the SDP-based approach. The continuous LP relaxations in the
cutting-plane approach are solved using SoPlex 5.0.2. All tests were performed
on a Linux cluster with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs with 32 GB
main memory and 10 MB cache. The computations were run single-threaded and
with a time limit of one hour.

6.6.1 Instances

We use a testset consisting of 185 instances for different applications, which are
very briefly described in the subsequent paragraphs. Namely, 43 instances are Car-
dinality Least Squares (CLS) problems, 32 instances are Min-k-Partitioning (MkP)
problems, 38 instances are Truss Topology Design (TTD) problems, and 46 instances
are RIP problems. Moreover, there are 26 random MISDPs in the testset. These
applications (with the exception of random MISDPs) are described in more detail in

173

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

Table 6.2. Overview over problem characteristics in the testset used for evaluating
the presolving techniques.

variables SDP LP

application # Ak ⪰ 0 continuous binary #blocks blocksizes #constraints

(CLS) 43 24 1 64 – 128 1 63 – 367 1
(MkP) 32 0 0 276 – 2415 1 24 – 70 24 – 70
(RIP) 46 0 465 – 2485 30 – 70 1 30 – 70 1802 – 9802
(RND) 26 13 60 – 120 60 – 120 1 60 – 120 0
(TTD) 38 38 0 27 – 384 1 16 – 44 0 – 127

total 185 75 0 – 2485 30 – 2415 1 16 – 367 0 – 9802

Gally [110]. Moreover, the RIP problem has already been treated in Definition 5.2.
For 24 CLS problems, all 38 TTD problems, and 13 random MISDPs, all matri-
ces Ak are positive semidefinite. Thus, for these 75 instances, the two tightening
procedures from Section 6.4 can be applied. Note that the random MISDPs and the
RIP instances in our testset are larger than the random MISDPs and RIP instances
used by Kobayashi and Takano [145]. Table 6.2 provides a short overview over the
problem sizes of the instances within the testset, ordered by type. The first column
lists the application and the second column displays the number of instances for the
respective application. The third column presents the number of instances of the
respective application for which all coefficient matrices Ak ⪰ 0. The subsequent
columns list the minimal and maximal number of continuous and binary variables,
SDP-blocks, blocksizes of the SDP-blocks, and the number of LP constraints among
all instances of the application, respectively. We remark that Table 6.2 lists the sizes
of the instances after standard presolving of SCIP has been performed, e.g., linear
constraints representing variable bounds have been eliminated and the bounds of
the variables have been adapted accordingly. Most importantly, this did not include
any of the MISDP presolving techniques introduced in this chapter.

Cardinality Constrained Least Squares Given is a data set with d features, a
matrix A ∈ Rm×d, whose rows represent sample points for the features, and a
vector b ∈ Rm which contains the corresponding measurements. The goal in classical
linear regression is to fit weights x ∈ Rd so that Ax approximates b best, i.e.,
∥Ax−b∥2 is minimized. Since in many applications, only few of the features influence
the measurements, a sparsity constraint on x can be imposed. For a fixed sparsity
level k ∈ N, the (regularized) cardinality constrained least squares problem then
reads

inf
x∈Rd

{
1
2∥Ax− b∥

2
2 +

1
2ρ∥x∥

2
2 : ∥x∥0 ≤ k

}
,

174

6.6. Computational Experiments

where 1
2ρ∥x∥

2
2 is a regularization term for a given positive ρ ∈ R. Pilanci et al. [201]

showed that this problem is equivalent to the following MISDP:

inf τ

s.t.

(
Im + 1

ρ A Diag(z)A⊤ b

b⊤ τ

)
⪰ 0,

d∑
j=1

zj ≤ k, z ∈ {0, 1}d.

(CLS)

We note that Bertsimas and Van Parys [23] present a very effective method to solve
an equivalent convex formulation. We nevertheless add CLS instances to our testset,
since they have distinctive features and complement the other problem types. We
used a subset of the instances in [110], namely, 19 of the 20 instances based on
real-world data and 24 of the 45 randomly generated instances. See [110, Chapter
3.5] for details on the generation of these instances, which are completely dense.

Minimum k-Partitioning Given is an undirected graph G = (V,E) with n nodes,
edge-weights c : E 7→ R, and a positive integer k ≥ 2. The minimum k-partitioning
problem seeks to find a partitioning of V := {1, . . . , n} into k sets V1, . . . , Vk such
that

k∑
i=1

∑
e∈E[Vi]

c(e)

is minimized. We use an MISDP formulation that is based on Frieze and Jer-
rum [105], Eisenblätter [81, 82] and Ghaddar et al. [118]. Define the costs as
Cij := c({i, j}) for {i, j} ∈ E and Cij = 0 otherwise. This leads to the formu-
lation

inf
∑

1≤i<j≤n

Cij Yij

s.t. −1
k−1 1n + k

k−1 Y ⪰ 0,

Yii = 1, Y ⪰ 0, Y ∈ {0, 1}n×n,

(MkP)

where 1n is the n× n all-one matrix. Additionally, using node weights w ∈ Rn, we
add the following constraint with lower and upper bounds ℓ, u on the weights of the
parts:

ℓ ≤
n∑

j=1

wj Yij ≤ u ∀ i ∈ [n].

175

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

This ensures that the sum of weights of the nodes for each nonempty part in the
partition lies in the interval [ℓ, u]. We use 32 of the 59 instances in [110, Chapter
3.5], which all contain very sparse SDP constraints, since every Ak consists of a
single nonzero entry.

Restricted Isometry Property Recall from Section 5.2 that the (squared) lower
and upper restricted isometry constants α2

s and β2
s are defined as

α2
s := argmax

α≥0
{α∥x∥22 ≤ ∥Ax∥22 ∀x ∈ Σs} = min {∥Ax∥22 : ∥x∥22 = 1, ∥x∥0 ≤ s},

β2
s := argmin

β≥0
{β∥x∥22 ≥ ∥Ax∥22 ∀x ∈ Σs} = max {∥Ax∥22 : ∥x∥22 = 1, ∥x∥0 ≤ s},

respectively, see (5.25) and (5.26). These problems can be formulated as

max /min ⟨A⊤A,X⟩F
s.t. tr(X) = 1,

− zj ≤ Xij ≤ zj for i, j ∈ [n],
n∑

i=1

zi ≤ s,

X ⪰ 0, z ∈ {0, 1}n,

(RIP)

see (5.28). We use 46 instances which are created analogously to the instances in
[111, Section 6]. Namely, the following six types of random matrices A ∈ Rm×n are
used:

0± 1 P(Aij =
√

3/m) = P(Aij = −
√

3/m) = 1
6 and P(Aij = 0) = 2

3 ,
band band matrix, entries uniformly in {0, 1}, bandwidths 3, 5, 7, m = n,
Bernoulli Aij uniformly in {±

√
1/m},

binary Aij uniformly in {0, 1},
normal Aij ∼ N (0, 1),
scaled normal Aij ∼ N (0, 1

m).

Here N (µ, σ2) denotes the normal distribution with parameters µ and σ2. The
sizes are given by (m,n, k) ∈ {(15, 30, 5), (25, 35, 4), (30, 40, 3), (40, 60, 5)}. The band
matrix instances are larger with (m,n, k) ∈ {(40, 40, 3), (60, 60, 5), (70, 70, 4)}. For
matrices of type 0 ± 1, Bernoulli and scaled normal, Baraniuk et al. [15] showed
that for large n, sufficiently small s and given δ, these matrices satisfy the RIP of
order s and constant δ with high probability. As in Minimum k-Partitioning, the
coefficient matrices Ak only consist of one single nonzero entry, if (RIP) is written
in form (6.1).

176

6.6. Computational Experiments

Random MISDPs We also consider random instances of the form

sup {b⊤y :

m∑
k=1

Ak yk −A0 ⪰ 0, y ∈ {0, 1}mb ×Rmc}, (RND)

where m = mb +mc and Ak ∈ Rn×n are symmetric matrices for k ∈ [m]0. These
instances are produced in the same way as done by Kobayashi and Takano [145].
More precisely, let U(C) denote the uniform distribution on the set C. Then, we
choose a vector y∗ with y∗k ∼ U({0, 1}) for k ≤ mb and y∗k ∼ U([0, 1]) for k > mb.
Moreover, we choose the entries Ak

ij of the coefficient matrices as Ak
ij ∼ U([−1, 1])

for k ∈ [m] and 1 ≤ i ≤ j ≤ n. In order to ensure that there exists a feasible solution
to (RND), we set A0 =

∑m
k=1A

k y∗k − αI, as well as bk = ⟨Ak, I⟩F for k ∈ [m],
and α ≥ 0. For the definition of the inner product ⟨Ak, I⟩F, see (1.1). Thus, the
instances are generated based on the feasible solution y∗. For half of the instances,
all coefficient matrices Ak are ensured to be positive semidefinite and to have rank 1
by randomly choosing ak ∼ U([−1, 1]n) and setting Ak = ak(ak)⊤. The dimension
of Ak as well as the numbers of binary variables mb and continuous variables mc

vary between {60, 90, 120}. The nonnegativity factor α is chosen as α ∈ {0.1, 10}.

Truss Topology Optimization Truss topology optimization seeks truss structures
that are stable with minimal total volume. Given is a ground structure, which is
specified by a simple directed graph D = (V,E) with n nodes, nf of which are
free, while the remaining nodes are fixed. The goal is to choose cross-sectional areas
coming from a discrete setA for the bars on the edges. The model includes ellipsoidal
robustness with respect to uncertain loads on the free nodes in {Qf : ∥f∥2 ≤ 1} for
some matrix Q, following Ben-Tal and Nemirovski [21], and uses binary variables
for choosing bars, see Mars [173]. This yields the model:

inf
∑
e∈E

ℓe
∑
a∈A

a xae

s.t.
(
2 τ I Q⊤

Q A(x)

)
⪰ 0,∑

a∈A
xae ≤ 1 ∀ e ∈ E,

τ ≤ Cmax,

xae ∈ {0, 1} ∀ e ∈ E, a ∈ A.

(TTD)

The binary variables xae choose a bar on edge e with cross-sectional area a ∈ A.
The stiffness matrix A(x) is given by A(x) =

∑
e∈E

∑
a∈AAe a x

a
e with appropriate

177

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

matrices Ae. The length of the bar on edge e ∈ E is ℓe and Cmax provides an upper
bound on the compliance, which is the potential energy in the system. We use 38
of the 60 instances in [110, Chapter 3.5].

6.6.2 Settings

We use the following names for the algorithmic variants in which each different
presolving routine described above is active and all other routines are deactivated.

• Basic linear inequalities:
DGZ add (DGZ) in presolving;
DZI add (DZI) in presolving;

• Tightening procedures only in presolving:
TM use Lemma 6.18 in presolving;
TB-Pre apply Lemma 6.11 only in presolving;

• Linear inequalities based on 2× 2 minors:
2ML add (2ML) in presolving;
2MP add (2MP) in presolving;
2MV add (2MV) in presolving;

• Propagation of variable bounds and tightening procedures:
PropUB-Pre apply (PropUB) only in presolving;
PropUB apply (PropUB) every time propagation is called;
PropTB apply Lemma 6.11 every time propagation is called.

• Combinations of routines:
nopresol none;
MIX1 DZI, TB-Pre, 2MV, PropUB-Pre, PropUB, PropTB;
MIX2 DGZ, DZI, PropUB-Pre, PropUB;
allpresol DGZ, DZI, TM, TB-Pre, 2ML, 2MP, 2MV, PropUB-Pre;
allprop PropUB, PropUB-Pre, PropTB, TB-Pre;
allprop-DGZ DGZ, TB-Pre, PropUB, PropUB-Pre, PropTB;
allpresol-prop all routines activated in presolving and propagation.

As outlined in the introduction of this chapter, presolving in SCIP and SCIP-
SDP is applied in several rounds, so that different methods can influence each other.
Moreover, since SCIP-SDP is based on SCIP, all presolving which SCIP applies
by default, is also applied by SCIP-SDP. Thus every setting described above uses
at least the standard presolving from SCIP for, e.g., linear constraints, and the
listed additional presolving techniques, which are all based on the SDP constraints.
Note that MIX1 is the default setting for SCIP-SDP 4.0 when using the SDP-based
approach. If there is no additional prefix, then the SDP-based approach is used for
solving the MISDPs. The prefixes LPA and LPE denote that the LP-based cutting-
plane approach is used instead of the SDP-based approach, in the following two

178

6.6. Computational Experiments

variants: In LPA, eigenvector cuts are separated, and in LPE, eigenvector cuts are
only enforced, see Section 6.1. For the settings MIX1-NoCA and LPA-MIX2-NoCA
we additionally deactivated conflict analysis. Finally, in the setting CONC: MIX1 +
LPA-MIX2 we used the concurrent mode of SCIP, where the instances are solved in
parallel with settings MIX1 and LPA-MIX2, and solving stops, once the first setting
reports an optimal solution. Note that our settings LPA-DGZ and LPE-DGZ roughly
correspond to the branch-and-cut algorithm and the cutting-plane algorithm by
Kobayashi and Takano [145], respectively.

6.6.3 Results for general MISDPs

Table 6.3 displays the results using the described testset for various settings listed
in Section 6.6.2. Shown are the number of instances that were solved to optimality
within the time limit of one hour out of all 185 instances (# opt) and the shifted
geometric means of the number of nodes (# nodes) as well as the CPU time in
seconds (time), see (1.2) for the definition of the shifted geometric mean. The
next columns list the shifted geometric mean of the CPU time in seconds used
for presolving (time), the arithmetic mean of the number of domain reductions
(# reds), i.e., changed bounds, and added constraints (# addcons) in presolving for
SDP constraints. The section “SDP constraints” in Table 6.3 shows the arithmetic
means of the number of propagation calls (# prop), domain reductions (# reds),
applied cuts (# cuts) and cutoffs (# cutoff) from SDP constraints. The last section
“SDP timings” shows the shifted geometric means of the total time (total) and
the propagation time (prop) spent for SDP constraints. For the shifted geometric
means, we used a shift of s = 100 for nodes and s = 1 seconds for time, respectively.
Tables 7.1 to 7.5, which can be found in Appendix B, present the results for each class
of instances. Note that when comparing the number of used nodes for two settings
in the following, we only take into account instances which have been solved to
optimality by both settings, whereas the numbers in Table 6.3 and Tables 7.1 to 7.5
also take into account instances which ran into the time limit.

First of all, it turns out that Constraints (2MP) and coefficient tightening in
Lemma 6.18 (TM), as well as bound tightening in Lemma 6.11 (TB-Pre) were never
active in presolving throughout our testset. All other routines added constraints
and/or changed bounds in presolving and produced domain reductions deeper within
the branch-and-bound tree. In comparison to the setting nopresol in which all
presolving routines are deactivated, adding the constraints (DGZ) or (2ML) has a
negative effect on the running time, whereas adding the constraints (DZI) results in
a speed-up of about 5%. The latter is in line with the results reported by Mars [173]
and Gally [110]. Using Lemma 6.8, i.e., adding (2MV) in presolving yields a minor
improvement of the overall running time. Using Lemma 6.6 in propagation and/or

179

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

T
ab

le
6.3.

C
om

parison
of

presolving
routines

using
the

SD
P

-
and

LP
-based

approach
for

all185
M

ISD
P

instances.

SD
P

presolving
SD

P
constraints

SD
P

tim
ings

setting
#

opt
#

nodes
tim

e
tim

e
#

reds
#

addcons
#

prop
#

reds
#

cuts
#

cutoff
total

prop

nopresol
168

1
4
0
5
.3

1
8
0
.2
3

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2
5

0
.0
8

DGZ
168

1
3
9
5
.9

1
8
7
.4
1

0
.0
0

1
1
.0

1
3
.6

0
.0

0
.0

0
.0

0
.0

0
.2
5

0
.0
8

DZI
168

1
3
1
3
.7

1
7
1
.4
7

0
.0
0

0
.0

0
.7

0
.0

0
.0

0
.0

0
.0

0
.2
3

0
.0
7

TM
168

1
4
0
4
.6

1
8
0
.6
3

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2
6

0
.0
9

TB-Pre
167

1
4
0
3
.3

1
8
0
.8
6

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2
6

0
.0
9

2ML
168

1
3
8
8
.0

1
8
4
.1
9

0
.0
2

0
.0

9
4
0
.6

0
.0

0
.0

0
.0

0
.0

0
.2
5

0
.0
8

2MP
168

1
4
0
4
.6

1
8
0
.2
3

0
.0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2
5

0
.0
8

2MV
167

1
3
7
3
.6

1
7
7
.5
4

0
.0
5

0
.0

1
0
0
8
3
.2

0
.0

0
.0

0
.0

0
.0

0
.2
5

0
.0
8

PropUB-Pre
168

1
2
4
6
.2

1
6
8
.7
3

0
.0
1

4
9
4
.4

0
.0

0
.0

0
.0

0
.0

0
.0

0
.2
5

0
.0
8

PropUB
168

1
2
4
6
.2

1
6
9
.0
8

0
.0
1

4
9
4
.4

0
.0

6
4
9
3
8
6
.8

0
.1

0
.0

0
.0

0
.7
5

0
.5
4

PropTB
167

1
2
9
7
.6

1
5
2
.4
3

0
.0
0

0
.0

0
.0

2
4
4
1
8
.5

3
3
7
8
.6

0
.0

3
3
0
.5

1
.6
2

1
.5
7

MIX1
167

1
0
8
5
.2

1
3
9
.5
2

0
.0
6

4
9
4
.4

1
0
0
8
3
.9

4
4
3
1
9
1
.6

2
2
1
1
.1

0
.0

1
4
8
.2

2
.7
3

2
.6
9

MIX1-NoCA
167

1
0
8
3
.7

1
3
9
.3
1

0
.0
6

4
9
4
.4

1
0
0
8
3
.9

4
4
4
2
5
0
.1

2
2
2
4
.3

0
.0

1
4
9
.3

2
.6
8

2
.6
4

MIX2
168

1
1
5
2
.2

1
6
6
.7
2

0
.0
1

5
0
5
.4

1
4
.4

5
2
6
5
4
1
.0

1
3
6
5
.6

0
.0

0
.0

0
.7
0

0
.5
1

allpresol
168

1
1
7
6
.8

1
6
8
.1
2

0
.0
8

5
0
5
.4

1
1
0
3
8
.2

0
.0

0
.0

0
.0

0
.0

0
.2
2

0
.0
7

allprop
166

1
0
5
0
.2

1
5
6
.2
9

0
.0
1

4
9
4
.4

0
.0

2
0
9
6
8
9
.0

4
1
3
5
.1

0
.0

2
9
8
8
.7

4
.5
4

4
.5
0

allprop-DGZ
166

1
0
3
9
.3

1
6
4
.1
0

0
.0
1

5
0
5
.4

1
3
.6

2
0
5
8
6
1
.1

5
4
2
7
.9

0
.0

2
9
6
9
.1

4
.7
2

4
.6
7

allpresol-prop
168

9
8
4
.1

1
5
6
.0
1

0
.0
8

5
0
5
.4

1
1
0
3
8
.2

1
8
1
1
0
4
.9

5
6
1
2
.6

0
.0

1
8
6
5
.4

4
.3
9

4
.3
5

LPA-nopresol
104

3
8
6
.5

3
4
6
.3
8

0
.0
0

0
.0

0
.0

0
.0

0
.0

4
6
0
1
4
.9

1
0
8
.7

4
.2
4

0
.0
1

LPA-DGZ
103

3
8
8
.9

3
6
1
.4
3

0
.0
0

1
1
.0

1
3
.6

0
.0

0
.0

4
6
3
1
7
.6

1
0
9
.4

4
.3
5

0
.0
2

LPA-DZI
99

3
6
3
.9

3
3
2
.2
5

0
.0
0

0
.0

0
.7

0
.0

0
.0

4
5
8
2
5
.5

4
6
.1

4
.1
6

0
.0
1

LPA-TM
104

3
8
7
.0

3
4
7
.2
5

0
.0
0

0
.0

0
.0

0
.0

0
.0

4
5
9
7
7
.5

1
0
8
.7

4
.2
8

0
.0
2

LPA-TB-Pre
101

3
8
9
.8

3
5
0
.9
6

0
.0
0

0
.0

0
.0

0
.0

0
.0

4
7
2
0
9
.5

1
1
3
.7

4
.3
1

0
.0
2

LPA-2ML
103

3
8
6
.7

3
4
8
.3
1

0
.0
2

0
.0

9
4
0
.6

0
.0

0
.0

4
6
1
2
6
.8

1
0
8
.7

4
.3
1

0
.0
1

LPA-2MP
103

3
8
7
.1

3
4
8
.5
2

0
.0
1

0
.0

0
.0

0
.0

0
.0

4
6
0
2
3
.2

1
0
8
.7

4
.2
9

0
.0
1

LPA-2MV
101

3
6
9
.1

3
5
5
.3
0

0
.0
5

0
.0

1
0
0
8
3
.2

0
.0

0
.0

4
4
7
1
9
.7

4
5
.3

4
.2
7

0
.0
1

LPA-PropUB-Pre
82

3
8
1
.3

3
4
7
.9
0

0
.0
1

4
9
4
.4

0
.0

0
.0

0
.0

4
6
0
7
3
.0

1
0
8
.7

4
.2
6

0
.0
1

LPA-PropUB
103

3
8
1
.3

3
4
8
.5
4

0
.0
1

4
9
4
.4

0
.0

7
8
8
4
5
.4

0
.0

4
6
1
9
0
.6

1
0
8
.9

4
.4
9

0
.1
0

LPA-PropTB
103

3
7
2
.0

4
6
9
.8
6

0
.0
0

0
.0

0
.0

1
5
1
9
4
.2

4
7
0
8
.4

4
9
1
2
2
.7

4
1
6
.8

9
.4
8

2
.5
5

LPA-MIX1
101

3
3
5
.0

4
1
4
.1
8

0
.0
6

4
9
4
.4

1
0
0
8
3
.9

6
7
4
6
4
.5

3
4
9
0
.7

4
2
7
3
9
.7

1
5
2
.6

8
.1
8

2
.1
3

LPA-MIX2
98

3
6
0
.4

3
4
5
.3
9

0
.0
1

5
0
5
.4

1
4
.4

7
7
3
3
7
.6

0
.0

4
6
4
2
1
.8

4
7
.2

4
.5
2

0
.1
0

LPA-MIX2-NoCA
102

3
5
2
.7

3
2
9
.6
0

0
.0
1

5
0
5
.4

1
4
.4

6
4
1
3
8
.4

0
.0

4
1
6
0
6
.0

5
2
.7

4
.3
7

0
.0
9

LPA-allpresol
99

3
6
7
.0

3
5
3
.8
8

0
.0
8

5
0
5
.4

1
1
0
3
8
.2

0
.0

0
.0

4
5
6
6
4
.9

4
8
.3

4
.3
2

0
.0
1

LPA-allprop
105

3
5
7
.0

5
6
4
.1
6

0
.0
1

4
9
4
.4

0
.0

6
5
4
0
8
.9

3
1
9
4
.6

3
9
6
9
7
.9

9
0
7
.7

1
5
.3
4

4
.1
1

LPA-allpresol-prop
99

3
2
7
.8

6
4
1
.3
3

0
.0
8

5
0
5
.4

1
1
0
3
8
.2

5
7
6
4
7
.1

4
2
1
5
.2

4
2
5
4
9
.8

8
8
5
.8

1
7
.5
4

5
.2
0

LPE-MIX2
84

9
1
0
9
3
.1

6
2
2
.8
2

0
.0
1

5
0
5
.4

1
4
.4

1
4
0
3
0
4
4
.8

8
9
3
5
6
.6

1
5
0
3
8
4
.9

7
6
6
5
.8

2
2
.7
1

2
.3
6

CONC:
MIX1+LPA-MIX2

160
7
0
2
.0

1
3
3
.2
0

0
.0
1

5
0
5
.4

1
4
.4

8
9
.7

0
.0

0
.0

0
.0

0
.0
0

0
.0
0

180

6.6. Computational Experiments

in presolving (PropUB, PropUB-Pre) also speeds up the solution process by 6 % and
reduces the number of used nodes by 11%. The highest impact of all routines alone
is achieved by using bound tightening from Lemma 6.11 in propagation (PropTB),
resulting in a 15 % reduction of the solution time. Interestingly, it solves one instance
less than using no presolving at all. Using all presolving routines (allpresol) yields
only a minor further improvement over the best pure presolving routine (DZI). If all
propagation methods are activated as well (allpresol-prop), we obtain a major
improvement in terms of overall running time (13% faster) and processed nodes
(28 % fewer nodes). Using only bound tightening and propagation (allprop) results
in a further speed-up, and using the combination MIX1 turns out to be the best
setting in terms of overall running times, which is about 22% faster and processes
about 23 % fewer nodes than using no presolving.

We also conducted experiments where the optimal objective value was set as
objective limit and all primal heuristics are turned off in order to remove the impact
of primal solutions. In this case, propagation via PropUB and PropTB reduces the
number of nodes by 9 % and 10 %, respectively, compared to using no presolving
or propagation (nopresol). Activating all propagation routines (allprop) results
in a decrease of the number of nodes of 19 %. The propagation routines typically
cut off nodes deeper in the tree. Thus, the speed-up of the solution process when
using propagation routines can at least partly be explained by the fact that fewer
nodes are needed to close the gap between the dual bound and the optimal (primal)
objective value.

For all considered settings, the time spent for executing presolving or propagation
is neglectable, so that all routines presented in this chapter can safely be activated
without needing a significant amount of time by themselves. However, adding con-
straints or tightening bounds in presolving or deeper within the tree of course has
effects on the solution process. Especially, primal heuristics are affected and may
find primal solutions in a different order or not at all, which clearly influences the
overall solution time.

In case of the LP-based cutting-plane approach, it turns out that DZI is the only
setting which improves the running times (around 4 % faster), whereas 2MV and
propagating the bound tightening (PropTB) have a negative impact. Moreover, only
enforcing eigenvector cuts (LPE-MIX2) is clearly much worse than separating them
(LPA-MIX2).

Concerning conflict analysis, it turns out that it has almost no impact when using
the SDP-based approach, but it negatively influences the performance of the LP-
based cutting-plane approach, regardless of the instance class. For the setting MIX2,
deactivating conflict analysis results in a speed-up of almost 5 % for the solution
time.

181

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

Table 6.4. Summary of the results for different presolving settings for each instance
class separately.

(a) Results for the 43 Cardinality Constrained Least Squares (CLS) instances.

SDP presolving SDP constraints
setting #opt #nodes time #reds #addcons #prop #reds #cuts

nopresol 41 382.5 201.05 0.0 0.0 0.0 0.0 0.0
PropUB 41 382.6 200.65 0.0 0.0 36 176.0 0.0 0.0
PropTB 41 334.2 99.87 0.0 0.0 3813.9 6.9 0.0
LPA-nopresol 43 201.1 7.53 0.0 0.0 0.0 0.0 3197.3
LPA-MIX2-NoCA 43 198.6 8.89 1.0 0.0 6009.3 0.0 2815.1

(b) Results for the 32 Minimum k-Partitioning (MkP) instances.

SDP presolving SDP constraints
setting #opt #nodes time #reds #addcons #prop #reds #cuts

nopresol 32 181.5 63.23 0.0 0.0 0.0 0.0 0.0
PropUB 32 181.5 64.14 0.0 0.0 209 081.2 0.0 0.0
PropTB 32 181.5 63.18 0.0 0.0 499.4 0.0 0.0
LPA-nopresol 5 67.3 2737.16 0.0 0.0 0.0 0.0 24 934.4
LPA-MIX2-NoCA 5 57.5 2408.40 0.0 0.0 24 964.9 0.0 22 153.9

(c) Results for the 46 Restricted Isometry Property (RIP) instances.

SDP presolving SDP constraints
setting #opt #nodes time #reds #addcons #prop #reds #cuts

nopresol 36 4376.2 259.70 0.0 0.0 0.0 0.0 0.0
PropUB 36 2756.7 199.05 1988.3 0.0 184 929.1 0.2 0.0
PropTB 36 4377.1 259.67 0.0 0.0 25 049.6 0.0 0.0
LPA-nopresol 0 35.7 3600.32 0.0 0.0 0.0 0.0 12 779.8
LPA-MIX2-NoCA 0 30.0 3600.70 2031.5 0.0 10 652.8 0.0 13 777.7
LPE-MIX2 33 41 373.9 366.98 2031.5 0.0 532 210.1 359 368.7 131 484.5

(d) Results for the 26 random MISDP (RND) instances.

SDP presolving SDP constraints
setting #opt #nodes time #reds #addcons #prop #reds #cuts

nopresol 25 98.4 268.58 0.0 0.0 0.0 0.0 0.0
PropUB 25 98.3 268.69 0.0 0.0 2903.5 0.0 0.0
PropTB 25 98.3 269.00 0.0 0.0 120.6 0.0 0.0
LPA-nopresol 26 99.8 413.63 0.0 0.0 0.0 0.0 41 561.1
LPA-MIX2-NoCA 25 98.6 418.66 0.0 96.9 1828.1 0.0 44 157.1

(e) Results for the 38 Truss Topology Design (TTD) instances.

SDP presolving SDP constraints
setting #opt #nodes time #reds #addcons #prop #reds #cuts

nopresol 34 23 840.6 187.36 0.0 0.0 0.0 0.0 0.0
DZI 34 17 547.3 146.73 0.0 3.6 0.0 0.0 0.0
PropUB 34 23 841.3 187.69 0.0 0.0 2 718 636.0 0.0 0.0
PropTB 33 18 695.5 182.75 0.0 0.0 83 737.6 16 440.6 0.0
LPA-nopresol 30 17 646.4 210.55 0.0 0.0 0.0 0.0 155 497.6
LPA-MIX2-NoCA 29 13 935.7 154.24 0.0 3.6 270 283.5 0.0 133 823.3

182

6.6. Computational Experiments

Table 6.4 provides a short extract of the results for each separate instance class
and prominent settings. The full results are presented in Tables 7.1 to 7.5 in Ap-
pendix B. It turns out that for Min-k-Partitioning and random MISDPs, none of
the routines has any impact on the performance, even if some constraints are added
during presolving. No bounds are changed in presolving and no domain reductions
are found deeper in the tree. For Cardinality Least Squares, using bound tighten-
ing from Lemma 6.11 in presolving and propagation (PropTB) reduces the overall
running time by almost a factor of 2. Using bound tightening only in presolving
(TB-Pre) or using the propagation from Lemma 6.6 in propagation and/or presolving
(PropUB, PropUB-Pre) has almost no impact. For the RIP, the performance impact
is switched. Using bound tightening (PropTB, TB-Pre) has no impact, whereas the
propagation of Lemma 6.6 (PropUB, PropUB-Pre) significantly improves the per-
formance; the solution process is about 23 % faster. Finally, for Truss Topology
Design, Inequalities (DZI) turn out to be very effective and reduce the solution time
by about 22 %, whereas bound tightening and propagation have no impact.

Interestingly, the winner between SDP- and LP-based approach also heavily de-
pends on the instance class. Namely, for Cardinality Least Squares, the LP-based
approach is faster by almost a factor 20, whereas for Min-k-Partitioning, the SDP-
approach is almost a factor 35 times faster. For random MISDPs and Truss Topology
Design, there is not much difference, but the SDP-approach is slightly faster. Lastly,
for the RIP, the LP-based approach only solves a single instance within the time
limit for the best setting, whereas the SDP-approach solves 36 out of 46. Moreover,
the RIP instances are the only ones for which enforcing eigenvector cuts is signifi-
cantly faster than separating eigenvector cuts. Using a concurrent solving mode with
the best SDP-based setting MIX1 and the best LP-based setting LPA-MIX2 yields the
best performance overall on the testset, resulting in 41 % fewer processed nodes and
a solution process which is 26% faster than using no presolving at all.

Overall, it turns out that several of the presented methods have a positive impact
on the performance of SCIP-SDP, at almost no additional time spent for executing
these methods. Most importantly, the inequalities (DZI) and (2MV) should be
added during presolving, and the propagation in (PropUB) as well as the bound
tightening from Lemma 6.11 (TB) should be executed both in presolving and in
propagation calls deeper in the tree. Depending on the instance, it is beneficial to
turn off one or more of these routines to gain improved performance, and to switch to
an LP-based approach. By using the concurrent mode with an SDP and LP solving
procedure run in parallel, one can exploit this performance difference between SDP-
and LP-approach automatically.

183

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

6.6.4 Results for the RIP

In this section, we focus on the MISDP formulation of the RIP and evaluate the effect
of the presolving methods from Chapter 6 and the special components presented in
Section 5.3. In order to have a larger testset than the 46 RIP instances used for
the general computational experiments in the previous section, we generated 180
new RIP instances, with the same six types of random matrices as described in the
corresponding paragraph in Section 6.6.1. That is, we use 0 ± 1, band, Bernoulli,
binary, normal and scaled normal matrices. There are three combinations for the
size m× n of A and the sparsity level s, namely

(m,n, k) ∈ {(15, 30, 5), (25, 35, 4), (30, 40, 3)},

and five instances for each type of randomness in the matrix A and combination
of (m,n, k). Since the band matrices are square matrices, we use

(m,n, k) ∈ {(30, 30, 5), (35, 35, 4), (40, 40, 3)}

for these instances instead. Moreover, we compute the lower and upper RIC for
each matrix, so that we obtain a testset of 180 instances overall. Compared to the
46 instances used in the last section, we omit the combination (m,n, k) = (40, 60, 5)

and also do not use larger band matrix instances.

As “default” formulation we use (5.28), i.e.,

min /max
X⪰0, z∈{0,1}n

{
⟨A⊤A,X⟩F : tr(X) = 1,

n∑
i=1

zi ≤ s, −zj ≤ Xij ≤ zj ∀ i, j ∈ [n]
}
.

We employ the same setup as in the previous section. Again, all computations
were run single-threaded and with a time limit of one hour. All tables report the
number of optimally solved instances within the time limit, and the shifted geometric
means of the number of nodes and the solution times. We use a shift of s = 1

seconds and s = 100 nodes, see (1.2). In comparison to the results in the previous
section, there is one notable difference. Since it turned out that conflict analysis
has almost no impact on the SDP-based approach, and negatively influences the
LP-based approach, we deactivated conflict analysis by default for all settings.

We use several of the settings introduced in Section 6.6.2. Furthermore, specific
settings for the MISDP formulation of the RIP (5.28) are employed. In order to
compare the influence of the bounds on the off-diagonal entries in X, we use the fol-
lowing three settings, which all include the basic bounds 0 ≤ Xii ≤ zi for all i ∈ [n]:

184

6.6. Computational Experiments

diagonal bounds no bounds for Xij with i ̸= j;
weak bounds −zj ≤ Xij ≤ zj for all i, j ∈ [n] with i ̸= j;
strong bounds − 1

2zj ≤ Xij ≤ 1
2zj for all i, j ∈ [n] with i ̸= j, see (5.29).

Besides, we use the following two additional settings for the LP-based approach:

LPE-SDP solve an additional SDP in enforcing if all integer variables
are fixed;

sparsify add multiple sparse eigenvector cuts as described in Sec-
tion 5.3.

If LPE-SDP is used, then eigenvector cuts are enforced as in the setting LPE and
if all integer variables are already fixed, an additional SDP is solved. This ensures
that solving the current node is finished without needing further eigenvector cuts.
The setting sparsify enables the sparsification of the eigenvector cuts in separation
or enforcing. In each execution of the sparsification routine, we allow to add at most
100 sparse eigenvector cuts. The target size for sparsification is set to 5, since this
is the maximal sparsity level s appearing in the instances in our testset. Thus, the
produced eigenvector cuts are very sparse with only 5 nonzero entries. Finally, a +
between different settings denotes their combination.

In Table 6.5 we compare several presolving and propagation routines for the SDP-
based approach. The baseline setting is nopresol which does not activate any of the
presolving and propagation routines described in this chapter. We omit the settings
DZI, 2MP and TM, since the results in the last section showed that these methods do
not apply to the RIP instances. Furthermore, the settings 2MV and PropTB do not
have any impact on the RIP instances. It turns out that using DGZ and 2ML has a
negative impact on the solution time, but does not influence the number of nodes.
Thus, the SDP relaxations become harder to solve due to the additional inequalities.
This shows that adding the proposed linear inequalities, which are redundant in the

Table 6.5. Comparison of presolving and propagation routines for the SDP-based
approach on the 180 RIP instances.

setting #opt #nodes time

nopresol 180 3524.5 79.92
DGZ 180 3534.7 95.90
2ML 180 3463.4 93.78
2MV 180 3524.5 80.85
PropUB 180 2211.6 59.27
PropTB 180 3524.5 79.91
MIX1 180 2222.5 60.34
strong bounds 180 2211.6 58.83

185

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

Table 6.6. Comparison of imposing different bounds on off-diagonal entries in the
180 RIP instances for the SDP-based approach.

setting #opt #nodes time

diagonal bounds 121 2974.9 666.96
weak bounds 180 3524.5 79.92
strong bounds 180 2211.6 58.83

diagonal bounds + PropUB 180 3573.2 61.20
weak bounds + PropUB 180 2211.6 59.27
strong bounds + PropUB 180 2211.6 59.25

SDP relaxation, does not seem to help to approximate the SDP cone. The best single
routine is PropUB, which significantly reduces both the number of nodes and the
solution time. The combination MIX1 of several presolving and propagation routines,
which is the default setting of SCIP-SDP 4.0, performs equally good. This is due to
the fact that PropUB strengthens the off-diagonal bounds to − 1

2zj ≤ Xij ≤ 1
2zj , c.f.

(5.29). If these stronger bounds are directly used in the problem formulation with
the setting strong bounds, then no additional presolving or propagation is needed
in order to obtain the same performance as the default formulation with PropUB.
This also indicates that propagation mostly tightens only the off-diagonal bounds,
if not already present in the problem formulation. Furthermore, using additional
presolving routines on top of propagation does not have any impact.

Table 6.6 evaluates the effect of the bounds used in the problem formulation for
the off-diagonal entries Xij , i ̸= j on the SDP-based approach. We test the three
bound versions diagonal bounds, weak bounds and strong bounds once without
any additional presolving or propagation routine, and also with activated propaga-
tion in PropUB. Note that weak bounds is the default formulation. First of all, using
no bounds on Xij with i ̸= j cannot solve all instances within the time limit and
the solution time is at least 9 times slower than using either the weak or the strong
bounds. Moreover, the smaller number of nodes in comparison to weak bounds in-
dicates that solving the SDP relaxation takes much more time so that fewer nodes
can be processed in the time limit. Using the stronger bounds is slightly better com-
pared to the weak bounds in terms of solution time and needs significantly fewer
nodes, which shows that a tighter SDP relaxation leads to an increased performance.
These findings underline the importance of (strong) variable bounds in a branch-
and-bound algorithm. Activating the propagation PropUB in the absence of bounds
massively improves the performance by reducing the solution time by a factor of 10.
By that, all instances could be solved within the time limit and the solution time
is equal to the best setting strong bounds without propagation. But note that the
number of nodes is significantly larger than using propagation with weak or strong

186

6.6. Computational Experiments

Table 6.7. Comparison of separation and enforcing eigenvector cuts for the LP-
based approach on the 180 RIP instances.

setting #opt #nodes time

LPA-MIX2 + 2ML 14 59.5 3052.76
LPA-MIX2 + 2ML + sparsify 105 2451.2 1194.54
LPE-MIX2 + 2ML 163 19 036.8 112.62
LPE-SDP-MIX2 + 2ML 165 19 248.2 116.12
LPE-MIX2 + sparsify + 2ML 166 18 464.2 112.72

bounds. This may be due to the fact that the estimate in the root node is too weak
and much more nodes are needed in order to obtain an SDP relaxation which is
as tight as in the presence of bounds in the problem formulation. Altogether, the
results show that propagation has a significant impact if the problem formulation
is loose, and tight bounds are one key point to obtain a good performance in a
branch-and-bound scheme.

Let us now switch from the SDP-based approach to the LP-based approach. Re-
call that in SCIP-SDP, eigenvector cuts can either be enforced (LPE) or separated
(LPA), see Section 6.1. Moreover, it is possible to solve an additional SDP in en-
forcing, if all integer variables are fixed (LPE-SDP). Table 6.7 compares these three
possibilities, and the effect of sparsifying the eigenvector cuts in separation and en-
forcing. We always use the combination MIX2, which is the default setting of the
LP-based approach in SCIP-SDP. Additionally, we add the inequalities (2ML),
since they have a very positive effect for the RIP instances, as we will see when
comparing presolving and propagation for the LP-based approach.

First of all, it turns out that separation only solves very few instances within
the time limit. The very small number of processed nodes already indicates that
it takes very long to solve the LP relaxation in the nodes. Thus, it seems that
many eigenvector cuts are needed in order to obtain a feasible solution of the LP
relaxation which satisfies the SDP constraint. By that, the LP relaxation becomes
increasingly larger and harder to solve. Sparsifying the eigenvector cuts and adding
multiple sparse eigenvector cuts greatly improves the performance. More than half
of the instances can now be solved, and the solution time decreases by almost a
factor of 3. The increased number of nodes indicates that the LP relaxations are
now easier to solve, most likely due to the sparsity of the added cuts. Moreover,
since multiple cuts are added in one separation round, it seems that fewer rounds are
needed, which also decreases the solution time. Another reason for the performance
difference may be that the dense eigenvector cuts added in separation can lead to
numerical instabilities in the LP relaxation in comparison to the sparse eigenvector
cuts.

187

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

Table 6.8. Comparison of presolving, propagation and the formulation of the
bounds for off-diagonal entries for the LP-based approach on the 180 RIP in-
stances.

setting #opt #nodes time

LPE-nopresol 150 37 886.0 269.16
LPE-DGZ 156 35 875.7 187.47
LPE-PropUB 162 27 995.2 169.38
LPE-PropTB 150 37 887.3 269.56
LPE-2ML 164 29 702.3 170.13
LPE-2MV 151 37 607.4 279.15
LPE-nopresol + strong bounds 162 27 859.9 175.11

LPE-MIX2 + 2ML + diagonal bounds 148 19 894.3 1473.55
LPE-MIX2 + 2ML + weak bounds 163 19 036.8 112.62
LPE-MIX2 + 2ML + strong bounds 164 18 928.5 112.49

If the eigenvector cuts are not separated but enforced, this massively improves the
performance. Most of the instances can be solved and the solution time is decreased
by one order of magnitude. Moreover, the number of nodes is increased by almost
one order of magnitude as well. This shows that it is much faster to first solve the
LP relaxation to optimality and then enforce the SDP constraint by eigenvector
cuts. Besides, the individual nodes seem to be solved significantly faster so that
much more nodes can be processed. Solving an additional SDP in enforcing seems
to have a very slight negative influence. Using multiple sparse eigenvector cuts in
enforcing slightly reduces the number of nodes. Most importantly, it solves three
additional instances.

The effect of presolving, propagation and the used bounds for Xij , i ̸= j in the
problem formulation is investigated for the LP-based approach in Table 6.8. We
use the approach of enforcing eigenvector cuts (LPE), since Table 6.7 showed that
this is the fastest of the different variants. The baseline setting is LPE-nopresol,
which uses no other presolving or propagation routine presented in this chapter. As
in Table 6.5, we omit the settings DZI, 2MP and TM, since they do not apply to the
MISDP formulation of the RIP. First of all, it turns out that in contrast to the SDP-
based approach, the approximation of the SDP cone by using DGZ, 2ML improves the
performance. Both settings solve more instances, and lead to a faster solution time.
Using 2MV seems to slightly increase the solution time but solves one more instance
compared to LPE-nopresol. The approximation by DGZ decreases the solution time
significantly, and decreases the number of nodes slightly. In addition, six more
instances can be solved. The greatest impact of these inequalities is achieved by
2ML, which solves 14 more instances, uses only two thirds of the nodes and also
reduces the time by about 30% compared to LPE-nopresol. This already shows
that in contrast to the SDP-based approach, solving LP relaxations greatly profits

188

6.6. Computational Experiments

from adding additional linear inequalities which approximate the SDP cone. This
is due to the fact that these inequalities are not redundant in the LP relaxation.

Using the propagation in PropUB is slightly faster and uses slightly fewer nodes
than 2ML, but solves two instances less. Moreover, adding the stronger bounds
to the problem formulation but using no additional technique in LPE-nopresol +
strong bounds is slightly worse compared to PropUB. For both the formulation
with weak bounds and strong bounds, activating further presolving and propaga-
tion with the combination LPE-MIX2 + 2ML has a significant impact, in compar-
ison to LPE-nopresol and LPE-nopresol + strong bounds, respectively. Using
no bounds on the off-diagonal entries Xij , i ̸= j significantly deteriorates the per-
formance, even if the propagation by Inequalities (PropUB) is used in the setting
LPE-MIX2 + 2ML + diagonal bounds. The solution time increases by one order
of magnitude, and 15 instances less can be solved. However, the number of nodes
does not increase significantly. This indicates again, that the LP relaxation becomes
much harder to solve, which results in an increased total solution time. Overall, the
best setting LPE-MIX2 + 2ML + strong bounds solves 14 instances more, uses only
half the number of nodes and decreases the solution time by about 59 % compared
to using no presolving or propagation and the weak bounds (LPE-nopresol). These
results indicate that for the LP-based approach, various presolving and propagation
routines need to be activated in order to achieve the best performance. Moreover, it
also shows that the routines influence each other and thus lead to further strength-
enings. However, in contrast to the SDP-based approach, bounds on the off-diagonal
entries are strictly necessary even if the propagation PropUB is used.

In Table 6.9 we compare the LP-based and the SDP-based approach. We use the
SDP setting PropUB and the LP setting LPE-MIX2 + 2ML + weak bounds, which
are one of the best settings for the respective approach. Since the results of the
comparison depend on the size of the instance and whether the lower RIC α2

s or
the upper RIC β2

s is computed, we divide the instances into large (n = 40, s = 3),
medium (n = 35, s = 4) and small (n = 30, s = 5) ones. Note that if n and thus the
blocksize of the SDP constraint decreases, the sparsity level s increases. Table 6.9
shows the results for each size, divided into lower and upper RIC (30 instances
each), and both RICs together (60 instances). Moreover, the table also presents
the results when all 180 instances are taken into consideration, and if all lower or
upper RICs are solved (90 instances each). As a first observation, the upper RIC
seems to be overall easier to solve than the lower RIC. For each size, both the LP-
and the SDP-based approach are faster and use fewer nodes when solving the upper
RIC compared to the lower RIC, even if the difference for the large instances and
the SDP-based approach is only very small. Taking all instances into consideration
confirms that the upper RIC is easier than the lower RIC, since even the slower

189

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

Table 6.9. Comparison of the LP- and the SDP-based approach on the 180 RIP
instances, separately for the small, medium and large instances, as well as divided
into lower and upper RIC.

(a) Large instances with n = 40 and s = 3.

lower RIC (30) upper RIC (30) both RICs (60)

setting #opt #nodes time #opt #nodes time #opt #nodes time

PropUB 30 1928.8 59.90 30 1292.0 58.98 60 1580.5 59.44
LPE-MIX2 + 2ML 30 10 687.1 53.05 30 3751.3 37.31 60 6345.5 44.51

(b) Medium instances with n = 35 and s = 4.

lower RIC (30) upper RIC (30) both RICs (60)

setting #opt #nodes time #opt #nodes time #opt #nodes time

PropUB 30 3637.7 83.51 30 1728.9 58.93 60 2514.6 70.17
LPE-MIX2 + 2ML 30 50 273.7 176.71 30 11 537.5 64.72 60 24 112.0 107.07

(c) Small instances with n = 30 and s = 5.

lower RIC (30) upper RIC (30) both RICs (60)

setting #opt #nodes time #opt #nodes time #opt #nodes time

PropUB 30 5676.5 76.58 30 1268.4 32.38 60 2711.5 49.89
LPE-MIX2 + 2ML 13 127 537.4 1193.06 30 15 700.5 73.50 43 44 808.1 297.25

(d) All instances.

lower RIC (90) upper RIC (90) both RICs (180)

setting #opt #nodes time #opt #nodes time #opt #nodes time

PropUB 90 3425.1 72.64 90 1415.9 48.33 180 2211.6 59.27
LPE-MIX2 + 2ML 73 40 986.2 224.52 90 8813.4 56.24 163 19 036.8 112.62

LP-based approach for the upper RIC is better than the faster SDP-based approach
for the lower RIC. Moreover, it is interesting to see that the LP-based approach
struggles much more with the lower RIC than the SDP-based approach. For the
small instances, it cannot even solve all 30 instances within the time limit.

Let us consider the lower RIC α2
s in more detail. If the size decreases and the spar-

sity level increases, the SDP-based approach needs increasingly more nodes. The
solution time, however, first increases when comparing large to medium instances,
but then decreases again when comparing medium to small instances. This indicates
that the blocksize of the SDP constraint seems to be more important than the spar-
sity level for the difficulty to solve the instance. In contrast, the LP-based approach
suffers from a dramatic increase in solution time and used nodes for decreasing size
and increasing sparsity level. Going from large to medium instances, the number
of nodes increases by almost a factor of 5, and solution time increases by roughly a
factor of 2.5. Comparing medium to small instances, the number of nodes increases

190

6.6. Computational Experiments

again by a factor of 2.5 and the solution time increases by a factor of about 5.6.
Additionally, only about half of the small instances for the lower RIC can be solved
by the LP-based approach. This demonstrates that for the LP-based approach, the
sparsity level seems to be much more important for the ability to solve instances.
One reason is that the LP relaxation scales much better to higher dimensions, i.e.,
larger values of the blocksize n of the SDP constraint. In contrast, scalability is still
a problem when solving SDPs. For more information, we refer to the recent survey
by Majumdar et al. [170] and the references therein.

For the upper RIC β2
s as well as increasing sparsity level s and decreasing size n,

the SDP-based approach becomes faster. Between large and medium instances,
there is almost no difference in the solution time, but the number of nodes increases
slightly. Going from medium to small instances, the solution time decreases by
almost a factor of 2, and also the number of nodes decreases again. This underlines
once more that the blocksize n is more important than the sparsity level s when
using the SDP-based approach. For the LP-based approach, we can draw the same
conclusion as for the lower RIC α2

s. However, the performance loss is nowhere as
dramatic as for the lower RIC.

For the large instances, it turns out that the LP-based approach is faster for each
RIC separately and also for both RICs combined. This changes for the medium and
small instances, where the SDP-based approach becomes clearly faster, again for
each RIC separately and the combination of both RICs.

Overall, the upper RIC is considerably easier to solve, regardless of whether the
SDP- or the LP-based approach is used. For large instances with a very small
sparsity level, the LP-based approach outperforms the SDP-based approach, but
whenever the sparsity level is increased, or the blocksize is decreased, the SDP-
based approach is better.

These results can be confirmed by considering instances with increased parame-
ters (m,n, s). Therefore, we created 180 RIP instances completely analogous to the
ones used above with sizes

(m,n, s) ∈ {(40, 60, 5), (50, 70, 4), (60, 80, 3)},

and

(m,n, s) ∈ {(60, 60, 5), (70, 70, 4), (80, 80, 3)}

for the band matrices. Table 6.10 shows the results for these larger instances when
using again the settings PropUB and LPE-MIX2 + 2ML. First of all, note that only
very few instances can be solved within the time limit. The increasing difficulty
to solve the instances depending on the blocksize n and the sparsity level s can

191

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

Table 6.10. Comparison of the LP- and the SDP-based approach on the 180 larger
RIP instances, separately for the small, medium and large instances, as well as
divided into lower and upper RIC.

(a) Large instances with n = 80 and s = 3.

lower RIC (30) upper RIC (30) both RICs (60)

setting #opt #nodes time #opt #nodes time #opt #nodes time

PropUB 5 953.7 2255.78 5 1184.2 2886.18 10 1063.3 2551.59
LPE-MIX2 + 2ML 25 89 511.0 2153.06 25 41 631.9 1497.95 50 61 052.6 1795.90

(b) Medium instances with n = 70 and s = 4.

lower RIC (30) upper RIC (30) both RICs (60)

setting #opt #nodes time #opt #nodes time #opt #nodes time

PropUB 5 1365.0 1817.11 5 1260.1 2145.58 10 1311.6 1974.53
LPE-MIX2 + 2ML 5 62 228.4 2863.74 5 31 396.9 1408.77 10 44 207.5 2008.63

(c) Small instances with n = 60 and s = 5.

lower RIC (30) upper RIC (30) both RICs (60)

setting #opt #nodes time #opt #nodes time #opt #nodes time

PropUB 5 3166.5 1261.41 5 1927.5 1590.90 10 2473.5 1416.61
LPE-MIX2 + 2ML 2 58 915.4 3344.34 5 25 230.4 1299.88 7 38 563.7 2085.11

(d) All instances.

lower RIC (90) upper RIC (90) both RICs (180)

setting #opt #nodes time #opt #nodes time #opt #nodes time

PropUB 15 1614.8 1729.23 15 1424.2 2143.76 30 1516.7 1925.37
LPE-MIX2 + 2ML 32 68 977.7 2742.22 35 32 070.6 1399.85 67 47 041.0 1959.31

be observed even clearer for the instances with overall increased blocksizes. For
the lower RIC, the SDP-based approach becomes significantly faster if the blocksize
decreases, even if the sparsity level is increased. The behavior of the LP-based
approach is the direct opposite, its performance considerably deteriorates when the
blocksize decreases but the sparsity level increases: In the worst case only 2 out
of 30 instances can be solved. For the upper RIC, both the LP-based and SDP-
based approach become faster when the blocksize is decreased and the sparsity level
is increased. Moreover, the LP-based approach is always faster than the SDP-
based approach, by almost a factor of 2 for (n, s) = (80, 3), by a factor of 1.5
for (n, s) = (70, 4) and still about 18 % faster for (n, s) = (60, 5). Overall, these
results show that the upper RIC is comparably easier to compute for both the LP-
and the SDP-based approach. Moreover, for the instances with overall increased
blocksize, it turns out that for the upper RIC, the LP-based approach is faster
by almost 35%, whereas for the lower RIC, it is outperformed by the SDP-based

192

6.6. Computational Experiments

Table 6.11. Comparison of the effect of the nonnegativity constraint on the LP-
and the SDP-based approach on the 45 binary RIP instances.

setting #opt #nodes time

LPE-nopresol 32 73 698.7 440.51
LPE-nopresol + Xij ≥ 0 45 77 216.5 169.97

LPE-MIX2 + 2ML 45 38 345.9 157.48
LPE-MIX2 + 2ML + Xij ≥ 0 45 40 598.5 135.78

nopresol 45 34 052.9 328.91
nopresol + Xij ≥ 0 45 34 002.2 298.44

MIX1 45 26 765.7 282.34
MIX1 + Xij ≥ 0 45 26 717.8 270.22

approach, which is almost 40 % faster. Additionally, even if only the blocksize was
slightly increased and the sparsity level remained the same, the instances become
considerably harder to solve. Only a fraction of the 180 instances (30 and 67) could
be solved within the time limit of one hour with one of the approaches.

Lastly, we consider the effect of exploiting the possible nonnegativity of A (com-
ponentwise) as in Lemma 5.7. Since Lemma 5.7 only applies to the maximization
problem, nonnegativity constraints on the variables can only be added for computing
the upper RIC β2

s , and only if A ≥ 0. Moreover, only two types of random matrices
satisfy A ≥ 0 componentwise, namely, band matrices and binary matrices. Since
the instances generated with the band matrices are very easy to solve for the given
parameters (m,n, s), we test the nonnegativity only on binary matrices. To have a
larger testset, we generate 45 new random binary matrices with the same parameters
as before, i.e., 15 of each combination (m,n, s) ∈ {(15, 30, 5), (25, 35, 4), (30, 40, 3)}.
In order to demonstrate the impact of the nonnegativity constraint, we use no
further presolving or propagation technique. For a comparison, we also add the
nonnegativity constraint to the LP and SDP settings LPE-MIX2 + 2ML and MIX1,
respectively. The results are displayed in Table 6.11. It can be seen that regardless
of using additional presolving and propagation or not, the nonnegativity constraint
has a positive impact. Clearly, the effect is again most visible, when there is no
additional presolving. Then, the LP-based approach (LPE-nopresol) can only solve
32 of the 45 instances within the time limit. Adding Xij ≥ 0 leads to a decrease of
the solution time by about 59 %, whereas the number of nodes increases slightly.
Most importantly, all 45 instances can now be solved. In the presence of additional
presolving (LPE-MIX2 + 2ML), adding Xij ≥ 0 again results in slightly more pro-
cessed nodes, but the solution time decreases by about 14 %. For the SDP-based
approach, using the nonnegativity constraint decreases the solution time by about
9 % and 5 %, depending on whether additional presolving is used or not. Since the

193

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

number of nodes remains almost the same in both cases, the SDP relaxation is again
seemingly easier to solve. The results again demonstrate the impact of additional
structure on the performance of the solution process.

We also conducted tests for the valid inequality
∑

i ̸=j Xij ≤ s−1 from Lemma 5.4.
However, it turned out that adding this inequality does not help in the solution
process. Depending on the other techniques used, it either has no impact on the
performance, or it even worsens the performance. Thus, it seems that this single
inequality is not strong enough to improve the performance over the other presolving
methods. Either more valid inequalities or a stronger inequality is needed in order
to have a positive effect on the solution process.

6.7 Concluding Remarks and Outlook

In this chapter, we extended several presolving methods from mixed-integer linear
programs to MISDPs and introduced new methods. On our testset, these methods
are effective on average with a decrease of about 22 % in running time compared
to using no presolving, when applied in the nodes, i.e., propagation is performed in
the whole tree, see the results in Section 6.6.3. The impact, however, depends on
the type of the instance. In the extreme, for partitioning instances presolving has
no impact at all. For others, (node) presolving implies a performance improvement
of about 25% (RIP) or even 44 % (CLS), although in the latter case solving LPs is
even better with an improvement of at least one order of magnitude between SDP
and LP solving. These numbers illustrate again that the effectiveness of presolving
depends on the type of application. However, since executing these methods only
cause a negligible runtime increase, they can easily be used or tested on new instance
types to see their effect on the solution process. This is true, in particular, if more
instances are generated by modeling software in the future. Such instances can
be expected to not be tuned as well as instances generated by humans, i.e., they
may contain loose initial variable bounds or superfluous information in form of
constraints. Consequently, presolving can have a large impact on these instances
by providing tighter bounds and deriving effective valid inequalities, which overall
tightens the formulation of the instance. Thus, the results of this chapter lead to the
following conclusion: “The presolving methods are effective if they can be applied;
and if not, they only impose a very small overhead.”

An open question for future research is to derive effective presolving based on
larger minors of the positive semidefinite matrices A(y). For larger minors, in-
equalities similar to (2ML) may however be less sparse, at least if used for a con-
straint X ⪰ 0 in primal form, see (6.3) and (6.4). Furthermore, it would be inter-
esting to investigate whether it is possible to predict the performance of presolving

194

6.7. Concluding Remarks and Outlook

methods and whether switching to LP solving is advisable based on the application.
The results specifically for the RIP showed that at least for the larger instances, the
LP-based approach is better suited for computing the upper RIC, in contrast to the
lower RIC.

Another interesting point is the application of presolving techniques developed
for general SDPs, such as facial reduction to reduce the dimension of the SDP, or
exploiting sparsity structure.

A detailed analysis of the presolving methods in this chapter and the special com-
ponents from Section 5.3 for the MISDP formulation of the RIP on a larger testset
of RIP instances reveals that the SDP-based approach highly benefits from strong
bounds on the off-diagonal elements. These can either be added to the problem
formulation, or be found by the propagation from Lemma 6.6 within the solution
process. If the propagation is not used and no bounds are imposed on the off-
diagonal elements in the problem formulation, then the performance deteriorates
significantly. The additional inequalities (DGZ) and (2ML) do not have any pos-
itive impact on the performance when using the SDP-based approach, most likely
since they are already implied by the SDP constraint and do not strengthen the
problem formulation further. In contrast, for the LP-based approach, these ad-
ditional inequalities improve the performance, and, again, the strongest possible
bounds should be used.

Furthermore, it turned out that the upper RIC is much easier to compute than the
lower RIC. Besides, the choice between the SDP-based and the LP-based approach
depends on whether the upper or the lower RIC shall be computed. For the lower
RIC, the SDP-based approach performs better, whereas the upper RIC seems to
favor the LP-based approach. An analysis of this behavior and an answer whether
this depends on the randomness in the matrix A is an interesting open question.
In Section 5.2 we have seen that the upper RIC is also known as sparse principal
component analysis (SPCA), see (5.26). For the SPCA problem, there is an extensive
amount of literature, where different authors have proposed various valid inequalities
and other components for solving different formulations of this problem, see, e.g.,
Bertsimas et al. [24], d’Aspremont et al. [60], Dey et al. [65], and Li and Xie [157].
Investigating their impact on solving the MISDP formulation of the upper RIC, and
using Lemma 5.8 to also exploit them for the MISDP formulation of the lower RIC
is another interesting research direction for future work. The transformation of an
instance of the minimization problem to an instance of the maximization problem
may be helpful in its own regard, since the computational experiments suggested
that the MISDP formulation of the upper RIC may be easier to solve.

Of course, more work needs to be done to experiment further with the sparsifi-
cation of the eigenvector cuts. The experiments conducted for this thesis already

195

Chapter 6. Presolving for Mixed-Integer Semidefinite Optimization

showed that exploiting sparsity can have a significant impact, but no exhaustive
studies with different sparsity levels and number of added cuts have been executed
so far.

Besides, branching is currently only applied on integer variables with a fractional
relaxation solution value, as described in Section 6.1. Thus, it may be promising to
think about different branching strategies. One idea is to apply (spatial) branching
on diagonal entries Xii of the matrix variable X ∈ Sn. Since 0 ≤ Xii ≤ 1, we
have Xii >

1
2 for at most one i ∈ [n]. Moreover, since at most s diagonal entries Xii

are nonzero, where s is typically much smaller than the dimension n, most of the
diagonal entries are zero. Thus, we can branch on the diagonal entries being greater
or less than 1

2 . To do so, n + 1 branching nodes need to be created. In the i-th
node, set Xii ≥ 1

2 and Xjj ≤ 1
2 for all j ̸= i. The (n+ 1)-th node then has Xii ≤ 1

2

for all i ∈ [n]. This branching step can also be applied recursively.

196

CHA PTER 7
Conclusion and Outlook

In this thesis we have presented a general framework for sparse recovery in the pres-
ence of side constraints. The proposed framework builds upon an already existing
one by Juditsky et al. [137], and extends it by also incorporating additional side
constraints. This is achieved by introducing a set C and adding the constraint x ∈ C
to the recovery program, which enables to model additional knowledge available on
the elements that are to be reconstructed. By that, it can be used to analyze the
effect of exploiting structure in the recovery problem, which was one of the main
research topics of the “EXPRESS” project within the SPP 1798. In Section 2.2, we
have derived the general null space property (NSPC), which under some assumptions
characterizes the ability to successfully reconstruct every sufficiently sparse element
from its measurements under a linear measurement operator. These assumptions
state conditions, which need to be satisfied in a specific setting in order to obtain
a characterization of uniform recovery using the presented null space property. We
have shown that several specific settings already treated in the literature, including
cases with additional side constraints such as nonnegativity or positive semidefinite-
ness fit into our framework. Moreover, we have demonstrated that for these settings,
the null space property (NSPC) simplifies to the respective null space properties al-
ready known in the literature (c.f. Section 1.1 and Example 2.12), which shows the
generality of the proposed general null space property. Furthermore, in Section 2.3,
the framework has been extended to cover robust recovery in the presence of noise.
This includes stable recovery if the original signal is not exactly sparse. For both
cases, we have proposed a slightly strengthened null space property which allows
to control the reconstruction error in uniform recovery. Lastly, we have considered
individual recovery, that is, the recovery of a fixed sparse element in Section 2.4.

197

Chapter 7. Conclusion and Outlook

Again, we were able to obtain known results for stable and robust recovery as well
as individual recovery in specific settings as special cases.

In Chapter 3, we have considered three interesting side constraints in more detail.
First, we have introduced a block-structure on matrices in Section 3.1, which gen-
eralizes the case of block-structured vectors. We have derived this setting with and
without an additional positive semidefiniteness constraint from our general frame-
work and presented the corresponding null space properties for characterizing uni-
form recovery. Moreover, we have compared the resulting null space properties and,
for the special case of block-structured vectors, presented a family of measurement
matrices which satisfy the NSP for block-sparse nonnegative vectors, but violate
the NSP for general block-sparse vectors. This served as a first demonstration that
exploiting additional side constraints can yield weaker recovery conditions, which
are satisfied by more measurement matrices. Section 3.2 has treated the recovery
of sparse integral vectors and highlighted differences between general sparse vectors
and sparse integral vectors. Even if the corresponding side constraint x ∈ Zn is non-
convex, this setting also fits into our framework and we were again able to derive the
known null space properties for sparse integral vectors with and without additional
variable bounds. Finally, we have considered constant modulus constraints in Sec-
tion 3.3. Such constraints demand that the absolute value, or modulus, of each entry
of a vector be constant, e.g., 0 or 1. This side constraint is especially important for
complex vectors, and it frequently appears in signal processing applications, such
as the problem of joint antenna selection and phase-only beamforming, which was
considered as one example for additional structure in x. Analogously to the previ-
ous special cases, we have derived the constant modulus setting from our general
framework and have introduced a corresponding null space property, which was not
known in the literature before. Since the corresponding recovery problem is noncon-
vex, we also have presented a specialized solution algorithm to solve the recovery
problem. We have used a general spatial branch-and-bound algorithm and added
specific components to handle constant modulus constraints as well as a heuristic to
obtain good solutions. Numerical results for joint-antenna selection and phase-only
beamforming have shown the performance of the introduced components compared
to using a standard spatial branch-and-bound algorithm.

In Chapter 4, we have investigated the null space property for sparse nonneg-
ative vectors under Gaussian random measurement matrices. We have derived a
lower bound for the minimal number of measurements needed for uniform recov-
ery of sparse nonnegative vectors with high probability in Section 4.2. This was
achieved by showing that the corresponding null space property is satisfied with
high probability. The derived bound is non-asymptotic, whereas in the literature,
only asymptotic bounds were previously known. In order to compute the bound,

198

we have extended the known approach used for sparse vectors to sparse nonnegative
vectors. Unfortunately, the obtained bound turned out to be weaker than the corre-
sponding known bound for sparse vectors. However, simulations for the quantities
involved in obtaining the bound have revealed that fewer measurements seem to be
needed for uniform recovery if an additional nonnegativity constraint is present and
exploited in the recovery process. This is underlined by a numerical comparison
of individual recovery with and without nonnegativity. Thus, in theory, it should
also be possible to derive a bound for sparse nonnegative vectors which is indeed
smaller than the bound for sparse vectors. Furthermore, Section 4.3 has treated the
case of block-structured matrices and also presented a lower bound on the minimal
number of measurements needed for uniform recovery. For this setting, we have
extended another proof technique for sparse vectors to block-structured matrices.
The obtained results show that a random measurement operator allows for uniform
recovery of block-sparse matrices if the number of measurements satisfies a lower
bound which depends on the sparsity level s, the number of blocks k and the block
sizes d1 · d2. Most importantly, this obtained lower bound scales logarithmically
in k and linearly in d1 · d2, i.e., in the dimension of the single blocks, but it does
not directly scale in the overall dimension k · d1 · d2. Thus, the block-structure is
represented in the bound.

As a last part in our consideration of sparse recovery under side constraints, we
have considered possibilities to verify recovery conditions in Chapter 5. In Sec-
tion 5.1, we have presented several MIP formulations for checking whether a given
measurement matrix satisfies null space properties for some specific settings. More
precisely, testing the NSPs for sparse vectors, sparse nonnegative vectors and block-
sparse vectors as well as block-sparse nonnegative vectors has been formulated as a
MIP. A short numerical comparison has shown again that exploiting nonnegativity
yields a null space property which is easier to verify for a given measurement matrix.
Moreover, for a small dimension, we also have demonstrated numerically that the
NSP for sparse nonnegative vectors is satisfied with high probability for fewer mea-
surements than the NSP for sparse vectors. Afterwards, we have considered the RIP
as another recovery condition for uniform recovery of sparse vectors in Sections 5.2
and 5.3. We have presented the well-known MISDP formulation of the RIP and
shortly have discussed some properties of this formulation.

This has led us to consider presolving for general MISDPs in Chapter 6. Presolving
is one of the most important steps in solving general mathematical optimization
problems, and in contrast to MIPs, only few presolving techniques for MISDPs
were known in the literature. Thus, we have introduced several new presolving
methods for general MISDPs in Sections 6.2 to 6.5. Some of these methods are direct
extensions of the respective methods for MIPs, whereas others were completely new.

199

Chapter 7. Conclusion and Outlook

An exhaustive numerical comparison in Section 6.6 has shown the effectiveness of
the proposed methods for several classes of MISDPs. As one class of MISDPs, we
have also paid special attention to the MISDP formulation of the RIP, and evaluated
several methods for this formulation in detail. The results have shown that using the
correct solution approach and activating some of the proposed presolving methods
has a major impact on the performance.

Outlook

Even if the thesis treated null space properties for sparse recovery under various
aspects, there are still several open questions left. First of all, it would be natu-
ral to ask whether it is also possible to formulate a general RIP in our proposed
general framework in Chapter 2. A general RIP in a slightly different general frame-
work is presented by Traonmilin and Gribonval [238], and it would be interesting
to compare the two frameworks in terms of possible additional side constraints and
obtained recovery conditions. Another framework for sparse recovery, which gen-
eralizes many special cases known in the literature is the atomic setting in Chan-
drasekaran et al. [49]. The atomic setting assumes that an element is built as a
linear combination of few elements taken from a so-called atomic set. Using the
atomic norm, which is the gauge function of the convex hull of the set of atoms,
recovery of sparse elements is possible. Here, sparse refers to elements whose linear
combination only contains few nonzero coefficients. Clearly, taking the usual basis
vectors of Rn as atomic set, we obtain the classical setting of sparse vectors with only
few nonzero entries and the atomic norm is exactly the ℓ1-norm. For this setting, a
simple optimality condition for individual recovery is presented in [49], as well as a
lower bound on the minimal number of random Gaussian measurements needed for
individual recovery with high probability. It is not directly clear that this atomic
setting also fits into, or is comparable with our framework. Indeed, if the atomic set
allows for non-unique representations of elements, then expressing sparsity through
projections becomes nontrivial. Nevertheless, formulating a corresponding atomic
null space property which characterizes uniform recovery and extending the lower
bound also to uniform recovery would certainly be interesting.

Closely connected is the concept of decomposable norms considered by Negahban
et al. [188], Candès and Recht [44], and Roulet et al. [214]. Individual recovery is
treated in [44], where again an optimality condition is used to guarantee individual
recovery. This optimality condition is then analyzed under random Gaussian mea-
surements. Since we showed in Lemma 2.7 that our framework is connected with
the concept of decomposable norms, it is natural to ask which results directly carry
over to individual recovery in our framework as well, and especially if it is also pos-
sible to analyze individual recovery under random measurements. In [214], uniform

200

recovery is treated and a null space property for the setting of decomposable norms
is presented. It is reasonable to believe that this NSP also emerges from our general
framework if we adopt the viewpoint of decomposable norms, see Lemma 2.7.

As outlined in more detail in Section 3.4, there are several settings with specific
structure which have been considered in the literature. For each of those settings,
adapted recovery conditions as well as explicit recovery algorithms are presented.
Since the proposed recovery conditions for these settings are mostly an adaption
of the RIP, it remains open to find an NSP for these cases. Such an NSP can be
obtained from our framework, given that the setting fits into the framework and
can be shown to satisfy the assumptions needed for our uniform recovery results.
Obtaining an NSP instead of an RIP as recovery condition is especially important,
since the NSP is a characterization, whereas the RIP is only a sufficient condition.
Moreover, recently it has been shown by Dirksen et al. [66] that the RIP fails to
capture cases in which successful recovery is possible and yields suboptimal bounds
for the number of random measurements needed for uniform recovery of sparse
vectors. This indicates that the NSP is better suited for obtaining precise statements
about successful recovery.

Concerning the analysis of sparse recovery under random measurements it remains
open to strengthen the bound on the minimal number of measurements needed for
uniform recovery of sparse nonnegative vectors derived in Section 4.2. It turns out
that this bound is worse than the bound for sparse vectors, but experiments and
also empirical results for the quantity which needs to be bounded — the Gaus-
sian width of the set of unit-norm vectors violating the NSP — show that there
should be a gap between the bounds. For the case of sparse vectors, the Gaussian
distribution could be used to derive the corresponding bounds. Since for sparse
nonnegative vectors, the sign plays an important role in the recovery conditions,
rectified Gaussian random vectors appear in the derivation of the bound in The-
orem 4.7, see Appendix 7. Thus, any improvement of this bound will most likely
involve more precise estimations for rectified Gaussian random vectors. Moreover, it
remains open to derive such a bound in the case of block-sparse nonnegative vectors
and block-sparse positive semidefinite matrices.

On top of that, for the recovery of low-rank matrices with and without additional
positive semidefiniteness as well as block-structured matrices, it is an open question
to formulate the problem to test whether a given measurement operator satisfies the
corresponding NSP as optimization problem. Due to the possible positive semidef-
initeness constraint, this will most likely not be a MIP formulation, but rather an
MISDP formulation. The integrality is expected to enter as well, since for the NSP,
we need to split the set of singular values, or eigenvalues of a matrix. Moreover,
it would be interesting to investigate the obtained MIP formulations for the NSPs

201

Chapter 7. Conclusion and Outlook

in case of (block-) sparse (nonnegative) vectors in more detail. Most certainly it is
possible to speed-up the solution process by incorporating problem specific compo-
nents.

Besides these computational aspects, an important question not treated within
this thesis is the complexity of verifying an NSP condition. For the classical NSP,
it is known that checking whether a given matrix satisfies the NSP is NP-hard,
see Tillmann and Pfetsch [237]. It would certainly be interesting to see whether
the same also holds in the presence of additional side constraints. For example, the
problem of recovering sparse and sparse nonnegative vectors are directly connected
by using a variable split. To be more precise, the problem

min
{
∥x∥1 : Ax = b, x ∈ Rn

}
(7.1)

is equivalent to the problem

min

{∥∥∥(x(1)
x(2)

)∥∥∥
1
: (A,−A)

(
x(1)

x(2)

)
= b, x(1), x(2) ≥ 0

}
, (7.2)

since an optimal solution x∗ of (7.1) and an optimal solution (x(1))∗, (x(2))∗ of (7.2)
are connected through (x(1))∗ = (x∗)+ as well as (x(2))∗ = (x∗)−. Consequently,
we can either try to recover sparse vectors directly via (7.1) or try to recover their
positive and negative part via (7.2). For the latter problem, we can invoke the
NSP for the recovery of sparse nonnegative vectors. Accordingly, it may be possible
to reduce the decision problem whether a given measurement matrix satisfies the
classical NSP to the corresponding decision problem for the nonnegative NSP. This
would show that the NP-hardness result of testing the classical NSP also holds for
the nonnegative NSP.

A further important aspect which was not covered throughout this thesis is a com-
parison of exploiting and disregarding the block-structure for block-sparse vectors.
Clearly, it is possible to use ordinary ℓ1-minimization for recovering block-sparse vec-
tors. If there are k blocks, then every block-s-sparse vector x is also s̃-sparse in the
classical sense, where s̃ is the sum of the s largest block sizes of the k blocks, since x
has at most s̃ nonzero elements. The converse is however wrong in general, since
not every sparse vector is also block-sparse with respect to some block-structure.
Thus, the conditions for uniform recovery of non-block-sparse vectors may be too
strong for uniform recovery of all block-sparse vectors. For a short discussion in
terms of the restricted isometry constant and property, and an illustrative example,
see Eldar and Mishali [89]. In case of additional nonnegativity, Theorem 3.14 shows
that there exist matrices which satisfy the block-nonnegative NSP and violate the
nonnegative NSP. Hence, the nonnegative NSP is indeed too strong for uniform re-

202

covery of block-sparse nonnegative vectors. Finding a similar example for the case
of (block-) sparse vectors remains an open question.

Furthermore, in the block-structured settings, a mixed norm was used in the re-
covery problems. This mixed norm consists of applying some norm to each block
and then using the ℓ1-norm (or, simply the sum) of the resulting numbers. Typically,
the ℓ2-norm or the Frobenius norm are used on the blocks due to their robustness.
The proposed null space properties derived in Section 3.1 for block-structured vectors
and matrices without nonnegativity or positive semidefiniteness hold for arbitrary
norms on the blocks, see Remark 3.7 and Corollary 3.9. In the presence of additional
nonnegativity or positive semidefiniteness constraints, the corresponding null space
properties explicitly use the ℓ1-norm or the nuclear norm on the blocks, see Theo-
rem 3.4 and Corollary 3.8. Consequently, an interesting line of research would be to
analyze the usage of different norms on the blocks in the case of block-sparse nonneg-
ative vectors or block-sparse positive semidefinite matrices. It is important to notice
that for non-block settings, replacing the ℓ1 norm in ordinary ℓ1-minimization (7.1)
has negative side effects. For example, it is well known that for q > 1, recovery
using the ℓq-norm and the recovery problem

min {∥x∥q : Ax = b} (7.3)

already fails for 1-sparse vectors, see Figure 1.1 for a simple example. If 0 < q < 1,
then using the ℓq-norm has favorable recovery properties as shown by Mourad and
Reilly [182], but the resulting recovery problem (7.3) is known to beNP-hard, see Ge
et al. [116]. However, note that replacing the ℓ1-norm by the ℓq-norm with 0 < q < 1

in the classical NSP yields a condition which characterizes uniform recovery of sparse
vectors using (7.3), see Foucart and Rauhut [104], whereas ℓq-minimization does
not fit into our framework, since Assumption (A4) is violated as we have seen in
Remark 2.17.

203

Appendix

A Bounds for Recovery of Sparse Nonnegative
Vectors Under Random Measurements

In this section, we prove Theorem 4.7, which presents a lower bound on the minimal
number of measurements needed for uniform recovery of sparse nonnegative vectors.
The proof includes a detailed derivation of the bounds in (4.10) and (4.11).

Recall that a bound for the minimal number of measurements needed for uniform
recovery can be obtained by Gordon’s Escape Theorem 4.4. Therefore, we need
to estimate the Gaussian width ω(Ts) of the set Ts of unit-norm vectors violat-
ing (NSP≥0). By using the convex cone Ks defined as

Ks := {v ∈ Rn : vs+1, . . . , vn ≤ 0, 1⊤v ≥ 0},

as well as conic duality, we can estimate the Gaussian width as

ω(Ts) =E
[

min
t>0, zs+1,...,zn≤t

{(s∑
i=1

(g̃i + t)2
)1/2

+
(n∑

i=s+1

(g̃i + zi)
2
)1/2}]

,

see Lemma 4.6. Consider a fixed t > 0, and let

E
(nng)
1 := E

[(s∑
i=1

(g̃i + t)2
)1/2]

, E
(nng)
2 := E

[
min

zs+1,...,zn≤t

(n∑
i=s+1

(g̃i + zi)
2
)1/2]

.

In order to derive the bounds for E(nng)
1 and E(nng)

2 in (4.10) and (4.11), respectively,
we first need to prove some auxiliary results. Throughout this section, we denote
with φ and Φ the pdf and cdf of the standard Gaussian distribution, respectively,
i.e.,

φ(t) =
1√
2π

exp
(
− t2

2

)
, Φ(t) =

1√
2π

∫ t

−∞
exp

(
− x2

2

)
dx.

205

Chapter 7. Conclusion and Outlook

We will need a result about the expectation of applying the exponential function to
a scaled squared standard Gaussian random variable X, a function, which is also
known as moment generating function of X.

Lemma 7.1 (Foucart and Rauhut [104, Lemma 7.6]). Let X be a standard Gaussian
random variable and let θ ∈ R with θ < 1

2 . Then,

E[exp(θX2)] =
1√

1− 2θ
.

A useful inequality for the expectation of general random vectors under convex
functions is Jensen’s inequality in the next lemma.

Lemma 7.2 (Jensen’s inequality, see, e.g., Foucart and Rauhut [104, Theo-
rem 7.10]). Let X ∈ Rn be a random vector and let f : Rn 7→ R be a convex function.
Then we have f(E[X]) ≤ E[f(X)].

We need the expectation of the maximal squared ℓ2-norm of multiple standard
Gaussian random vectors in the next lemma.

Lemma 7.3 (Foucart and Rauhut [104, Proposition 8.2]). Let g(1), . . . , g(m) ∈ Rn

be a collection of (not necessarily independent) standard Gaussian random vectors.
For any κ > 0, we have the bound

E
[
max
i∈[m]

∥g(i)∥22
]
≤ (2 + 2κ) ln(m) + n(1 + κ) ln

(
1 + 1

κ

)
,

and thus, for κ =
√
n/(2 ln(m)),

E
[
max
i∈[m]

∥g(i)∥22
]
≤
(√

2 ln(m) +
√
n
)2
.

Another important distribution that will be used in this chapter is the rectified
standard Gaussian distribution. It is obtained from the standard Gaussian distri-
bution by setting negative elements to 0. Its pdf is given by

ϕ(t) =
1

2
δ(t) +

1√
2π

exp
(
− t2

2

)
U(t),

where δ(x) is the Dirac delta distribution with δ(x) = 0 for all x ∈ R \ {0}, and
δ(0) =∞, and U(x) is the unit step function with U(x) = 0 for x ≤ 0 and U(x) = 1

for x > 0. We use the notationX ∼ NR(0, 1) to denote thatX is a rectified standard
Gaussian random variable. If X ∼ N (0, 1), then Y = max {X, 0} ∼ NR(0, 1). In

206

A. Bounds for Sparse Nonnegative Vectors Under Random Measurements

the following, unless noted otherwise, h will denote a rectified standard Gaussian
random vector of appropriate dimension.

The first two moments of a rectified standard Gaussian variable can now be com-
puted as follows, see also Beauchamp [18].

Fact 7.4. Let X ∼ N (0, 1) and let Y := max {0, X} be a rectified standard Gaussian
random variable. Then, by the law of total expectation,

E[Y] = P(X > 0) · E[X|X > 0] + 0 · P(X ≤ 0) =
1

2
· 2√

2π
=

1√
2π
,

E[Y 2] = P(X > 0) · E[X2|X > 0] + 0 · P(X ≤ 0) =
1

2
· 1 =

1

2
,

since E[X|X > 0] and E[X2|X > 0] are the first two moments of a truncated
standard Gaussian random variable, which can be found, e.g., in Horrace [131].

Using these results, the moment generating function of a rectified standard Gaus-
sian random variable can be computed as follows.

Lemma 7.5. Let X ∼ N (0, 1), let Y := max {0, X} be a rectified standard Gaussian
random variable, and let θ ∈ R with θ < 1

2 . Then,

E
[
exp(θ Y 2)

]
=

1

2

(
1 +

1√
1− 2θ

)
.

Proof. By the law of total expectation and Lemma 7.1,

E
[
exp(θ Y 2)

]
= E

[
exp(θX2)

]
· P(X > 0) + exp(θ · 0) · P(X ≤ 0)

=
1

2

1√
1− 2θ

+
1

2
,

where we used Lemma 7.1 for the moment generating function E[exp(θX2)] of X.
This finishes the proof.

Lemma 7.5 yields the following estimate for the expectation of the maximum
squared ℓ2-norm of a set of rectified standard Gaussian random vectors.

Lemma 7.6. Let h(1), . . . , h(m) ∈ Rn be rectified standard Gaussian random vectors.
Then, for any κ > 0,

E
[
max
i∈[m]

∥h(i)∥22
]
≤ (2 + 2κ)

[
ln(m) + n ln

(
1
2

)
+ n ln

(
1 +

√
1 + 1

κ

)]
.

207

Chapter 7. Conclusion and Outlook

Proof. Let θ ∈ R with θ < 1
2 . Since the logarithm is a concave function, we can use

Jensen’s inequality in Lemma 7.2 to obtain

E
[
max
i∈[m]

∥h(i)∥22
]
=

1

θ
E
[
ln
(
max
i∈[m]

exp(θ∥h(i)∥22)
)]

≤ 1

θ
ln
(
E
[
max
i∈[m]

exp(θ∥h(i)∥22)
])

≤ 1

θ
ln
(
E
[m∑
i=1

exp(θ∥h(i)∥22)
])

≤ 1

θ
ln
(
m · E

[
exp(θ∥h∥22)

])
=

1

θ
ln
(
m ·

n∏
j=1

E
[
exp(θh2j)

])
,

where h is a rectified standard Gaussian random vector. The last equality is due to
the independence of the entries of h. Lemma 7.5 yields

E
[
max
i∈[m]

∥h(i)∥22
]
≤ 1

θ
ln
(
m · 1

2n

(
1 +

1√
1− 2θ

)n)
=

1

θ

[
ln(m) + n · ln

(1
2

(
1 +

1√
1− 2θ

))]
.

Since κ > 0 and θ < 1
2 we set θ = (2 + 2κ)−1 < 1

2 , which yields

E
[
max
i∈[m]

∥h(i)∥22
]
≤ (2 + 2κ)

[
ln(m) + n ln

(
1
2

)
+ n ln

(
1 +

√
1 + 1

κ

)]
.

This finishes the proof.

The minimum of the ℓ2-norms of a set of rectified standard Gaussian random
vectors h(1), . . . , h(m) ∈ Rn is considerably easier to estimate. Since the h(i) as well
as their components are independent, we can estimate the expectation as

E
[
min
i∈[m]

∥h(i)∥22
]
≤ E

[
∥h(1)∥22

]
= nE

[
Y 2
]
= 1

2n, (7.4)

where Y is a rectified standard Gaussian random variable. The last equality is due
to Fact 7.4. We are now ready to derive the bounds for E(nng)

1 and E(nng)
2 in (4.10)

and (4.10), respectively. Recall that for a fixed t ≥ 0,

E
(nng)
1 := E

[(s∑
i=1

(g̃i + t)2
)1/2]

, E
(nng)
2 := E

[
min

zs+1,...,zn≤t

(n∑
i=s+1

(g̃i + zi)
2
)1/2]

.

208

A. Bounds for Sparse Nonnegative Vectors Under Random Measurements

Estimating E
(nng)
1 We define the vectors h+, h− ∈ Rn by h+i = max {0, gi} as well

as h−i = max {0,−gi} for i ∈ [n]. Then, E(nng)
1 can be estimated as

E
(nng)
1 = E

[(s∑
i=1

(g̃i + t)2
)1/2]

≤ t
√
s+ E

[(s∑
i=1

g̃2i

)1/2]
≤ t
√
s+ E

[√
max

|S|=s, S⊆[n]
∥h+S ∥22 + min

|T |=s, T⊆[n]
∥h−T ∥22

]
.

Since h+i and h−i are rectified standard Gaussian random vectors, we can use
Lemma 7.6 and (7.4) to estimate

max
|S|=s, S⊆[n]

∥h+S ∥
2
2 ≤ (2 + 2κ)

[
ln
(
n
s

)
+ n ln

(
1
2

)
+ n ln

(
1 +

√
1 + 1

κ

)]
,

min
|T |=s, T⊆[n]

∥h−T ∥
2
2 ≤ 1

2s.

For the first inequality, we used that there are
(
n
s

)
subsets of cardinality s, so that

the maximum is taken over
(
n
s

)
random vectors. Thus, we obtain the following

estimate of E(nng)
1 :

E
(nng)
1 = E

[(s∑
i=1

(g̃i + t)2
)1/2]

≤ t
√
s+ E

[(s∑
i=1

g̃2i

)1/2]
≤ t
√
s+ E

[√
max

|S|=s, S⊆[n]
∥h+S ∥22 + min

|T |=s, T⊆[n]
∥h−T ∥22

]
≤ t
√
s+

√
E
[

max
|S|=s, S⊆[n]

∥h+S ∥22 + min
|T |=s, T⊆[n]

∥h−T ∥22
]

≤ t
√
s+

√
min
κ>0

{
(2 + 2κ)

[
ln
(
n
s

)
+ s ln

(
1
2

)
+ s ln

(
1 +

√
1 + 1

κ

)]}
+ 1

2s

≤ t
√
s+

√
min
κ>0

{
(2 + 2κ)

[
s ln

(
en
s

)
+ s ln

(
1
2

)
+ s ln

(
1 +

√
1 + 1

κ

)]}
+ 1

2s.

Here, we used Jensen’s inequality in Lemma 7.2 for the third inequality, since the
square root function is concave. The last inequality uses the estimate

(
n
s

)
≤ (ens)s,

where e = exp(1), see, e.g., Foucart and Rauhut [104, Lemma C.5].

209

Chapter 7. Conclusion and Outlook

Estimating E
(nng)
2 The remaining term, E(nng)

2 , can be estimated as follows:

E
(nng)
2 = E

[
min

zs+1,...,zn≤t

(n∑
i=s+1

(g̃i + zi)
2
)1/2]

≤
(
E
[
min
zi≤t

n∑
i=s+1

(g̃i + zi)
2
])1/2

=
(
E
[n∑
i=s+1

(
min {0, g̃i + t}

)2])1/2
≤
(
(n− s) · E

[(
min {0, g̃n + t}

)2])1/2
. (7.5)

The inequality in (7.5) is due to g̃1 ≥ · · · ≥ g̃n, so that(
min {0, g̃1 + t}

)2 ≤ · · · ≤ (min {0, g̃n + t}
)2
,

since min {0, g̃i+ t} ≤ 0 for all i ∈ [n]. The probability that the smallest element g̃n
of n i.i.d. standard Gaussian random variables g1, . . . , gn is greater or equal than −t
can be computed as

P(g̃n ≥ −t) = P(g1 ≥ −t, . . . , gn ≥ −t) =
n∏

i=1

1− P(gi ≤ −t).

Define the random variableX :=
(
min {0, g̃n+t}

)2, and let g be a standard Gaussian
random variable. Since min {0, g̃n + t} ≤ 0, the cdf FX(z) of X for z ≥ 0 is given
by

FX(z) = P(X ≤ z) = P
(
−
√
z ≤ min {0, g̃n + t} ≤

√
z
)

= P
(
min {0, g̃n + t} ≤

√
z
)
− P

(
min {0, g̃n + t} < −

√
z
)

= 1− P
(
g̃n + t < −

√
z
)
= 1− P

(
g̃n < −

√
z − t

)
,

and F (z) = 0 for z < 0. For z ≥ 0, we can further compute

FX(z) = 1− P
(
g̃n < −

√
z − t

)
= 1−

[
1− P

(
gi ≥ −

√
z − t ∀ i ∈ [n]

)]
= P

(
g ≥ −

√
z − t

)n
=
(
1− Φ(−

√
z − t)

)n
.

The pdf fX(z) of X is the derivative of the cdf FX(z), so that, for z ≥ 0, we obtain

fX(z) =
d

dz
FX(z) =

n

2
√
z
·
(
1− Φ(−

√
z − t)

)n−1 · φ(−
√
z − t).

210

A. Bounds for Sparse Nonnegative Vectors Under Random Measurements

Thus, the expected value E[min {0, g̃n + t}2] can be estimated as

E
[
min {0, g̃n + t}2

]
=

∫ ∞

0

z · n

2
√
z
· (1− Φ(−

√
z − t))n−1 · φ(−

√
z − t) dz

= n ·
∫ −t

−∞
(x+ t)2 · φ(x) ·

(
1− Φ(x)

)n−1
dz (7.6)

≤ n ·
∫ −t

−∞
(x+ t)2 · φ(x) ·

(
1− Φ(x)

)
dx (7.7)

= n ·
∫ −t

−∞
(x+ t)2 · φ(x) · Φ(−x) dx. (7.8)

The first equality follows from the definition of the expected value; the second
equality is due to a variable change x = −

√
z − t and the inequality in (7.7) holds

since 1 − Φ(x) ≤ 1. In order to evaluate the integral in (7.8), we use the integrals
in Owen [191]. This yields∫

x2 · φ(x) · Φ(−x) dx = −xφ(x)Φ(−x) + Φ(x)− 1
2Φ(x)

2 +
1

2
√
2π
φ(
√
2x),∫

x · φ(x) · Φ(−x) dx = − 1

2
√
π
Φ(
√
2x)− φ(x)Φ(−x),∫

φ(x) · Φ(−x) dx = Φ(x)− 1
2Φ(x)

2.

The desired expectation E[min {0, g̃n + t}2] can now be computed as

E
[
min {0, g̃n + t}2

]
≤ n

[(
1 + t2

)(
Φ(−t)− 1

2Φ(−t)
2
)
− tφ(−t)Φ(t)

− t√
π
Φ(−t

√
2) +

1

2
√
2π
φ(−t

√
2)
]
,

so that E(nng)
2 can be estimated as

E
(nng)
2 = E

[
min

zs+1,...,zn≤t

(n∑
i=s+1

(g̃i + zi)
2
)1/2] ≤ ((n− s) · E[min {0, g̃n + t}2

])1/2
≤
[
n(n− s) ·

((
1 + t2

)(
Φ(−t)− 1

2Φ(−t)
2
)
− tφ(−t)Φ(t)− t√

π
Φ(−t

√
2)

+
1

2
√
2π
φ(−t

√
2)
)]1/2

.

Estimation of the Gaussian Width Putting the estimations of E(nng)
1 and E

(nng)
2

together yields the following estimate of the Gaussian width ω(Ts) which is valid for

211

Chapter 7. Conclusion and Outlook

any (fixed) t > 0:

ω(Ts)

≤E
[
min

{(s∑
i=1

(g̃i + t)2
)1/2

+
(n∑
i=s+1

(g̃i + zi)
2
)1/2

: t > 0, zs+1, . . . , zn ≤ t
}]

=E
(nng)
1 + E

(nng)
2

≤ t
√
s+

√
min
κ>0

{
(2 + 2κ)

[
s ln

(
en
s

)
+ n ln

(
1
2

)
+ n ln

(
1 +

√
1 + 1

κ

)]}
+ 1

2s

+
(
n(n− s) ·

[(
1 + t2

)(
Φ(−t)− 1

2Φ(−t)
2
)
− tφ(−t)Φ(t)− t√

π
Φ(−t

√
2) (7.9)

+
1

2
√
2π
φ(−t

√
2)
])1/2

.

Let ω(t) be the quantity in (7.9). Thus, the best bound on the Gaussian width is
given by mint ω(t). Since we have derived a bound for the Gaussian width ω(Ts),
we can now use Gordon’s Escape Theorem 4.4 to prove Theorem 4.7.

Proof of Theorem 4.7. Let t =
√

2 ln(1ε). Then, Gordon’s Escape Theorem 4.4
yields

P
(
inf
x∈T
∥Ax∥2 ≤ Em − ω(T)−

√
2 ln(1ε)

)
≤ ε,

where Ts is defined in (4.8). Recall that Em is the expectation of the ℓ2-norm of
a standard Gaussian random vector as defined in (4.1). Let ω = mint ω(t) be the
best estimation of ω(Ts) in (7.9). Since, by assumption,

m√
m+ 1

≥ ω +
√
2 ln(1ε),

and Em ≥ m/
√
m+ 1 we have Em − ω(T)−

√
2 ln(1ε) ≥ 0. This implies

P
(
inf
x∈T
∥Ax∥2 ≤ 0

)
≤ P

(
inf
x∈T
∥Ax∥2 ≤ Em − ω(Ts ∩ Sn−1)−

√
2 ln(1ε)

)
≤ ε,

so that P
(
infx∈T ∥Ax∥2 > 0

)
≥ 1− ε, which shows that the nonnegative null space

property (NSP≥0) of order s is satisfied with probability at least 1−ε. Thus, every s-
sparse nonnegative x ∈ Rn

+ is the unique optimal solution of the nonnegative ℓ1-
minimization problem min {∥z∥1 : Az = Ax, z ≥ 0} with probability at least
1− ε.

212

B. Computational Results for MISDP Presolving

B Computational Results for MISDP Presolving

This section lists additional tables for the computational results on presolving for
general MISDPs discussed in Section 6.6.3. In Table 6.3, we presented results over
all 185 instances of the testset described in Section 6.6.1 for the settings listed in
Section 6.6.2. Tables 7.1 to 7.5 in this chapter present these results for instance class
separately. Shown are the number of instances that were solved to optimality within
the time limit of one hour out of all 185 instances (# opt), and the shifted geometric
means of the number of nodes (# nodes) as well as the CPU time in seconds (time),
see (1.2) for the definition of the shifted geometric mean. The next columns list
the shifted geometric mean of the CPU time in seconds used for presolving (time),
the arithmetic mean of the number of domain reductions (# reds), i.e., changed
bounds, and added constraints (# addcons) in presolving for SDP constraints. The
section “SDP Constraints” in Table 6.3 shows the arithmetic means of the number
of propagation calls (# prop), domain reductions (# reds), applied cuts (# cuts)
and cutoffs (# cutoff) from SDP constraints. The last section “SDP Timings” shows
the shifted geometric means of the the total time (total) and the propagation time
(prop) spent for SDP constraints. For the shifted geometric means, we used a shift
of s = 100 for nodes and s = 1 seconds for time, respectively.

213

Chapter 7. Conclusion and Outlook
T
ab

le
7.1.

C
om

parison
ofpresolving

routines
using

the
SD

P
-and

LP
-based

approach
for

the
43

C
ardinality

C
onstrained

Least
Squares

(C
LS)

instances.

SD
P

presolving
SD

P
constraints

SD
P

tim
ings

setting
#

opt
#

nodes
tim

e
tim

e
#

reds
#

addcons
#

prop
#

reds
#

cuts
#

cutoff
total

prop

nopresol
41

3
8
2
.5

2
0
1
.0
5

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
1

DGZ
41

3
6
2
.4

2
0
6
.4
8

0
.0
0

1
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
3

0
.0
1

DZI
41

3
8
2
.3

2
0
0
.6
3

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
1

TM
41

3
8
2
.5

2
0
1
.1
8

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
1

TB-Pre
41

3
8
2
.4

2
0
0
.0
2

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
3

0
.0
1

2ML
41

3
8
2
.5

2
0
0
.8
0

0
.0
3

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
1

2MP
41

3
8
2
.2

2
0
0
.5
9

0
.0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
1

2MV
41

3
8
1
.1

2
0
6
.3
2

0
.1
5

0
.0

3
9
6
7
2
.1

0
.0

0
.0

0
.0

0
.0

0
.0
3

0
.0
1

PropUB-Pre
41

3
8
2
.7

2
0
1
.2
9

0
.0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
1

PropUB
41

3
8
2
.6

2
0
0
.6
5

0
.0
1

0
.0

0
.0

3
6
1
7
6
.0

0
.0

0
.0

0
.0

0
.0
5

0
.0
2

PropTB
41

3
3
4
.2

9
9
.8
7

0
.0
0

0
.0

0
.0

3
8
1
3
.9

6
.9

0
.0

0
.2

1
.4
5

1
.4
4

MIX1
41

3
3
4
.1

1
1
1
.5
1

0
.1
6

0
.0

3
9
6
7
2
.1

3
5
8
1
8
.3

7
.3

0
.0

0
.3

2
.2
1

2
.2
1

MIX1-NoCA
41

3
3
4
.1

1
1
1
.4
5

0
.1
6

0
.0

3
9
6
7
2
.1

3
5
8
3
0
.5

7
.3

0
.0

0
.3

2
.2
1

2
.1
9

MIX2
41

3
6
2
.4

2
0
6
.3
4

0
.0
2

1
.0

0
.0

3
0
2
5
9
.4

0
.0

0
.0

0
.0

0
.0
4

0
.0
2

allpresol
41

3
8
0
.6

2
0
5
.7
2

0
.1
9

1
.0

3
9
6
7
2
.1

0
.0

0
.0

0
.0

0
.0

0
.0
3

0
.0
1

allprop
41

3
3
4
.0

1
1
0
.1
5

0
.0
1

0
.0

0
.0

3
5
7
7
2
.5

6
.9

0
.0

0
.7

3
.1
2

3
.1
1

allprop-DGZ
41

3
1
7
.2

1
1
8
.6
2

0
.0
1

1
.0

0
.0

3
0
0
2
3
.5

7
.4

0
.0

0
.7

3
.6
5

3
.6
3

allpresol-prop
41

3
3
4
.3

1
2
1
.3
1

0
.1
9

1
.0

3
9
6
7
2
.1

3
5
9
3
4
.0

7
.3

0
.0

0
.8

3
.6
6

3
.6
5

LPA-nopresol
43

2
0
1
.1

7
.5
3

0
.0
0

0
.0

0
.0

0
.0

0
.0

3
1
9
7
.3

2
.0

3
.6
5

0
.0
0

LPA-DGZ
43

2
0
7
.2

9
.0
8

0
.0
1

1
.0

0
.0

0
.0

0
.0

2
9
9
2
.2

4
.8

3
.9
0

0
.0
0

LPA-DZI
43

2
0
1
.1

7
.7
0

0
.0
0

0
.0

0
.0

0
.0

0
.0

3
1
9
7
.3

2
.0

3
.7
0

0
.0
0

LPA-TM
43

2
0
1
.1

7
.5
6

0
.0
0

0
.0

0
.0

0
.0

0
.0

3
1
9
7
.3

2
.0

3
.7
1

0
.0
0

LPA-TB-Pre
43

2
0
1
.1

7
.7
6

0
.0
0

0
.0

0
.0

0
.0

0
.0

3
1
9
7
.3

2
.0

3
.7
2

0
.0
0

LPA-2ML
43

2
0
1
.1

7
.6
9

0
.0
3

0
.0

0
.0

0
.0

0
.0

3
1
9
7
.3

2
.0

3
.7
3

0
.0
0

LPA-2MP
43

2
0
1
.1

7
.6
8

0
.0
1

0
.0

0
.0

0
.0

0
.0

3
1
9
7
.3

2
.0

3
.7
4

0
.0
0

LPA-2MV
43

2
1
4
.5

1
0
.5
3

0
.1
5

0
.0

3
9
6
7
2
.1

0
.0

0
.0

3
2
4
6
.3

4
.7

4
.0
5

0
.0
0

LPA-PropUB-Pre
43

2
0
1
.1

7
.6
9

0
.0
1

0
.0

0
.0

0
.0

0
.0

3
1
9
7
.3

2
.0

3
.7
1

0
.0
0

LPA-PropUB
43

2
0
1
.1

7
.6
8

0
.0
1

0
.0

0
.0

4
0
3
6
.7

0
.0

3
1
9
7
.3

2
.0

3
.7
1

0
.0
0

LPA-PropTB
43

2
1
1
.3

2
8
.0
9

0
.0
0

0
.0

0
.0

9
0
1
.7

1
0
.3

3
1
0
0
.8

2
.1

1
8
.0
5

9
.8
9

LPA-MIX1
43

1
9
7
.8

2
1
.7
5

0
.1
6

0
.0

3
9
6
7
2
.1

5
6
4
3
.1

2
5
.7

3
1
8
8
.0

5
.3

1
0
.3
2

4
.9
5

LPA-MIX2
43

2
0
7
.2

9
.0
8

0
.0
2

1
.0

0
.0

6
6
5
8
.1

0
.0

2
9
9
2
.2

4
.8

3
.9
4

0
.0
1

LPA-MIX2-NoCA
43

1
9
8
.6

8
.8
9

0
.0
2

1
.0

0
.0

6
0
0
9
.3

0
.0

2
8
1
5
.1

3
.7

3
.9
3

0
.0
0

LPA-allpresol
43

2
1
1
.4

1
0
.5
7

0
.2
0

1
.0

3
9
6
7
2
.1

0
.0

0
.0

3
2
4
9
.3

4
.6

4
.0
6

0
.0
0

LPA-allprop
43

1
9
7
.8

4
8
.0
7

0
.0
1

0
.0

0
.0

3
9
7
4
.3

1
3
.6

3
0
5
9
.2

1
5
.9

3
1
.3
8

1
0
.1
9

LPA-allpresol-prop
41

1
8
3
.6

1
0
0
.8
9

0
.1
9

1
.0

3
9
6
7
2
.1

5
5
6
4
.5

1
6
.4

3
1
0
7
.2

1
0
.9

6
4
.2
3

2
9
.3
4

LPE-MIX2
32

1
9
7
8
1
.8

1
0
6
.7
6

0
.0
2

1
.0

0
.0

1
4
4
7
7
0
5
.2

0
.0

1
0
3
8
6
7
.4

1
9
3
8
8
.7

3
1
.4
6

0
.5
1

CONC:
MIX1+LPA-MIX2

43
1
8
1
.3

4
6
.0
4

0
.0
2

1
.0

0
.0

1
0
0
.0

0
.0

0
.0

0
.0

0
.0
0

0
.0
0

214

B. Computational Results for MISDP Presolving
T
ab

le
7.

2.
C

om
pa

ri
so

n
of

pr
es

ol
vi

ng
ro

ut
in

es
us

in
g

th
e

SD
P

-
an

d
LP

-b
as

ed
ap

pr
oa

ch
fo

r
th

e
32

M
in

im
um

k
-

P
ar

ti
ti

on
in

g
(M

kP
)

in
st

an
ce

s.

SD
P

pr
es

ol
vi

ng
SD

P
co

ns
tr

ai
nt

s
SD

P
ti

m
in

gs
se

tt
in

g
#

op
t

#
no

de
s

ti
m

e
ti

m
e

#
re

ds
#

ad
dc

on
s

#
pr

op
#

re
ds

#
cu

ts
#

cu
to

ff
to

ta
l

pr
op

no
pr

es
ol

32
1
8
1
.5

6
3
.2
3

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
5

0
.0
3

DG
Z

32
1
8
1
.5

6
3
.2
3

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
3

DZ
I

32
1
8
1
.5

6
3
.2
3

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
3

TM
32

1
8
1
.5

6
3
.2
0

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
3

TB
-P

re
32

1
8
1
.5

6
3
.1
8

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
2

2M
L

32
1
8
1
.5

6
3
.2
2

0
.0
2

0
.0

1
1
0
.6

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
2

2M
P

32
1
8
1
.5

6
3
.1
9

0
.0
2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
2

2M
V

32
1
8
1
.5

6
3
.4
2

0
.0
3

0
.0

2
0
5
2
.2

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
2

Pr
op

UB
-P

re
32

1
8
1
.5

6
3
.3
3

0
.0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
3

Pr
op

UB
32

1
8
1
.5

6
4
.1
4

0
.0
1

0
.0

0
.0

2
0
9
0
8
1
.2

0
.0

0
.0

0
.0

0
.8
9

0
.8
8

Pr
op

TB
32

1
8
1
.5

6
3
.1
8

0
.0
0

0
.0

0
.0

4
9
9
.4

0
.0

0
.0

0
.0

0
.0
4

0
.0
3

MI
X1

32
1
8
1
.5

6
3
.9
8

0
.0
4

0
.0

2
0
5
2
.2

2
0
9
0
8
1
.2

0
.0

0
.0

0
.0

0
.9
1

0
.9
0

MI
X1

-N
oC

A
32

1
8
2
.0

6
4
.6
8

0
.0
4

0
.0

2
0
5
2
.2

2
0
9
1
1
9
.7

0
.0

0
.0

0
.0

0
.9
0

0
.8
9

MI
X2

32
1
8
1
.5

6
3
.8
6

0
.0
1

0
.0

0
.0

2
0
9
0
8
1
.2

0
.0

0
.0

0
.0

0
.8
9

0
.8
8

al
lp

re
so

l
32

1
8
1
.5

6
3
.4
8

0
.0
7

0
.0

2
1
6
2
.9

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
3

al
lp

ro
p

32
1
8
1
.5

6
3
.9
4

0
.0
1

0
.0

0
.0

2
0
9
0
8
1
.2

0
.0

0
.0

0
.0

0
.8
8

0
.8
7

al
lp

ro
p-

DG
Z

32
1
8
1
.5

6
4
.0
1

0
.0
1

0
.0

0
.0

2
0
9
0
8
1
.2

0
.0

0
.0

0
.0

0
.9
0

0
.8
9

al
lp

re
so

l-
pr

op
32

1
8
1
.5

6
3
.9
2

0
.0
8

0
.0

2
1
6
2
.9

2
0
9
0
8
1
.2

0
.0

0
.0

0
.0

0
.8
8

0
.8
7

LP
A-

no
pr

es
ol

5
6
7
.3

2
7
3
7
.1
6

0
.0
0

0
.0

0
.0

0
.0

0
.0

2
4
9
3
4
.4

0
.0

1
.4
2

0
.0
0

LP
A-

DG
Z

5
6
7
.3

2
7
4
0
.7
2

0
.0
0

0
.0

0
.0

0
.0

0
.0

2
4
9
4
0
.7

0
.0

1
.4
2

0
.0
1

LP
A-

DZ
I

4
6
7
.5

2
7
3
4
.9
4

0
.0
0

0
.0

0
.0

0
.0

0
.0

2
4
9
9
5
.8

0
.0

1
.4
2

0
.0
0

LP
A-

TM
5

6
7
.3

2
7
3
4
.4
4

0
.0
0

0
.0

0
.0

0
.0

0
.0

2
4
9
1
0
.2

0
.0

1
.4
3

0
.0
0

LP
A-

TB
-P

re
4

6
7
.5

2
7
3
6
.7
0

0
.0
0

0
.0

0
.0

0
.0

0
.0

2
4
9
8
8
.4

0
.0

1
.4
5

0
.0
0

LP
A-

2M
L

5
6
7
.5

2
7
3
5
.2
8

0
.0
2

0
.0

1
1
0
.6

0
.0

0
.0

2
4
9
7
9
.4

0
.0

1
.4
6

0
.0
0

LP
A-

2M
P

5
6
7
.5

2
7
3
5
.1
1

0
.0
2

0
.0

0
.0

0
.0

0
.0

2
5
0
0
4
.1

0
.0

1
.4
5

0
.0
0

LP
A-

2M
V

5
6
7
.7

2
7
3
4
.8
1

0
.0
3

0
.0

2
0
5
2
.2

0
.0

0
.0

2
4
8
9
2
.2

0
.0

1
.4
4

0
.0
0

LP
A-

Pr
op

UB
-P

re
4

6
7
.3

2
7
3
5
.3
8

0
.0
1

0
.0

0
.0

0
.0

0
.0

2
4
9
3
6
.4

0
.0

1
.4
2

0
.0
1

LP
A-

Pr
op

UB
4

6
7
.2

2
7
3
6
.9
3

0
.0
1

0
.0

0
.0

2
6
0
7
1
.9

0
.0

2
4
9
4
2
.1

0
.0

1
.7
7

0
.3
1

LP
A-

Pr
op

TB
5

6
7
.6

2
7
3
5
.2
1

0
.0
0

0
.0

0
.0

1
9
4
.1

0
.0

2
5
0
1
2
.2

0
.0

1
.4
1

0
.0
0

LP
A-

MI
X1

4
6
7
.4

2
7
3
8
.4
9

0
.0
4

0
.0

2
0
5
2
.2

2
6
0
6
5
.8

0
.0

2
4
9
1
5
.2

0
.0

1
.7
7

0
.3
0

LP
A-

MI
X2

4
6
7
.3

2
7
3
7
.8
9

0
.0
1

0
.0

0
.0

2
6
0
4
6
.8

0
.0

2
4
9
3
4
.2

0
.0

1
.7
9

0
.2
9

LP
A-

MI
X2

-N
oC

A
5

5
7
.5

2
4
0
8
.4
0

0
.0
1

0
.0

0
.0

2
4
9
6
4
.9

0
.0

2
2
1
5
3
.9

0
.0

1
.6
1

0
.2
8

LP
A-

al
lp

re
so

l
4

6
7
.5

2
7
3
6
.8
8

0
.0
7

0
.0

2
1
6
2
.9

0
.0

0
.0

2
4
9
6
5
.7

0
.0

1
.4
4

0
.0
0

LP
A-

al
lp

ro
p

5
6
7
.4

2
7
3
5
.6
4

0
.0
1

0
.0

0
.0

2
6
0
8
3
.1

0
.0

2
4
9
5
8
.2

0
.0

1
.8
0

0
.3
0

LP
A-

al
lp

re
so

l-
pr

op
5

6
7
.3

2
7
3
9
.2
4

0
.0
8

0
.0

2
1
6
2
.9

2
6
0
5
6
.8

0
.0

2
4
9
1
3
.6

0
.0

1
.7
7

0
.3
0

LP
E-

MI
X2

1
7
3
1
5
4
8
.2

3
0
7
4
.3
5

0
.0
1

0
.0

0
.0

2
8
5
6
0
4
2
.9

0
.0

6
2
9
9
8
.1

0
.0

3
0
.5
1

2
7
.7
0

CO
NC

:
MI

X1
+L

PA
-M

IX
2

29
1
6
8
.8

9
3
.5
2

0
.0
1

0
.0

0
.0

1
0
0
.0

0
.0

0
.0

0
.0

0
.0
0

0
.0
0

215

Chapter 7. Conclusion and Outlook
T
ab

le
7.3.

C
om

parison
of

presolving
routines

using
the

SD
P

-
and

LP
-based

approach
for

the
46

R
estricted

Isom
etry

P
roperty

(R
IP

)
instances.

SD
P

presolving
SD

P
constraints

SD
P

tim
ings

setting
#

opt
#

nodes
tim

e
tim

e
#

reds
#

addcons
#

prop
#

reds
#

cuts
#

cutoff
total

prop

nopresol
36

4
3
7
6
.2

2
5
9
.7
0

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
8

0
.0
4

DGZ
36

4
4
4
3
.0

2
9
6
.4
5

0
.0
0

4
3
.3

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
8

0
.0
5

DZI
36

4
3
7
6
.3

2
5
9
.9
5

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
8

0
.0
5

TM
36

4
3
6
9
.4

2
6
0
.1
7

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
9

0
.0
5

TB-Pre
36

4
3
7
6
.1

2
5
9
.7
3

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
8

0
.0
5

2ML
36

4
1
7
3
.6

2
8
1
.7
8

0
.0
2

0
.0

9
9
4
.1

0
.0

0
.0

0
.0

0
.0

0
.0
7

0
.0
4

2MP
36

4
3
7
1
.5

2
5
9
.5
2

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
7

0
.0
5

2MV
36

4
3
7
6
.2

2
6
1
.1
8

0
.0
4

0
.0

1
9
8
8
.3

0
.0

0
.0

0
.0

0
.0

0
.0
8

0
.0
5

PropUB-Pre
36

2
7
5
5
.9

1
9
8
.0
9

0
.0
1

1
9
8
8
.3

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
7

0
.0
4

PropUB
36

2
7
5
6
.7

1
9
9
.0
5

0
.0
1

1
9
8
8
.3

0
.0

1
8
4
9
2
9
.1

0
.2

0
.0

0
.0

1
.5
8

1
.5
6

PropTB
36

4
3
7
7
.1

2
5
9
.6
7

0
.0
0

0
.0

0
.0

2
5
0
4
9
.6

0
.0

0
.0

0
.0

0
.0
7

0
.0
5

MIX1
36

2
7
5
9
.5

1
9
4
.1
1

0
.0
4

1
9
8
8
.3

1
9
8
8
.3

1
8
6
0
0
4
.4

0
.2

0
.0

0
.0

1
.6
2

1
.6
0

MIX1-NoCA
36

2
7
6
1
.9

1
9
3
.7
1

0
.0
4

1
9
8
8
.3

1
9
8
8
.3

1
8
6
2
5
4
.2

0
.2

0
.0

0
.0

1
.5
8

1
.5
6

MIX2
36

2
7
5
7
.6

2
2
5
.4
3

0
.0
1

2
0
3
1
.5

0
.0

1
8
3
4
8
9
.4

5
4
9
2
.2

0
.0

0
.0

1
.5
8

1
.5
6

allpresol
36

2
7
6
8
.3

2
2
7
.8
9

0
.0
6

2
0
3
1
.5

2
9
8
2
.4

0
.0

0
.0

0
.0

0
.0

0
.0
6

0
.0
3

allprop
36

2
7
5
5
.0

1
9
9
.1
6

0
.0
1

1
9
8
8
.3

0
.0

1
8
4
5
9
2
.3

0
.2

0
.0

0
.0

1
.5
9

1
.5
7

allprop-DGZ
36

2
7
5
5
.7

2
2
5
.1
7

0
.0
1

2
0
3
1
.5

0
.0

1
8
3
3
6
0
.7

5
4
9
2
.2

0
.0

0
.0

1
.5
9

1
.5
7

allpresol-prop
36

2
7
5
7
.7

2
2
5
.3
7

0
.0
6

2
0
3
1
.5

2
9
8
2
.4

1
8
3
4
8
4
.5

5
0
1
7
.5

0
.0

0
.2

1
.5
9

1
.5
7

LPA-nopresol
0

3
5
.7

3
6
0
0
.3
2

0
.0
0

0
.0

0
.0

0
.0

0
.0

1
2
7
7
9
.8

0
.0

0
.6
1

0
.0
0

LPA-DGZ
0

3
6
.7

3
6
0
0
.5
1

0
.0
0

4
3
.3

0
.0

0
.0

0
.0

1
3
2
4
0
.9

0
.0

0
.6
4

0
.0
0

LPA-DZI
0

3
5
.9

3
6
0
0
.4
0

0
.0
0

0
.0

0
.0

0
.0

0
.0

1
2
8
2
9
.6

0
.0

0
.6
0

0
.0
0

LPA-TM
0

3
6
.3

3
6
0
0
.4
2

0
.0
0

0
.0

0
.0

0
.0

0
.0

1
2
9
9
1
.6

0
.0

0
.6
4

0
.0
0

LPA-TB-Pre
0

3
5
.9

3
6
0
0
.5
8

0
.0
0

0
.0

0
.0

0
.0

0
.0

1
2
8
9
5
.0

0
.0

0
.6
1

0
.0
0

LPA-2ML
0

3
7
.4

3
6
0
0
.3
8

0
.0
2

0
.0

9
9
4
.1

0
.0

0
.0

1
3
2
1
8
.0

0
.0

0
.6
5

0
.0
0

LPA-2MP
0

3
6
.2

3
6
0
0
.5
1

0
.0
0

0
.0

0
.0

0
.0

0
.0

1
2
9
2
4
.5

0
.0

0
.6
3

0
.0
0

LPA-2MV
0

3
6
.3

3
6
0
0
.7
0

0
.0
3

0
.0

1
9
8
8
.3

0
.0

0
.0

1
2
9
2
8
.0

0
.0

0
.6
2

0
.0
0

LPA-PropUB-Pre
0

3
0
.1

3
6
0
0
.7
7

0
.0
1

1
9
8
8
.3

0
.0

0
.0

0
.0

1
3
5
0
7
.7

0
.0

0
.6
2

0
.0
0

LPA-PropUB
0

2
9
.9

3
6
0
0
.9
0

0
.0
1

1
9
8
8
.3

0
.0

1
0
3
5
5
.9

0
.0

1
3
4
3
3
.2

0
.0

0
.7
4

0
.1
0

LPA-PropTB
0

3
5
.8

3
6
0
0
.4
8

0
.0
0

0
.0

0
.0

1
2
2
.1

0
.0

1
2
8
7
0
.5

0
.0

0
.6
2

0
.0
0

LPA-MIX1
0

2
9
.5

3
6
0
0
.4
0

0
.0
4

1
9
8
8
.3

1
9
8
8
.3

1
0
9
2
7
.8

0
.0

1
3
6
7
3
.1

0
.0

0
.7
5

0
.1
0

LPA-MIX2
0

2
9
.9

3
6
0
0
.6
4

0
.0
1

2
0
3
1
.5

0
.0

1
0
6
4
6
.2

0
.0

1
3
7
7
8
.3

0
.0

0
.7
7

0
.1
0

LPA-MIX2-NoCA
0

3
0
.0

3
6
0
0
.7
0

0
.0
1

2
0
3
1
.5

0
.0

1
0
6
5
2
.8

0
.0

1
3
7
7
7
.7

0
.0

0
.7
6

0
.1
0

LPA-allpresol
0

3
2
.2

3
6
0
0
.5
6

0
.0
6

2
0
3
1
.5

2
9
8
2
.4

0
.0

0
.0

1
4
0
9
5
.3

0
.0

0
.6
9

0
.0
0

LPA-allprop
0

2
9
.8

3
6
0
0
.6
0

0
.0
1

1
9
8
8
.3

0
.0

1
0
3
9
3
.3

0
.0

1
3
4
0
2
.5

0
.0

0
.7
4

0
.0
9

LPA-allpresol-prop
0

3
2
.3

3
6
0
0
.7
6

0
.0
6

2
0
3
1
.5

2
9
8
2
.4

1
0
9
2
0
.9

0
.0

1
4
1
3
1
.2

0
.0

0
.8
1

0
.1
1

LPE-MIX2
33

4
1
3
7
3
.9

3
6
6
.9
8

0
.0
1

2
0
3
1
.5

0
.0

5
3
2
2
1
0
.1

3
5
9
3
6
8
.7

1
3
1
4
8
4
.5

6
4
.8

7
.0
2

4
.2
7

CONC:
MIX1+LPA-MIX2

30
1
3
7
1
.2

5
1
3
.6
9

0
.0
1

2
0
3
1
.5

0
.0

7
9
.6

0
.0

0
.0

0
.0

0
.0
0

0
.0
0

216

B. Computational Results for MISDP Presolving
T
ab

le
7.

4.
C

om
pa

ri
so

n
of

pr
es

ol
vi

ng
ro

ut
in

es
us

in
g

th
e

SD
P

-
an

d
LP

-b
as

ed
ap

pr
oa

ch
fo

r
th

e
26

ra
nd

om
M

IS
D

P
(R

N
D

)
in

st
an

ce
s.

SD
P

pr
es

ol
vi

ng
SD

P
co

ns
tr

ai
nt

s
SD

P
ti

m
in

gs
se

tt
in

g
#

op
t

#
no

de
s

ti
m

e
ti

m
e

#
re

ds
#

ad
dc

on
s

#
pr

op
#

re
ds

#
cu

ts
#

cu
to

ff
to

ta
l

pr
op

no
pr

es
ol

25
9
8
.4

2
6
8
.5
8

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

DG
Z

25
9
8
.3

2
6
8
.8
5

0
.0
0

0
.0

9
6
.9

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
0

DZ
I

25
9
8
.3

2
6
9
.7
3

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

TM
25

9
8
.3

2
6
8
.7
8

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

TB
-P

re
25

9
8
.3

2
6
8
.4
4

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
0

2M
L

25
9
8
.3

2
7
0
.3
7

0
.0
3

0
.0

4
7
9
7
.7

0
.0

0
.0

0
.0

0
.0

0
.0
4

0
.0
0

2M
P

25
9
8
.3

2
6
8
.7
8

0
.0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

2M
V

25
9
8
.3

2
6
9
.0
2

0
.0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

Pr
op

UB
-P

re
25

9
8
.3

2
6
9
.0
5

0
.0
1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

Pr
op

UB
25

9
8
.3

2
6
8
.6
9

0
.0
1

0
.0

0
.0

2
9
0
3
.5

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

Pr
op

TB
25

9
8
.3

2
6
9
.0
0

0
.0
0

0
.0

0
.0

1
2
0
.6

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

MI
X1

25
9
8
.3

2
6
8
.9
9

0
.0
2

0
.0

0
.0

2
9
0
3
.5

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

MI
X1

-N
oC

A
25

9
8
.3

2
6
9
.1
5

0
.0
2

0
.0

0
.0

2
9
0
3
.5

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

MI
X2

25
9
8
.4

2
6
9
.0
3

0
.0
1

0
.0

9
6
.9

2
9
0
3
.6

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

al
lp

re
so

l
25

9
8
.3

2
7
0
.2
6

0
.0
5

0
.0

4
8
9
4
.6

0
.0

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

al
lp

ro
p

25
9
8
.4

2
6
8
.8
1

0
.0
1

0
.0

0
.0

2
9
0
3
.6

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

al
lp

ro
p-

DG
Z

25
9
8
.4

2
6
8
.6
4

0
.0
1

0
.0

9
6
.9

2
9
0
3
.6

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

al
lp

re
so

l-
pr

op
25

9
8
.3

2
7
0
.4
6

0
.0
5

0
.0

4
8
9
4
.6

2
9
0
3
.5

0
.0

0
.0

0
.0

0
.0
3

0
.0
0

LP
A-

no
pr

es
ol

26
9
9
.8

4
1
3
.6
3

0
.0
0

0
.0

0
.0

0
.0

0
.0

4
1
5
6
1
.1

0
.0

1
0
4
.2
0

0
.0
0

LP
A-

DG
Z

25
9
7
.6

4
2
3
.2
7

0
.0
0

0
.0

9
6
.9

0
.0

0
.0

4
3
5
9
9
.4

0
.0

1
0
5
.2
6

0
.0
0

LP
A-

DZ
I

26
9
9
.8

4
0
9
.1
2

0
.0
0

0
.0

0
.0

0
.0

0
.0

4
1
5
6
1
.1

0
.0

1
0
2
.8
5

0
.0
0

LP
A-

TM
26

9
9
.8

4
1
2
.7
5

0
.0
0

0
.0

0
.0

0
.0

0
.0

4
1
5
6
1
.1

0
.0

1
0
3
.5
6

0
.0
0

LP
A-

TB
-P

re
26

9
9
.8

4
1
2
.2
9

0
.0
0

0
.0

0
.0

0
.0

0
.0

4
1
5
6
1
.1

0
.0

1
0
3
.5
0

0
.0
0

LP
A-

2M
L

25
9
6
.0

4
1
7
.8
9

0
.0
3

0
.0

4
7
9
7
.7

0
.0

0
.0

4
2
1
5
9
.3

0
.0

1
0
2
.7
0

0
.0
0

LP
A-

2M
P

26
9
9
.8

4
1
1
.5
4

0
.0
0

0
.0

0
.0

0
.0

0
.0

4
1
5
6
1
.1

0
.0

1
0
3
.8
1

0
.0
0

LP
A-

2M
V

26
9
9
.8

4
1
2
.0
7

0
.0
1

0
.0

0
.0

0
.0

0
.0

4
1
5
6
1
.1

0
.0

1
0
3
.2
9

0
.0
0

LP
A-

Pr
op

UB
-P

re
26

9
9
.8

4
1
3
.2
1

0
.0
0

0
.0

0
.0

0
.0

0
.0

4
1
5
6
1
.1

0
.0

1
0
3
.3
6

0
.0
0

LP
A-

Pr
op

UB
26

9
9
.8

4
1
3
.6
3

0
.0
0

0
.0

0
.0

2
1
9
3
.6

0
.0

4
1
5
6
1
.1

0
.0

1
0
4
.0
6

0
.0
0

LP
A-

Pr
op

TB
26

9
9
.8

4
1
2
.0
4

0
.0
0

0
.0

0
.0

1
6
1
.3

0
.0

4
1
5
6
1
.1

0
.0

1
0
3
.6
5

0
.0
0

LP
A-

MI
X1

26
9
9
.8

4
1
2
.4
5

0
.0
1

0
.0

0
.0

2
1
9
3
.6

0
.0

4
1
5
6
1
.1

0
.0

1
0
3
.3
9

0
.0
0

LP
A-

MI
X2

25
9
7
.6

4
2
2
.8
7

0
.0
1

0
.0

9
6
.9

2
0
6
4
.0

0
.0

4
3
5
2
7
.3

0
.0

1
0
5
.4
4

0
.0
0

LP
A-

MI
X2

-N
oC

A
25

9
8
.6

4
1
8
.6
6

0
.0
1

0
.0

9
6
.9

1
8
2
8
.1

0
.0

4
4
1
5
7
.1

0
.0

1
0
6
.4
2

0
.0
0

LP
A-

al
lp

re
so

l
25

9
5
.4

4
1
9
.3
2

0
.0
5

0
.0

4
8
9
4
.6

0
.0

0
.0

4
0
5
3
0
.2

0
.0

1
0
1
.4
7

0
.0
0

LP
A-

al
lp

ro
p

26
9
9
.8

4
1
2
.9
9

0
.0
0

0
.0

0
.0

2
1
9
3
.6

0
.0

4
1
5
6
1
.1

0
.0

1
0
3
.6
8

0
.0
0

LP
A-

al
lp

re
so

l-
pr

op
25

9
5
.4

4
1
8
.4
0

0
.0
5

0
.0

4
8
9
4
.6

2
1
9
1
.8

0
.0

4
0
5
8
9
.2

0
.0

1
0
1
.1
8

0
.0
0

LP
E-

MI
X2

7
3
7
4
9
1
.6

2
2
3
2
.6
5

0
.0
1

0
.0

9
6
.9

3
2
5
1
2
5
.5

0
.0

7
8
3
2
9
.4

0
.0

1
3
3
.6
1

0
.0
9

CO
NC

:
MI

X1
+L

PA
-M

IX
2

25
6
7
.6

1
7
9
.9
2

0
.0
1

0
.0

9
6
.9

7
5
.0

0
.0

0
.0

0
.0

0
.0
0

0
.0
0

217

Chapter 7. Conclusion and Outlook
T
ab

le
7.5.

C
om

parison
of

presolving
routines

using
the

SD
P

-
and

LP
-based

approach
for

the
38

T
russ

T
opology

D
e-

sign
(T

T
D

)
instances.

SD
P

presolving
SD

P
constraints

SD
P

tim
ings

setting
#

opt
#

nodes
tim

e
tim

e
#

reds
#

addcons
#

prop
#

reds
#

cuts
#

cutoff
total

prop

nopresol
34

2
3
8
4
0
.6

1
8
7
.3
6

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
.4
6

0
.3
6

DGZ
34

2
3
8
3
9
.7

1
8
7
.1
6

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
.4
8

0
.3
4

DZI
34

1
7
5
4
7
.3

1
4
6
.7
3

0
.0
0

0
.0

3
.6

0
.0

0
.0

0
.0

0
.0

1
.2
3

0
.2
6

TM
34

2
3
8
4
0
.5

1
8
8
.8
1

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
.5
0

0
.3
6

TB-Pre
33

2
3
7
0
0
.8

1
9
1
.8
5

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
.5
2

0
.3
8

2ML
34

2
3
8
4
2
.6

1
8
8
.1
1

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
.4
9

0
.3
4

2MP
34

2
3
8
3
9
.8

1
8
8
.0
1

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
.4
5

0
.3
4

2MV
33

2
1
5
6
1
.9

1
6
7
.3
3

0
.0
0

0
.0

6
2
.1

0
.0

0
.0

0
.0

0
.0

1
.4
3

0
.3
2

PropUB-Pre
34

2
3
8
4
1
.9

1
8
8
.0
0

0
.0
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
.4
7

0
.3
4

PropUB
34

2
3
8
4
1
.3

1
8
7
.6
9

0
.0
0

0
.0

0
.0

2
7
1
8
6
3
6
.0

0
.0

0
.0

0
.0

1
.5
8

0
.5
0

PropTB
33

1
8
6
9
5
.5

1
8
2
.7
5

0
.0
0

0
.0

0
.0

8
3
7
3
7
.6

1
6
4
4
0
.6

0
.0

1
6
0
9
.0

3
3
.2
4

3
2
.5
8

MIX1
33

1
4
3
9
7
.8

1
4
7
.7
5

0
.0
0

0
.0

6
5
.7

1
7
1
3
8
9
4
.0

1
0
7
5
6
.0

0
.0

7
2
1
.2

2
7
.5
7

2
7
.0
5

MIX1-NoCA
33

1
4
2
7
4
.5

1
4
5
.7
1

0
.0
0

0
.0

6
5
.7

1
7
1
8
6
9
8
.6

1
0
8
2
0
.2

0
.0

7
2
6
.7

2
6
.6
8

2
6
.1
5

MIX2
34

1
7
5
4
7
.1

1
4
6
.4
2

0
.0
0

0
.0

3
.6

2
1
2
9
0
0
8
.7

0
.0

0
.0

0
.0

1
.3
1

0
.4
0

allpresol
34

1
8
3
9
8
.9

1
5
1
.3
0

0
.0
0

0
.0

6
5
.7

0
.0

0
.0

0
.0

0
.0

1
.2
7

0
.3
0

allprop
32

1
2
4
5
4
.4

2
5
2
.3
5

0
.0
0

0
.0

0
.0

5
7
8
8
6
5
.9

2
0
1
2
3
.6

0
.0

1
4
5
4
9
.5

1
5
1
.8
9

1
5
1
.8
5

allprop-DGZ
32

1
2
4
2
8
.8

2
5
3
.5
2

0
.0
0

0
.0

0
.0

5
6
8
2
2
6
.6

1
9
7
6
8
.7

0
.0

1
4
4
5
3
.9

1
5
2
.9
2

1
5
2
.8
8

allpresol-prop
34

9
2
9
3
.6

1
9
2
.4
7

0
.0
0

0
.0

6
5
.7

4
4
0
8
6
5
.0

2
1
2
4
2
.3

0
.0

9
0
8
0
.5

1
1
5
.2
6

1
1
5
.2
2

LPA-nopresol
30

1
7
6
4
6
.4

2
1
0
.5
5

0
.0
0

0
.0

0
.0

0
.0

0
.0

1
5
5
4
9
7
.6

5
2
7
.1

5
.2
0

0
.0
7

LPA-DGZ
30

1
7
6
3
5
.4

2
1
0
.6
7

0
.0
0

0
.0

0
.0

0
.0

0
.0

1
5
5
2
4
5
.6

5
2
7
.1

5
.2
3

0
.0
7

LPA-DZI
26

1
3
9
3
1
.7

1
6
9
.2
7

0
.0
0

0
.0

3
.6

0
.0

0
.0

1
5
4
4
6
3
.6

2
2
2
.1

4
.7
3

0
.0
5

LPA-TM
30

1
7
6
2
8
.5

2
1
2
.6
9

0
.0
0

0
.0

0
.0

0
.0

0
.0

1
5
5
0
7
9
.4

5
2
7
.1

5
.1
8

0
.0
7

LPA-TB-Pre
28

1
8
1
6
8
.5

2
1
8
.1
2

0
.0
0

0
.0

0
.0

0
.0

0
.0

1
6
1
1
2
8
.7

5
5
1
.1

5
.4
4

0
.0
7

LPA-2ML
30

1
7
6
2
0
.8

2
1
0
.2
8

0
.0
0

0
.0

0
.0

0
.0

0
.0

1
5
5
0
6
5
.0

5
2
7
.1

5
.2
0

0
.0
6

LPA-2MP
29

1
7
6
3
7
.8

2
1
3
.5
7

0
.0
0

0
.0

0
.0

0
.0

0
.0

1
5
5
3
0
4
.2

5
2
7
.1

5
.2
1

0
.0
6

LPA-2MV
27

1
3
9
3
7
.4

1
6
9
.6
4

0
.0
0

0
.0

6
2
.1

0
.0

0
.0

1
4
8
9
9
2
.6

2
1
5
.3

4
.7
3

0
.0
7

LPA-PropUB-Pre
30

1
7
6
1
7
.8

2
1
0
.7
1

0
.0
0

0
.0

0
.0

0
.0

0
.0

1
5
4
8
9
7
.7

5
2
7
.1

5
.1
8

0
.0
7

LPA-PropUB
30

1
7
6
5
0
.9

2
1
2
.8
2

0
.0
0

0
.0

0
.0

3
4
3
2
9
2
.3

0
.0

1
5
5
5
5
5
.5

5
2
7
.7

5
.2
0

0
.1
1

LPA-PropTB
29

1
4
6
0
2
.5

2
3
1
.7
0

0
.0
0

0
.0

0
.0

7
2
5
2
9
.8

2
2
9
1
0
.9

1
7
0
5
6
1
.6

2
0
2
6
.9

3
5
.2
7

3
0
.9
7

LPA-MIX1
28

1
0
9
1
8
.4

1
6
5
.2
5

0
.0
0

0
.0

6
5
.7

2
8
5
3
8
0
.5

1
6
9
6
5
.0

1
3
8
4
9
7
.7

7
3
6
.9

2
7
.0
1

2
3
.6
8

LPA-MIX2
26

1
3
9
8
3
.5

1
6
8
.9
7

0
.0
0

0
.0

3
.6

3
3
2
7
4
4
.0

0
.0

1
5
5
1
5
7
.1

2
2
4
.2

4
.8
1

0
.1
1

LPA-MIX2-NoCA
29

1
3
9
3
5
.7

1
5
4
.2
4

0
.0
0

0
.0

3
.6

2
7
0
2
8
3
.5

0
.0

1
3
3
8
2
3
.3

2
5
2
.4

4
.3
6

0
.1
0

LPA-allpresol
27

1
4
5
4
8
.4

1
6
3
.7
2

0
.0
0

0
.0

6
5
.7

0
.0

0
.0

1
5
2
8
2
1
.3

2
3
0
.0

4
.7
5

0
.0
6

LPA-allprop
31

1
3
8
5
7
.6

3
1
1
.6
9

0
.0
0

0
.0

0
.0

2
7
7
8
9
4
.1

1
5
5
3
7
.3

1
2
4
1
2
6
.5

4
4
0
0
.9

1
3
9
.8
9

1
3
1
.0
6

LPA-allpresol-prop
28

1
0
5
2
5
.4

2
5
1
.5
3

0
.0
0

0
.0

6
5
.7

2
3
7
6
9
1
.5

2
0
5
0
2
.8

1
3
7
7
7
6
.4

4
3
0
0
.1

1
1
4
.2
2

1
0
6
.3
9

LPE-MIX2
11

4
2
1
1
2
8
.0

9
3
8
.8
5

0
.0
0

0
.0

3
.6

1
9
2
0
6
2
2
.5

0
.0

3
4
8
7
9
2
.6

1
5
3
0
1
.8

1
3
.8
0

0
.7
0

CONC:
MIX1+LPA-MIX2

33
9
1
2
5
.8

9
3
.5
4

0
.0
0

0
.0

3
.6

9
1
.5

0
.0

0
.0

0
.0

0
.0
0

0
.0
0

218

Bibliography

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, TU Berlin, 2007.
http://opus.kobv.de/tuberlin/volltexte/2007/1611/. [→11, 158]

[2] T. Achterberg. Conflict analysis in mixed integer programming. Discrete
Optimization, 4(1):4–20, 2007. [→159]

[3] T. Achterberg and R. Wunderling. Mixed integer programming: Analyzing 12
years of progress. In M. Jünger and G. Reinelt, editors, Facets of Combinato-
rial Optimization, pages 449–481. Springer Berlin Heidelberg, 2013. [→152]

[4] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. Presolve
reductions in mixed integer programming. INFORMS Journal on Computing,
32(2):473–506, 2020. [→158]

[5] B. Adcock, A. C. Hansen, C. Poon, and B. Roman. Breaking the coherence
barrier: A new theory for compressed sensing. In Forum of Mathematics,
Sigma, volume 5. Cambridge University Press, 2017. [→94]

[6] F. Affentranger and R. Schneider. Random projections of regular simplices.
Discrete & Computational Geometry, 7(3):219–226, 1992. [→100]

[7] A. A. Ahmadi and G. Hall. DC decomposition of nonconvex polynomials with
algebraic techniques. Mathematical Programming, 169(1):69–94, 2018. [→26]

[8] E. Amaldi and V. Kann. On the approximability of minimizing nonzero vari-
ables or unsatisfied relations in linear systems. Theoretical Computer Science,
209(1):237–260, 1998. [→4]

[9] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp. Living on the edge:
Phase transitions in convex programs with random data. Information and
Inference: A Journal of the IMA, 3(3):224–294, 2014. [→45, 46, 99, 100, 105,
121]

219

http://opus.kobv.de/tuberlin/volltexte/2007/1611/

Bibliography

[10] K. Ardah, M. Haardt, T. Liu, F. Matter, M. Pesavento, and M. E. Pfetsch.
Recovery under side constraints. Preprint, arXiv:2106.09375, 2021. [→3]

[11] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor. Spectrum sensing for
cognitive radio : State-of-the-art and recent advances. IEEE Signal Processing
Magazine, 29(3):101–116, 2012. [→66]

[12] A. Aïssa-El-Bey, D. Pastor, S. M. A. Sbaï, and Y. Fadlallah. Sparsity-based
recovery of finite alphabet solutions to underdetermined linear systems. IEEE
Transactions on Information Theory, 61(4):2008–2018, 2015. [→67]

[13] A. S. Bandeira, M. Fickus, D. G. Mixon, and P. Wong. The road to deter-
ministic matrices with the restricted isometry property. Journal of Fourier
Analysis and Applications, 19(6):1123–1149, 2013. [→97]

[14] R. G. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, 24
(4):118–121, 2007. [→3]

[15] R. G. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of
the restricted isometry property for random matrices. Constructive Approxi-
mation, 28(3):253–263, 2008. [→99, 176]

[16] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based com-
pressive sensing. IEEE Transactions on Information Theory, 56(4):1982–2001,
2010. [→95]

[17] A. Bastounis and A. C. Hansen. On the absence of uniform recovery in many
real-world applications of compressed sensing and the restricted isometry prop-
erty and nullspace property in levels. SIAM Journal on Imaging Sciences, 10
(1):335–371, 2017. [→94, 95]

[18] M. Beauchamp. On numerical computation for the distribution of the con-
volution of N independent rectified Gaussian variables. Journal de la Société
Française de Statistique, 159(1):88–111, 2018. [→207]

[19] P. Belotti, S. Cafieri, J. Lee, and L. Liberti. Feasibility-based bounds tight-
ening via fixed points. In W. Wu and O. Daescu, editors, Combinatorial Op-
timization and Applications – 4th International Conference, COCOA 2010,
volume 6508 of Lecture Notes in Computer Science, pages 65–76. Springer,
2010. [→167, 168]

[20] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan.
Mixed-integer nonlinear optimization. Acta Numerica, 22:1–131, 2013. [→158]

220

Bibliography

[21] A. Ben-Tal and A. Nemirovski. Robust truss topology design via semidefinite
programming. SIAM Journal on Optimization, 7(4):991–1016, 1997. [→177]

[22] A. Ben-Tal and A. Nemirovski. On polyhedral approximations of the second-
order cone. Mathematics of Operations Research, 26:193–205, 2001. [→157]

[23] D. Bertsimas and B. Van Parys. Sparse high-dimensional regression: Exact
scalable algorithms and phase transitions. The Annals of Statistics, 48(1):
300–323, 2020. [→175]

[24] D. Bertsimas, R. Cory-Wright, and J. Pauphilet. Solving large-scale sparse
PCA to certifiable (near) optimality. Journal of Machine Learning Research,
23(13):1–35, 2022. [→143, 144, 195]

[25] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van
Doornmalen, L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald,
C. Graczyk, K. Halbig, A. Hoen, C. Hojny, R. van der Hulst, T. Koch,
M. Lübbecke, S. J. Maher, F. Matter, E. Mühmer, B. Müller, M. E. Pfetsch,
D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano, B. Sofranac,
M. Turner, S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, and
J. Witzig. The SCIP Optimization Suite 8.0. ZIB-Report 21-41, Zuse Institute
Berlin, 2021. http://nbn-resolving.de/urn:nbn:de:0297-zib-85309.
[→7, 155]

[26] R. Bixby and E. Rothberg. Progress in computational mixed integer
programming—A look back from the other side of the tipping point. Annals
of Operations Research, 149:37–41, 2007. [→152]

[27] G. Blekherman, S. S. Dey, M. Molinaro, and S. Sun. Sparse PSD approxima-
tion of the PSD cone. Mathematical Programming, pages 1–24, 2020. [→148]

[28] T. Blumensath and M. E. Davies. Sampling theorems for signals from the
union of finite-dimensional linear subspaces. IEEE Transactions on Informa-
tion Theory, 55(4):1872–1882, 2009. [→52, 95]

[29] L. Bordeaux, G. Katsirelos, N. Narodytska, and M. Y. Vardi. The complexity
of integer bound propagation. Journal of Artificial Intelligence Research, 40:
657–676, 2011. [→168]

[30] K. Böröczky and M. Henk. Random projections of regular polytopes. Archiv
der Mathematik, 73(6):465–473, 1999. [→100]

[31] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University
Press, 2004. [→10]

221

http://nbn-resolving.de/urn:nbn:de:0297-zib-85309

Bibliography

[32] G. Braun, S. Fiorini, S. Pokutta, and D. Steurer. Approximation limits of
linear programs (beyond hierarchies). Mathematics of Operations Research,
40(3):756–772, 2015. [→157]

[33] G. Braun, S. Pokutta, and D. Zink. Affine reductions for LPs and SDPs.
Mathematical Programming, 173:281–312, 2019. [→157]

[34] A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical pro-
gramming problems prior to applying the simplex algorithm. Mathematical
Programming, 8(1):54–83, 1975. [→158]

[35] A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse solutions of
systems of equations to sparse modeling of signals and images. SIAM Review,
51(1):34–81, 2009. [→2]

[36] J.-F. Cai and W. Xu. Guarantees of total variation minimization for signal
recovery. Information and Inference: A Journal of the IMA, 4(4):328–353,
2015. [→15]

[37] T. T. Cai and A. Zhang. Sparse representation of a polytope and recovery
of sparse signals and low-rank matrices. IEEE Transactions on Information
Theory, 60(1):122–132, 2014. [→142]

[38] E. Candès and T. Tao. Decoding by linear programming. IEEE Transactions
on Information Theory, 51(12):4203–4215, 2005. [→2, 5, 99, 142]

[39] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information. IEEE
Transactions on Information Theory, 52(2):489–509, 2006. [→2, 6, 29, 142]

[40] E. J. Candès. Compressive sampling. In Proceedings of the International
Congress of Mathematicians (ICM), volume 3, pages 1433–1452. European
Mathematical Society, Madrid, Spain, 2006. [→3]

[41] E. J. Candès. The restricted isometry property and its implications for
compressed sensing. Comptes Rendus Mathematique, 346(9):589–592, 2008.
[→142]

[42] E. J. Candès and D. L. Donoho. New tight frames of curvelets and optimal
representations of objects with piecewise C2 singularities. Communications
on Pure and Applied Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences, 57(2):219–266, 2004. [→15]

222

Bibliography

[43] E. J. Candès and Y. Plan. Tight oracle inequalities for low-rank matrix re-
covery from a minimal number of noisy random measurements. IEEE Trans-
actions on Information Theory, 57(4):2342–2359, 2011. [→29]

[44] E. J. Candès and B. Recht. Simple bounds for recovering low-complexity
models. Mathematical Programming, 141(1):577–589, 2013. [→6, 19, 99, 121,
200]

[45] E. J. Candès and T. Tao. Near-optimal signal recovery from random pro-
jections: Universal encoding strategies? IEEE Transactions on Information
Theory, 52(12):5406–5425, 2006. [→5, 99, 142]

[46] E. J. Candès and M. B. Wakin. An introduction to compressive sampling.
IEEE Signal Processing Magazine, 25(2):21–30, 2008. [→3]

[47] E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall. Compressed sensing
with coherent and redundant dictionaries. Applied and Computational Har-
monic Analysis, 31(1):59–73, 2011. [→15]

[48] T. F. Chan and J. J. Shen. Image processing and analysis: variational, PDE,
wavelet, and stochastic methods, volume 94. SIAM, 2005. [→15]

[49] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. The convex
geometry of linear inverse problems. Foundations of Computational Mathe-
matics, 12(6):805–849, 2012. [→6, 45, 46, 47, 99, 100, 103, 105, 121, 200]

[50] J. Chen and X. Huo. Theoretical results on sparse representations of multiple-
measurement vectors. IEEE Transactions on Signal Processing, 54(12):4634–
4643, 2006. [→52]

[51] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by
basis pursuit. SIAM Review, 43(1):129–159, 2001. [→4]

[52] J. W. Chinneck. Feasibility and Infeasibility in Optimization: Algorithms and
Computational Methods, volume 118 of International Series in Operations Re-
search and Management Sciences. Springer, 2008. [→54]

[53] M. Cho, K. Vijay Mishra, and W. Xu. Computable performance guarantees
for compressed sensing matrices. EURASIP Journal on Advances in Signal
Processing, 2018(1):1–18, 2018. [→125]

[54] C. Coey, M. Lubin, and J. P. Vielma. Outer approximation with conic certifi-
cates for mixed-integer convex problems. Mathematical Programming Compu-
tation, 12:249–293, 2020. [→155]

223

Bibliography

[55] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term
approximation. Journal of the American Mathematical Society, 22(1):211–231,
2009. [→5, 13, 62]

[56] S. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado. Sparse solutions to linear
inverse problems with multiple measurement vectors. IEEE Transactions on
Signal Processing, 53(7):2477–2488, 2005. [→52]

[57] H. Crowder, E. L. Johnson, and M. Padberg. Solving large-scale zero-one linear
programming problems. Operations Research, 31:803–834, 1983. [→158]

[58] R. J. Dakin. A tree-search algorithm for mixed integer programming problems.
The Computer Journal, 8(3):250–255, 1965. [→11, 154]

[59] A. d’Aspremont and L. El Ghaoui. Testing the nullspace property using
semidefinite programming. Mathematical Programming, 127(1):123–144, 2011.
[→123, 125, 128, 129]

[60] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. Lanckriet. A direct
formulation for sparse PCA using semidefinite programming. SIAM Review,
49(3):434–448, 2007. [→195]

[61] M. A. Davenport and J. Romberg. An overview of low-rank matrix recov-
ery from incomplete observations. IEEE Journal of Selected Topics in Signal
Processing, 10(4):608–622, 2016. [→99]

[62] R. A. DeVore. Deterministic constructions of compressed sensing matrices.
Journal of Complexity, 23(4):918–925, 2007. [→97]

[63] S. S. Dey and M. Molinaro. Theoretical challenges towards cutting-plane
selection. Mathematical Programming, 170(1):237–266, 2018. [→148]

[64] S. S. Dey, A. M. Kazachkov, A. Lodi, and G. Munoz. Cutting plane gener-
ation through sparse principal component analysis. Preprint, Optimization
Online, 2021. http://www.optimization-online.org/DB_HTML/2021/02/
8259.html. [→148]

[65] S. S. Dey, R. Mazumder, and G. Wang. Using ℓ1-relaxation and integer pro-
gramming to obtain dual bounds for sparse PCA. Operations Research, 70(3):
1914–1932, 2021. [→195]

[66] S. Dirksen, G. Lecué, and H. Rauhut. On the gap between restricted isometry
properties and sparse recovery conditions. IEEE Transactions on Information
Theory, 64(8):5478–5487, 2018. [→99, 201]

224

http://www.optimization-online.org/DB_HTML/2021/02/8259.html
http://www.optimization-online.org/DB_HTML/2021/02/8259.html

Bibliography

[67] D. L. Donoho. Neighborly polytopes and sparse solutions of underdetermined
linear equations. Technical Report 2005-4, Dept. of Statistics, Stanford Univ.,
2005. [→64, 100]

[68] D. L. Donoho. High-dimensional centrally symmetric polytopes with neigh-
borliness proportional to dimension. Discrete & Computational Geometry, 35
(4):617–652, 2006. [→100]

[69] D. L. Donoho. Compressed sensing. IEEE Transactions on Information The-
ory, 52(4):1289–1306, 2006. [→2]

[70] D. L. Donoho and M. Elad. Optimally sparse representation in general
(nonorthogonal) dictionaries via ℓ1 minimization. Proceedings of the National
Academy of Sciences, 100(5):2197–2202, 2003. [→5]

[71] D. L. Donoho and X. Huo. Uncertainty principles and ideal atomic decom-
position. IEEE Transactions on Information Theory, 47(7):2845–2862, 2001.
[→5, 62]

[72] D. L. Donoho and B. F. Logan. Signal recovery and the large sieve. SIAM
Journal on Applied Mathematics, 52(2):577–591, 1992. [→4]

[73] D. L. Donoho and J. Tanner. Sparse nonnegative solution of underdetermined
linear equations by linear programming. Proceedings of the National Academy
of Sciences, 102(27):9446–9451, 2005. [→64, 100]

[74] D. L. Donoho and J. Tanner. Sparse nonnegative solution of underdetermined
linear equations by linear programming. Technical Report 2005-6, Dept. of
Statistics, Stanford Univ., 2005. [→64, 100]

[75] D. L. Donoho and J. Tanner. Neighborliness of randomly projected simplices
in high dimensions. Proceedings of the National Academy of Sciences, 102(27):
9452–9457, 2005. [→100]

[76] D. L. Donoho and J. Tanner. Thresholds for the recovery of sparse solutions
via l1 minimization. In 2006 40th Annual Conference on Information Sciences
and Systems, pages 202–206, 2006. [→100]

[77] D. L. Donoho and J. Tanner. Counting faces of randomly projected polytopes
when the projection radically lowers dimension. Journal of the American
Mathematical Society, 22(1):1–53, 2009. [→100]

[78] D. L. Donoho and J. Tanner. Precise undersampling theorems. Proceedings of
the IEEE, 98(6):913–924, 2010. [→100]

225

Bibliography

[79] D. L. Donoho and J. Tanner. Counting the faces of randomly-projected hyper-
cubes and orthants, with applications. Discrete & Computational Geometry,
43(3):522–541, 2010. [→100]

[80] M. A. Duran and I. E. Grossmann. An outer-approximation algorithm for a
class of mixed-integer nonlinear programs. Mathematical Programming, 36:
307–339, 1986. [→155]

[81] A. Eisenblätter. Frequency Assignment in GSM Networks: Models, Heuristics,
and Lower Bounds. PhD thesis, TU Berlin, 2001. [→175]

[82] A. Eisenblätter. The semidefinite relaxation of the k-partition polytope is
strong. In W. J. Cook and A. S. Schulz, editors, Proceedings of the 9th Inter-
national IPCO Conference on Integer Programming and Combinatorial Opti-
mization, volume 2337 of Lecture Notes in Computer Science, pages 273–290.
Springer, Berlin Heidelberg, 2002. [→175]

[83] J. Eisert, A. Flinth, B. Groß, I. Roth, and G. Wunder. Hierarchical compressed
sensing. Preprint, arXiv:2104.02721, 2021. [→54, 94]

[84] M. Elad. Sparse and redundant representations: From theory to applications
in signal and image processing. Springer, 2010. [→2]

[85] M. Elad and M. Aharon. Image denoising via sparse and redundant represen-
tations over learned dictionaries. IEEE Transactions on Image Processing, 15
(12):3736–3745, 2006. [→2]

[86] M. Elad and A. Bruckstein. A generalized uncertainty principle and sparse
representation in pairs of bases. IEEE Transactions on Information Theory,
48(9):2558–2567, 2002. [→5]

[87] M. Elad, P. Milanfar, and R. Rubinstein. Analysis versus synthesis in signal
priors. Inverse Problems, 23(3):947–968, 2007. [→15]

[88] Y. C. Eldar and G. Kutyniok. Compressed sensing: Theory and applications.
Cambridge University Press, 2012. [→3]

[89] Y. C. Eldar and M. Mishali. Robust recovery of signals from a structured union
of subspaces. IEEE Transactions on Information Theory, 55(11):5302–5316,
2009. [→52, 95, 202]

[90] Y. C. Eldar, P. Kuppinger, and H. Bölcskei. Block-sparse signals: Uncertainty
relations and efficient recovery. IEEE Transactions on Signal Processing, 58
(6):3042–3054, 2010. [→52]

226

Bibliography

[91] E. Elhamifar and R. Vidal. Block-sparse recovery via convex optimization.
IEEE Transactions on Signal Processing, 60(8):4094–4107, 2012. [→52]

[92] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory,
and applications. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 35(11):2765–2781, 2013. [→53]

[93] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and
Complementarity Problems – Volume II. Springer, 2003. [→171]

[94] M. Fazel. Matrix Rank Minimization with Applications. PhD thesis, Stanford
University, 2002. [→13]

[95] T. Fischer and M. E. Pfetsch. Monoidal cut strengthening and generalized
mixed-integer rounding for disjunctive programs. Operations Research Letters,
45(6):556–560, 2017. [→72]

[96] T. Fischer and M. E. Pfetsch. Branch-and-cut for linear programs with over-
lapping SOS1 constraints. Mathematical Programming Computation, 10(1):
33–68, 2018. [→72, 129]

[97] T. Fischer, G. Hegde, F. Matter, M. Pesavento, M. E. Pfetsch, and A. M.
Tillmann. Joint antenna selection and phase-only beamforming using mixed-
integer nonlinear programming. In WSA 2018; 22nd International ITG Work-
shop on Smart Antennas, pages 1–7, 2018. [→9, 52, 78, 79, 80, 90, xi]

[98] A. Flinth and S. Keiper. Recovery of binary sparse signals with biased mea-
surement matrices. IEEE Transactions on Information Theory, 65(12):8084–
8094, 2019. [→67]

[99] M. Fornasier and H. Rauhut. Compressive sensing. In O. Scherzer, editor,
Handbook of Mathematical Methods in Imaging, pages 187–228. Springer New
York, 2011. [→3]

[100] S. M. Fosson. Non-convex approach to binary compressed sensing. In 2018
52nd Asilomar Conference on Signals, Systems, and Computers, pages 1959–
1963, 2018. [→67]

[101] S. M. Fosson and M. Abuabiah. Recovery of binary sparse signals from com-
pressed linear measurements via polynomial optimization. IEEE Signal Pro-
cessing Letters, 26(7):1070–1074, 2019. [→67]

[102] S. Foucart and R. Gribonval. Real versus complex null space properties
for sparse vector recovery. Comptes Rendus Mathematique, 348(15):863–865,
2010. [→78]

227

Bibliography

[103] S. Foucart and M.-J. Lai. Sparsest solutions of underdetermined linear systems
via ℓq-minimization for 0 < q ≤ 1. Applied and Computational Harmonic
Analysis, 26(3):395–407, 2009. [→142, 143]

[104] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sens-
ing. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New
York, 2013. [→2, 3, 4, 5, 6, 13, 14, 24, 25, 27, 29, 35, 40, 41, 43, 47, 64, 99,
100, 101, 102, 103, 104, 105, 106, 112, 118, 119, 142, 203, 206, 209]

[105] A. Frieze and M. Jerrum. Improved approximation algorithms for MAXk-CUT
and MAX BISECTION. Algorithmica, 18(1):67–81, 1997. [→175]

[106] C. Fritz. Some fixed point basics. In E. Grädel, W. Thomas, and T. Wilke,
editors, Automata Logics, and Infinite Games: A Guide to Current Research,
pages 359–364. Springer Berlin Heidelberg, 2002. [→168]

[107] J.-J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE
Transactions on Information Theory, 50(6):1341–1344, 2004. [→45]

[108] T. Fuchs, D. Gross, P. Jung, F. Krahmer, R. Kueng, and D. Stöger. Proof
methods for robust low-rank matrix recovery. Preprint, arXiv:2106.04382,
2021. [→115]

[109] M. Fukuda, M. Kojima, K. Murota, and K. Nakata. Exploiting sparsity in
semidefinite programming via matrix completion I: General framework. SIAM
Journal on Optimization, 11(3):647–674, 2001. [→54]

[110] T. Gally. Computational Mixed-Integer Semidefinite Programming. PhD the-
sis, TU Darmstadt, 2019. [→147, 155, 158, 159, 160, 174, 175, 176, 178,
179]

[111] T. Gally and M. E. Pfetsch. Computing restricted isometry constants
via mixed-integer semidefinite programming. Preprint, Optimization On-
line, 2016. http://www.optimization-online.org/DB_HTML/2016/04/
5395.html. [→7, 124, 142, 144, 163, 176]

[112] T. Gally, M. E. Pfetsch, and S. Ulbrich. A framework for solving mixed-
integer semidefinite programs. Optimization Methods and Software, 33(3):
594–632, 2017. [→155, 158, 159]

[113] G. Gamrath, T. Fischer, T. Gally, A. M. Gleixner, G. Hendel, T. Koch, S. J.
Maher, M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt,
S. Schenker, R. Schwarz, F. Serrano, Y. Shinano, S. Vigerske, D. Weninger,

228

http://www.optimization-online.org/DB_HTML/2016/04/5395.html
http://www.optimization-online.org/DB_HTML/2016/04/5395.html

Bibliography

M. Winkler, J. T. Witt, and J. Witzig. The SCIP Optimization Suite 3.2. ZIB-
Report 15-60, Zuse Institute Berlin, 2016. http://nbn-resolving.de/urn:
nbn:de:0297-zib-57675. [→129]

[114] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse,
P. Gemander, A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny,
T. Koch, P. Le Bodic, S. J. Maher, F. Matter, M. Miltenberger, E. Müh-
mer, B. Müller, M. E. Pfetsch, F. Schlösser, F. Serrano, Y. Shinano, C. Taw-
fik, S. Vigerske, F. Wegscheider, D. Weninger, and J. Witzig. The SCIP
Optimization Suite 7.0. ZIB-Report 20-10, Zuse Institute Berlin, 2020.
http://nbn-resolving.de/urn:nbn:de:0297-zib-78023. [→129, 173]

[115] F. Gantmacher. Theory of matrices, volume 2. AMS Chelsea Publishing, 1959.
[→147]

[116] D. Ge, X. Jiang, and Y. Ye. A note on the complexity of lp minimization.
Mathematical Programming, 129(2):285–299, 2011. [→203]

[117] P. Gemander, W.-K. Chen, D. Weninger, L. Gottwald, A. Gleixner, and
A. Martin. Two-row and two-column mixed-integer presolve using hashing-
based pairing methods. EURO Journal on Computational Optimization, 8:
205–240, 2020. [→158]

[118] B. Ghaddar, M. F. Anjos, and F. Liers. A branch-and-cut algorithm based
on semidefinite programming for the minimum k-partition problem. Annals
of Operations Research, 188(1):155–188, 2011. [→175]

[119] J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of in-
equalities. ORSA Journal on Computing, 2(1):61–63, 1990. [→54]

[120] A. M. Gleixner, T. Berthold, B. Müller, and S. Weltge. Three enhancements
for optimization-based bound tightening. Journal of Global Optimization, 67
(4):731–757, 2017. [→159]

[121] Y. Gordon. On Milman’s inequality and random subspaces which escape
through a mesh in Rn. In J. Lindenstrauss and V. D. Milman, editors, Geo-
metric Aspects of Functional Analysis, pages 84–106, Berlin, Heidelberg, 1988.
Springer. [→99, 103, 104]

[122] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex program-
ming, version 2.2. http://cvxr.com/cvx, 2014. [→130]

[123] R. Gribonval and M. Nielsen. Sparse representations in unions of bases. IEEE
Transactions on Information Theory, 49(12):3320–3325, 2003. [→5, 14]

229

http://nbn-resolving.de/urn:nbn:de:0297-zib-57675
http://nbn-resolving.de/urn:nbn:de:0297-zib-57675
http://nbn-resolving.de/urn:nbn:de:0297-zib-78023
http://cvxr.com/cvx

Bibliography

[124] K. Gröchenig. Foundations of time-frequency analysis. Applied and Numerical
Harmonic Analysis. Birkhäuser, Boston, 2001. [→15]

[125] G. Hegde, Y. Yang, C. Steffens, and M. Pesavento. Parallel low-complexity
M-PSK detector for large-scale MIMO systems. In 2016 IEEE Sensor Array
and Multichannel Signal Processing Workshop (SAM), pages 1–5, 2016. [→66]

[126] G. Hegde, M. Pesavento, and M. E. Pfetsch. Joint active device identification
and symbol detection using sparse constraints in massive MIMO systems. In
2017 25th European Signal Processing Conference (EUSIPCO), pages 703–707,
2017. [→66]

[127] M. A. Herman and T. Strohmer. High-resolution radar via compressed sensing.
IEEE Transactions on Signal Processing, 57(6):2275–2284, 2009. [→2]

[128] J. Heuer, F. Matter, M. E. Pfetsch, and T. Theobald. Block-sparse recovery
of semidefinite systems and generalized null space conditions. Linear Algebra
and its Applications, 603:470–495, 2020. [→6, 9, 14, 15, 18, 21, 30, 31, 51, 58]

[129] N. J. Higham, N. Strabić, and V. S̆ego. Restoring definiteness via shrinking,
with an application to correlation matrices with a fixed block. SIAM Review,
58(2):245–263, 2016. [→169]

[130] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press,
2nd edition, 2012. [→10, 143]

[131] W. C. Horrace. Moments of the truncated normal distribution. Journal of
Productivity Analysis, 43(2):133–138, 2015. [→207]

[132] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Sprin-
ger, Berlin, 3 edition, 1996. ISBN 3540610383. [→85]

[133] IBM ILOG. CPLEX User’s Manual Version 12 Release 1, 2017. [→90]

[134] R. Jiang, D. Li, and B. Wu. SOCP reformulation for the generalized trust
region subproblem via a canonical form of two symmetric matrices. Mathe-
matical Programming, 169:531–563, 2018. [→169]

[135] A. Juditsky and A. Nemirovski. On verifiable sufficient conditions for sparse
signal recovery via ℓ1 minimization. Mathematical Programming, 127(1):57–
88, 2011. [→125]

[136] A. Juditsky, F. K. Karzan, and A. Nemirovski. Verifiable conditions of ℓ1-
recovery for sparse signals with sign restrictions. Mathematical Programming,
127(1):89–122, 2011. [→29, 30, 40, 125]

230

Bibliography

[137] A. Juditsky, F. K. Karzan, and A. Nemirovski. On a unified view of nullspace-
type conditions for recoveries associated with general sparsity structures. Lin-
ear Algebra and its Applications, 441:124–151, 2014. [→6, 7, 14, 15, 16, 23,
24, 58, 197]

[138] M. Kabanava and H. Rauhut. Cosparsity in compressed sensing. In H. Boche,
R. Calderbank, G. Kutyniok, and J. Vybíral, editors, Compressed Sensing
and its Applications: MATHEON Workshop 2013, pages 315–339. Springer
International Publishing, Cham, 2015. [→15, 23]

[139] M. Kabanava, R. Kueng, H. Rauhut, and U. Terstiege. Stable low-rank matrix
recovery via null space properties. Information and Inference: A Journal of
the IMA, 5(4):405–441, 2016. [→30, 99, 115, 116]

[140] S. Keiper. Recovery of binary sparse signals from structured biased measure-
ments. Preprint, arXiv:2006.14835, 2020. [→67]

[141] S. Keiper, G. Kutyniok, D. G. Lee, and G. E. Pfander. Compressed sensing for
finite-valued signals. Linear Algebra and its Applications, 532:570–613, 2017.
[→51, 67, 100]

[142] K. Kellner, M. E. Pfetsch, and T. Theobald. Irreducible infeasible subsystems
of semidefinite systems. Journal of Optimization Theory and Applications, 181
(3):727–742, 2019. [→54]

[143] M. A. Khajehnejad, A. G. Dimakis, W. Xu, and B. Hassibi. Sparse recovery
of nonnegative signals with minimal expansion. IEEE Transactions on Signal
Processing, 59(1):196–208, 2011. [→14, 25, 62]

[144] M. Kliesch, S. J. Szarek, and P. Jung. Simultaneous structures in convex signal
recovery—revisiting the convex combination of norms. Frontiers in Applied
Mathematics and Statistics, 5:1–16, 2019. [→95]

[145] K. Kobayashi and Y. Takano. A branch-and-cut algorithm for solving mixed-
integer semidefinite optimization problems. Computational Optimization and
Applications, 75(2):493–513, 2020. [→142, 155, 157, 174, 177, 179]

[146] L. Kong, J. Sun, and N. Xiu. S-semigoodness for low-rank semidefinite matrix
recovery. Pacific Journal of Optimization, 10(1):73–83, 2014. [→14, 26, 30,
41, 62]

[147] F. Krahmer, C. Kruschel, and M. Sandbichler. Total variation minimization
in compressed sensing. In H. Boche, G. Caire, R. Calderbank, M. März,

231

Bibliography

G. Kutyniok, and R. Mathar, editors, Compressed Sensing and its Applica-
tions, Applied and Numerical Harmonic Analysis, pages 333–358. Springer
International Publishing, Cham, 2017. [→23]

[148] K. Krishnan and J. E. Mitchell. A unifying framework for several cutting plane
methods for semidefinite programming. Optimization Methods and Software,
21(1):57–74, 2006. [→155]

[149] R. Kueng and P. Jung. Robust nonnegative sparse recovery and the nullspace
property of 0/1 measurements. IEEE Transactions on Information Theory,
64(2):689–703, 2018. [→29]

[150] J. Kuske, P. Swoboda, and S. Petra. A novel convex relaxation for non-binary
discrete tomography. In International Conference on Scale Space and Varia-
tional Methods in Computer Vision, pages 235–246. Springer, 2017. [→66]

[151] M.-J. Lai and Y. Liu. The null space property for sparse recovery from multiple
measurement vectors. Applied and Computational Harmonic Analysis, 30(3):
402–406, 2011. [→52]

[152] P. Lancaster and L. Rodman. Canonical forms for Hermitian matrix pairs
under strict equivalence and congruence. SIAM Review, 47(3):407–443, 2005.
[→169]

[153] A. H. Land and A. G. Doig. An automatic method for solving discrete
programming problems. In M. Jünger, T. M. Liebling, D. Naddef, G. L.
Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey,
editors, 50 Years of Integer Programming 1958-2008, pages 105–132. Springer
Berlin Heidelberg, 2010. [→11]

[154] J.-H. Lange, M. E. Pfetsch, B. M. Seib, and A. M. Tillmann. Sparse recovery
with integrality constraints. Discrete Applied Mathematics, 283:346–366, 2020.
[→45, 48, 51, 67, 68, 70, 73, 74]

[155] A. Leshem and A.-J. van der Veen. Direction-of-arrival estimation for constant
modulus signals. IEEE Transactions on Signal Processing, 47(11):3125–3129,
1999. [→78]

[156] C. Li and B. Adcock. Compressed sensing with local structure: Uniform
recovery guarantees for the sparsity in levels class. Applied and Computational
Harmonic Analysis, 46(3):453–477, 2019. [→94]

[157] Y. Li and W. Xie. Exact and approximation algorithms for sparse PCA.
Preprint, Optimization Online, 2020. http://www.optimization-online.
org/DB_HTML/2020/05/7802.html. [→144, 195]

232

http://www.optimization-online.org/DB_HTML/2020/05/7802.html
http://www.optimization-online.org/DB_HTML/2020/05/7802.html

Bibliography

[158] C. Liaw, A. Mehrabian, Y. Plan, and R. Vershynin. A simple tool for bound-
ing the deviation of random matrices on geometric sets. In B. Klartag and
E. Milman, editors, Geometric Aspects of Functional Analysis: Israel Seminar
(GAFA) 2014–2016, pages 277–299. Springer International Publishing, Cham,
2017. [→99]

[159] J. H. Lin and S. Li. Block sparse recovery via mixed l2/l1 minimization. Acta
Mathematica Sinica, English Series, 29(7):1401–1412, 2013. [→52]

[160] J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB.
In IEEE International Symposium on Computer Aided Control Systems De-
sign, pages 284–289, 2004. [→155]

[161] B. F. Logan. Properties of high-pass signals. PhD thesis, Columbia University,
1965. [→4]

[162] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0–1
optimization. SIAM Journal on Optimization, 1(2):166–190, 1991. [→164]

[163] Y. M. Lu and M. N. Do. A theory for sampling signals from a union of
subspaces. IEEE Transactions on Signal Processing, 56(6):2334–2345, 2008.
[→95]

[164] M. Lubin, E. Yamangil, R. Bent, and J. P. Vielma. Polyhedral approximation
in mixed-integer convex optimization. Mathematical Programming, 172:139–
168, 2018. [→155]

[165] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang. Semidefinite relax-
ation of quadratic optimization problems. IEEE Signal Processing Magazine,
27(3):20–34, 2010. [→164]

[166] M. Lustig, D. L. Donoho, and J. M. Pauly. Sparse MRI: The application of
compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine,
58(6):1182–1195, 2007. [→2]

[167] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed Sensing
MRI. IEEE Signal Processing Magazine, 25(2):72–82, 2008. [→2]

[168] A. Mahajan. Presolving mixed–integer linear programs. In Wiley Encyclopedia
of Operations Research and Management Science. American Cancer Society,
2011. [→158]

[169] S. J. Maher, T. Fischer, T. Gally, G. Gamrath, A. Gleixner, R. L. Gottwald,
G. Hendel, T. Koch, M. E. Lübbecke, M. Miltenberger, B. Müller, M. E.

233

Bibliography

Pfetsch, C. Puchert, D. Rehfeldt, S. Schenker, R. Schwarz, F. Serrano,
Y. Shinano, D. Weninger, J. T. Witt, and J. Witzig. The SCIP Opti-
mization Suite 4.0. ZIB-Report 17-12, Zuse Institute Berlin, 2017. http:
//nbn-resolving.de/urn:nbn:de:0297-zib-62170. [→90]

[170] A. Majumdar, G. Hall, and A. A. Ahmadi. Recent scalability improvements
for semidefinite programming with applications in machine learning, control,
and robotics. Annual Review of Control, Robotics, and Autonomous Systems,
3(1):331–360, 2020. [→54, 191]

[171] S. Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse
Way. Academic Press, 3rd edition, 2008. [→15]

[172] O. Mangasarian and B. Recht. Probability of unique integer solution to a
system of linear equations. European Journal of Operational Research, 214(1):
27–30, 2011. [→66]

[173] S. Mars. Mixed-Integer Semidefinite Programming with an Application to
Truss Topology Design. PhD thesis, FAU Erlangen-Nürnberg, 2013. [→155,
158, 159, 160, 177, 179]

[174] F. Matter and M. E. Pfetsch. Presolving for mixed-integer semidefi-
nite optimization. Preprint, Optimization Online, 2021. http://www.
optimization-online.org/DB_HTML/2021/10/8614.html. [→9, 124, 142,
143, 151]

[175] F. Matter, T. Fischer, M. Pesavento, and M. E. Pfetsch. Ambiguities in
Direction-of-Arrival estimation with linear arrays. Preprint, arXiv:2110.10756,
2021. [→9]

[176] G. P. McCormick. Computability of global solutions to factorable nonconvex
programs: Part I – convex underestimating problems. Mathematical Program-
ming, 10(1):147–175, 1976. [→126]

[177] P. McMullen and G. C. Shephard. Diagrams for centrally symmetric polytopes.
Mathematika, 15(2):123–138, 1968. [→64]

[178] S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann. Uniform uncertainty
principle for Bernoulli and subgaussian ensembles. Constructive Approxima-
tion, 28(3):277–289, 2008. [→99]

[179] M. Mishali and Y. C. Eldar. Blind multiband signal reconstruction: Com-
pressed sensing for analog signals. IEEE Transactions on Signal Processing,
57(3):993–1009, 2009. [→53]

234

http://nbn-resolving.de/urn:nbn:de:0297-zib-62170
http://nbn-resolving.de/urn:nbn:de:0297-zib-62170
http://www.optimization-online.org/DB_HTML/2021/10/8614.html
http://www.optimization-online.org/DB_HTML/2021/10/8614.html

Bibliography

[180] K. Mohan and M. Fazel. New restricted isometry results for noisy low-rank
recovery. In 2010 IEEE International Symposium on Information Theory,
pages 1573–1577, 2010. [→29]

[181] MOSEK ApS. MOSEK Optimizer API for C Release 9.2.40, 2021. URL
docs.mosek.com/9.2/capi/index.html. [→155, 156, 173]

[182] N. Mourad and P. Reilly. Minimizing nonconvex functions for sparse vector
reconstruction. IEEE Transactions on Signal Processing, 58(7):3485–3496,
2010. [→203]

[183] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota. Exploiting
sparsity in semidefinite programming via matrix completion II: Implementa-
tion and numerical results. Mathematical Programming, 95(2):303–327, 2003.
[→54]

[184] S. Nam, M. Davies, M. Elad, and R. Gribonval. The cosparse analysis model
and algorithms. Applied and Computational Harmonic Analysis, 34(1):30–56,
2013. [→15]

[185] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM
Journal on Computing, 24(2):227–234, 1995. [→4, 13]

[186] D. Needell and J. Tropp. CoSaMP: Iterative signal recovery from incomplete
and inaccurate samples. Applied and Computational Harmonic Analysis, 26
(3):301–321, 2009. [→4]

[187] D. Needell and R. Ward. Stable image reconstruction using total variation min-
imization. SIAM Journal on Imaging Sciences, 6(2):1035–1058, 2013. [→15]

[188] S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified
framework for high-dimensional analysis of M -estimators with decomposable
regularizers. Statistical Science, 27(4):538–557, 2012. [→6, 19, 200]

[189] C. J. Nohra, A. U. Raghunathan, and N. Sahinidis. Spectral relaxations and
branching strategies for global optimization of mixed-integer quadratic pro-
grams. SIAM Journal on Optimization, 31(1):142–171, 2021. [→163]

[190] M. L. Overton and R. S. Womersley. Optimality conditions and duality theory
for minimizing sums of the largest eigenvalues of symmetric matrices. Mathe-
matical Programming, 62(1):321–357, 1993. [→140]

[191] D. B. Owen. A table of normal integrals. Communications in Statistics –
Simulation and Computation, 9(4):389–419, 1980. [→211]

235

docs.mosek.com/9.2/capi/index.html

Bibliography

[192] S. Oymak and B. Hassibi. New null space results and recovery thresholds for
matrix rank minimization. Preprint, arXiv:1011.6326, 2010. In Proceedings
of ISIT 2011. [→6, 14, 25, 26, 45, 48, 62, 100]

[193] S. Oymak and B. Hassibi. Tight recovery thresholds and robustness analysis
for nuclear norm minimization. In 2011 IEEE International Symposium on
Information Theory Proceedings, pages 2323–2327, 2011. [→30, 99]

[194] S. Oymak, M. A. Khajehnejad, and B. Hassibi. Improved thresholds for rank
minimization. In 2011 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5988–5991, 2011. [→45, 48]

[195] S. Oymak, K. Mohan, M. Fazel, and B. Hassibi. A simplified approach to
recovery conditions for low rank matrices. In 2011 IEEE International Sym-
posium on Information Theory Proceedings, pages 2318–2322, 2011. [→30,
99]

[196] S. Oymak, A. Jalali, M. Fazel, Y. C. Eldar, and B. Hassibi. Simultaneously
structured models with application to sparse and low-rank matrices. IEEE
Transactions on Information Theory, 61(5):2886–2908, 2015. [→95]

[197] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi. Recovering sparse signals
using sparse measurement matrices in compressed DNA microarrays. IEEE
Journal of Selected Topics in Signal Processing, 2(3):275–285, 2008. [→53]

[198] F. Permenter and P. A. Parrilo. Partial facial reduction: simplified, equivalent
SDPs via approximations of the PSD cone. Mathematical Programming, 171
(1):1–54, 2018. [→157]

[199] F. Permenter and P. A. Parrilo. Dimension reduction for semidefinite programs
via Jordan algebras. Mathematical Programming, 181(1):51–84, 2020. [→157]

[200] F. Permenter, H. A. Friberg, and E. D. Andersen. Solving conic optimization
problems via self-dual embedding and facial reduction: A unified approach.
SIAM Journal on Optimization, 27(3):1257–1282, 2017. [→157]

[201] M. Pilanci, M. J. Wainwright, and L. El Ghaoui. Sparse learning via Boolean
relaxations. Mathematical Programming, 151(1):62–87, 2015. [→175]

[202] M. D. Plumbley, T. Blumensath, L. Daudet, R. Gribonval, and M. E. Davies.
Sparse representations in audio and music: From coding to source separation.
Proceedings of the IEEE, 98(6):995–1005, 2010. [→2]

[203] T. K. Pong and H. Wolkowicz. The generalized trust region subproblem.
Computational Optimization and Applications, 58:273–322, 2014. [→169]

236

Bibliography

[204] L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin. Sparsity and compressed
sensing in radar imaging. Proceedings of the IEEE, 98(6):1006–1020, 2010.
[→2]

[205] Y. Puranik and N. V. Sahinidis. Domain reduction techniques for global NLP
and MINLP optimization. Constraints, 22(3):338–376, 2017. [→152, 158]

[206] L. Qi and J. Sun. A nonsmooth version of Newton’s method. Mathematical
Programming, 58(1):353–367, 1993. [→171]

[207] A. Qualizza, P. Belotti, and F. Margot. Linear programming relaxations of
quadratically constrained quadratic programs. In J. Lee and S. Leyffer, editors,
Mixed Integer Nonlinear Programming, pages 407–426. Springer New York,
2012. [→148]

[208] M. Ramana and A. J. Goldman. Some geometric results in semidefinite pro-
gramming. Journal of Global Optimization, 7(1):33–50, 1995. [→121]

[209] B. Recht, W. Xu, and B. Hassibi. Necessary and sufficient conditions for
success of the nuclear norm heuristic for rank minimization. In 2008 47th
IEEE Conference on Decision and Control, pages 3065–3070, 2008. [→25, 62]

[210] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):
471–501, 2010. [→6, 14, 29, 140]

[211] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970. [→117]

[212] A. Ron and Z. Shen. Affine systems in l2(R
d): The analysis of the analysis

operator. Journal of Functional Analysis, 148(2):408–447, 1997. [→15]

[213] S. M. Ross. Introduction to probability models. Academic Press, San Diego,
12th edition, 2019. [→10, 101]

[214] V. Roulet, N. Boumal, and A. d’Aspremont. Computational complexity versus
statistical performance on sparse recovery problems. Information and Infer-
ence: A Journal of the IMA, 9(1):1–32, 2019. [→19, 20, 23, 200]

[215] M. Rudelson and R. Vershynin. On sparse reconstruction from Fourier and
Gaussian measurements. Communications on Pure and Applied Mathematics,
61(8):1025–1045, 2008. [→46, 99, 104, 106, 116]

[216] J. Saunderson, P. A. Parrilo, and A. S. Willsky. Semidefinite descriptions of
the convex hull of rotation matrices. SIAM Journal on Optimization, 25(3):
1314–1343, 2015. [→121]

237

Bibliography

[217] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer
programming problems. ORSA Journal on Computing, 6(4):445–454, 1994.
[→158, 159]

[218] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons,
1998. [→10, 86]

[219] SCIP. Solving Constraint Integer Programs. http://scip.zib.de. [→129,
151]

[220] SCIP-SDP. a mixed-integer semidefinite programming plugin for SCIP. http:
//www.opt.tu-darmstadt.de/scipsdp/. [→7, 151, 155]

[221] I. W. Selesnick and M. A. T. Figueiredo. Signal restoration with overcomplete
wavelet transforms: Comparison of analysis and synthesis priors. In V. K.
Goyal, M. Papadakis, and D. V. D. Ville, editors, Wavelets XIII, volume 7446,
pages 107–121. International Society for Optics and Photonics, 2009. [→15]

[222] Y. Shechtman, A. Beck, and Y. C. Eldar. GESPAR: Efficient phase retrieval of
sparse signals. IEEE Transactions on Signal Processing, 62(4):928–938, 2014.
[→90]

[223] H. D. Sherali and B. M. Fraticelli. Enhancing RLT relaxations via a new class
of semidefinite cuts. Journal of Global Optimization, 22:233–261, 2002. [→155]

[224] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. A sparse-group lasso.
Journal of Computational and Graphical Statistics, 22(2):231–245, 2013. [→94]

[225] P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar. C-HiLasso: A collab-
orative hierarchical sparse modeling framework. IEEE Transactions on Signal
Processing, 59(9):4183–4198, 2011. [→94]

[226] M. Stojnic. Various thresholds for ℓ1-optimization in compressed sensing.
Preprint, arXiv:0907.3666, 2009. [→45, 48, 99, 101, 104, 121]

[227] M. Stojnic. Recovery thresholds for ℓ1 optimization in binary compressed
sensing. In 2010 IEEE International Symposium on Information Theory, pages
1593–1597. IEEE, 2010. [→66]

[228] M. Stojnic. ℓ2/ℓ1-optimization in block-sparse compressed sensing and its
strong thresholds. IEEE Journal of Selected Topics in Signal Processing, 4(2):
350–357, 2010. [→116]

[229] M. Stojnic. Compressed sensing of block-sparse positive vectors. Preprint,
arXiv:1306.3977, 2013. [→14, 52, 99, 101, 121]

238

http://scip.zib.de
http://www.opt.tu-darmstadt.de/scipsdp/
http://www.opt.tu-darmstadt.de/scipsdp/

Bibliography

[230] M. Stojnic, F. Parvaresh, and B. Hassibi. On the reconstruction of block-
sparse signals with an optimal number of measurements. IEEE Transactions
on Signal Processing, 57(8):3075–3085, 2009. [→6, 14, 52, 61, 62, 99, 121]

[231] N. Strabić. Theory and algorithms for matrix problems with positive semidef-
inite constraints. PhD thesis, University of Manchester, 2016. [→169]

[232] C. Studer, T. Goldstein, W. Yin, and R. G. Baraniuk. Democratic represen-
tations. Preprint, arXiv:1401.3420, 2014. [→90]

[233] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht. Compressed sensing off
the grid. IEEE Transactions on Information Theory, 59(11):7465–7490, 2013.
[→100]

[234] A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific
Journal of Mathematics, 5:285–309, 1955. [→168]

[235] A. M. Tillmann. Computational aspects of compressed sensing. PhD thesis,
TU Darmstadt, 2013. [→3]

[236] A. M. Tillmann. Computing the spark: mixed-integer programming for the
(vector) matroid girth problem. Computational Optimization and Applica-
tions, 74(2):387–441, 2019. [→125]

[237] A. M. Tillmann and M. E. Pfetsch. The computational complexity of the
restricted isometry property, the nullspace property, and related concepts in
compressed sensing. IEEE Transactions on Information Theory, 60(2):1248–
1259, 2014. [→24, 125, 142, 202]

[238] Y. Traonmilin and R. Gribonval. Stable recovery of low-dimensional cones
in hilbert spaces: One RIP to rule them all. Applied and Computational
Harmonic Analysis, 45(1):170–205, 2018. [→200]

[239] J. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE
Transactions on Information Theory, 50(10):2231–2242, 2004. [→4, 5]

[240] J. Tropp. Recovery of short, complex linear combinations via ℓ1 minimization.
IEEE Transactions on Information Theory, 51(4):1568–1570, 2005. [→45]

[241] J. A. Tropp. Convex recovery of a structured signal from independent random
linear measurements. In G. E. Pfander, editor, Sampling Theory, a Renais-
sance: Compressive Sensing and Other Developments, pages 67–101. Springer
International Publishing, Cham, 2015. [→99, 103]

239

Bibliography

[242] E. van den Berg and M. P. Friedlander. Theoretical and empirical results
for recovery from multiple measurements. IEEE Transactions on Information
Theory, 56(5):2516–2527, 2010. [→52]

[243] A.-J. van der Veen and A. Paulraj. An analytical constant modulus algorithm.
IEEE Transactions on Signal Processing, 44(5):1136–1155, 1996. [→78]

[244] L. Vandenberghe and M. S. Andersen. Chordal graphs and semidefinite opti-
mization. Foundations and Trends in Optimization, 1(4):241–433, 2015. [→54]

[245] A. M. Vershik and P. V. Sporyshev. Asymptotic behavior of the number of
faces of random polyhedra and the neighborliness problem. Selecta Mathe-
matica Sovietica, 11(2):181–201, 1992. [→100]

[246] R. Vershynin. Estimation in high dimensions: A geometric perspective. In
G. E. Pfander, editor, Sampling Theory, a Renaissance: Compressive Sens-
ing and Other Developments, pages 3–66. Springer International Publishing,
Cham, 2015. [→100]

[247] R. Vershynin. High-dimensional probability: An introduction with applications
in data science, volume 47. Cambridge University Press, 2018. [→100]

[248] M. Vidyasagar. An introduction to compressed sensing. SIAM, 2019. [→3, 97,
100]

[249] S. Vigerske. Decomposition in multistage stochastic programming and a con-
straint integer programming approach to mixed-integer nonlinear programming.
PhD thesis, Humboldt-Universität zu Berlin, 2013. [→87, 158]

[250] S. Vigerske and A. Gleixner. SCIP: Global optimization of mixed-integer
nonlinear programs in a branch-and-cut framework. Optimization Methods
and Software, 33(3):563–593, 2018. [→85, 158]

[251] J. Witzig. Infeasibility Analysis for MIP. PhD thesis, TU Berlin, 2021. [→159]

[252] J. Witzig, T. Berthold, and S. Heinz. Experiments with conflict analysis
in mixed integer programming. In Integration of AI and OR Techniques in
Constraint Programming. CPAIOR 2017, volume 10335, pages 211–222, 2017.
[→159]

[253] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face
recognition via sparse representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(2):210–227, 2009. [→53]

240

Bibliography

[254] M. Yamashita, K. Fujisawa, M. Fukuda, K. Nakata, and M. Nakata. A high-
performance software package for semidefinite programs: SDPA 7. Research
Report B-460, Department of Mathematical and Computing Science, Tokyo
Institute of Technology, Tokyo, Japan, 2010. [→155]

[255] X.-T. Yuan and T. Zhang. Truncated power method for sparse eigenvalue
problems. Journal of Machine Learning Research, 14(4):899–925, 2013. [→148]

[256] Y. Zhang. A simple proof for recoverability of ℓ1-minimization (II): The non-
negativity case. Technical report TR05-10, Dept. of Computational and Ap-
plied Mathematics, Rice University, 2005. [→14, 25, 62]

[257] G. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer,
New York, 1995. [→64]

[258] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analy-
sis. Journal of Computational and Graphical Statistics, 15(2):265–286, 2006.
[→143]

241

List of Algorithms

1 Node solving procedure within the branch-and-bound tree 89
2 Suboptimal heuristic . 91

3 Semismooth Newton method . 171

ix

List of Figures

1.1 Geometric intuition for Basis Pursuit: The intersection of an affine
space H = {x : Ax = b} with the unit norm ball of the ℓ0-norm as
well as inflated unit norm balls of the ℓ1- and ℓ2-norm for some c > 0. 5

3.1 Schematic model of the system model for joint antenna selection and
phase-only beamforming, taken from [97]. 79

3.2 Left: Linear inequalities for strengthening the relaxation. Right:
Modulus constraint subdivision into orthants. 86

3.3 Bound propagation for the continuous variables appearing in modulus
constraints. 88

3.4 Inequalities that are added to the sub-nodes. 89

4.1 Comparison of the bounds for the minimal number of measurements
needed for uniform recovery of sparse vectors and sparse nonnegative
vectors, for n = 500. 111

4.2 Empirical success of individual recovery for sparse and sparse non-
negative vectors and different types of random matrices for n = 100.
The heatmap shows the normalized recovery error (4.15). 113

4.3 Comparison of the transition between failure and success for sparse
and sparse nonnegative vectors for n = 100 and different types of
random matrices. 114

5.1 Empirical probability that a Gaussian random matrix satisfies the
linear NSP and the nonnegative NSP for n = 20. 134

xi

List of Tables

3.1 Null space properties for different settings and their references. . 62
3.2 Analysis and performance evaluation of different solution approaches

for solving problems with constant modulus constraints. 92

5.1 Results for the MIP formulation of the linear NSP on a testset of 100
Gaussian random matrices. 129

5.2 Sparsity levels and sizes of the random matrices used for evaluating
the MIP formulation of the linear and nonnegative NSP. 131

5.3 Results for the MIP formulation of the linear NSP on a testset of 100
larger Gaussian random matrices and larger sparsity levels. . . . 131

5.4 Results for the MIP formulation of the nonnegative NSP on a testset
of 100 Gaussian random matrices. 133

5.5 Results for the MIP formulation of the nonnegative NSP on a testset
of 100 larger Gaussian random matrices and larger sparsity levels. 133

5.6 Sparsity levels and sizes of the random instances used for evaluating
the MIP formulations of the block-linear and block-linear nonnegative
NSP. 138

5.7 Results for the MIP formulation of the block-linear and the block-
nonnegative NSP on a testset of 100 Gaussian random matrices. 139

6.1 Performance comparison of SCIP-SDP 4.0 vs. SCIP-SDP 3.2 on a
testset of 194 instances. 156

6.2 Overview over problem characteristics in the testset used for evalu-
ating the presolving techniques. 174

6.3 Comparison of presolving routines using the SDP- and LP-based ap-
proach for all 185 MISDP instances. 180

6.4 Summary of the results for different presolving settings for each in-
stance class separately. 182

6.5 Comparison of presolving and propagation routines for the SDP-based
approach on the 180 RIP instances. 185

xiii

List of Tables

6.6 Comparison of imposing different bounds on off-diagonal entries in
the 180 RIP instances for the SDP-based approach. 186

6.7 Comparison of separation and enforcing eigenvector cuts for the LP-
based approach on the 180 RIP instances. 187

6.8 Comparison of presolving, propagation and the formulation of the
bounds for off-diagonal entries for the LP-based approach on the 180
RIP instances. 188

6.9 Comparison of the LP- and the SDP-based approach on the 180 RIP
instances, separately for the small, medium and large instances, as
well as divided into lower and upper RIC. 190

6.10 Comparison of the LP- and the SDP-based approach on the 180 larger
RIP instances, separately for the small, medium and large instances,
as well as divided into lower and upper RIC. 192

6.11 Comparison of the effect of the nonnegativity constraint on the LP-
and the SDP-based approach on the 45 binary RIP instances. . . 193

7.1 Comparison of presolving routines using the SDP- and LP-based ap-
proach for the 43 Cardinality Constrained Least Squares (CLS) in-
stances. 214

7.2 Comparison of presolving routines using the SDP- and LP-based ap-
proach for the 32 Minimum k-Partitioning (MkP) instances. . . . 215

7.3 Comparison of presolving routines using the SDP- and LP-based ap-
proach for the 46 Restricted Isometry Property (RIP) instances. 216

7.4 Comparison of presolving routines using the SDP- and LP-based ap-
proach for the 26 random MISDP (RND) instances. 217

7.5 Comparison of presolving routines using the SDP- and LP-based ap-
proach for the 38 Truss Topology Design (TTD) instances. 218

xiv

Wissenschaftlicher Werdegang

07/2017 – 09/2022 Wissenschaftlicher Mitarbeiter am Fachbereich Mathema-
tik der Technischen Universität Darmstadt in der Arbeits-
gruppe Diskrete Optimierung und im Schwerpunktpro-
gramm 1798 „Compressed Sensing in der Informationsver-
arbeitung (CoSIP)“

05/2017 Abschluss Master of Science in Mathematik
10/2011 – 05/2017 Studium der Mathematik an der Goethe-Universität

Frankfurt am Main
06/2011 Abitur am Franziskanergymnasium Kreuzburg in Groß-

krotzenburg

xv

	Acknowledgments
	Zusammenfassung
	Abstract
	Contents
	Introduction
	Sparse Recovery Under Linear Measurements
	Outline and Contribution
	Notation and Preliminaries

	A General Framework for Recovery Using Null Space Properties
	Components of the General Framework
	Uniform Recovery in the General Framework
	Stability and Robustness in the General Framework
	Robust Recovery
	Stable Recovery
	Stability and Robustness for Some Special Cases

	Individual Recovery

	Recovery Conditions for Special Cases
	Block-Structured Vectors and Matrices
	Block-Sparse (Positive Semidefinite) Matrices
	Block-Sparse (Nonnegative) Vectors
	Discussion of Block-Sparsity

	Integrality Constraints on Sparse Vectors
	Constant Modulus Constraints on Vectors
	Constant Modulus Constraints in the General Framework
	Solving Problems with Constant Modulus Constraints
	Numerical Experiments

	Concluding Remarks and Outlook

	Recovery Under Random Measurements
	Recovery Under Random Measurements – An Overview
	Analysis of Random Measurements for Sparse Nonnegative Vectors
	Analysis of Random Measurements for Block-Sparse Matrices
	Concluding Remarks and Outlook

	Computing Recovery Conditions
	A MIP Formulation for the NSP
	An MISDP Formulation for the RIP
	Special Components for the MISDP Formulation of the RIP

	Presolving for Mixed-Integer Semidefinite Optimization
	Presolving and MISDPs – An Overview
	Linear Inequalities Implied by the SDP Relaxation
	Presolving Techniques Based on 2 by 2 Minors
	Bound Tightening Based on SDP Constraints
	Convergence of Bound Tightening
	Computing Tightening Scalings

	Coefficient Tightening Based on SDP Constraints
	Computational Experiments
	Instances
	Settings
	Results for general MISDPs
	Results for the RIP

	Concluding Remarks and Outlook

	Conclusion and Outlook
	Appendix
	Bounds for Sparse Nonnegative Vectors Under Random Measurements
	Computational Results for MISDP Presolving

	Bibliography
	List of Figures
	List of Tables

