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Abstract. We present a class of adaptive multilevel trust-region methods for the ef-
ficient solution of optimization problems governed by time–dependent nonlinear partial
differential equations with control constraints. The algorithm is based on the ideas of
the adaptive multilevel inexact SQP-method from [26, 27]. It is in particular well suited
for problems with time–dependent PDE constraints. Instead of the quasi-normal step in
a classical SQP method which results in solving the linearized PDE sufficiently well, in
this algorithm a (nonlinear) solver is applied to the current discretization of the PDE.
Moreover, different discretizations and solvers for the PDE and the adjoint PDE may be
applied. The resulting inexactness of the reduced gradient in the current discretization is
controlled within the algorithm. Thus, highly efficient PDE solvers can be coupled with
the proposed optimization framework. The algorithm starts with a coarse discretization of
the underlying optimization problem and provides during the optimization process imple-
mentable criteria for an adaptive refinement strategy of the current discretization based
on error estimators. We prove global convergence to a stationary point of the infinite-
dimensional problem. Moreover, we illustrate how the adaptive refinement strategy of
the algorithm can be implemented by using a posteriori error estimators for the state
and the adjoint equation. Numerical results for a semilinear parabolic PDE–constrained
problem with pointwise control constraints are presented.
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1. Introduction

In this paper we introduce and analyze a class of adaptive multilevel trust-region methods
for the efficient solution of optimization problems governed by time–dependent nonlinear
partial differential equations (PDEs) with control constraints. The resulting method can
be considered as an inexact trust-region method applied to the reduced problem, where
the state is eliminated by using the discretized state equation on the current grid. One can
alternatively also intepret the method as a generalized composite step SQP method, where
instead of the quasi-normal step of a classical composite step trust-region SQP method
which results from solving the linearized PDE sufficiently well, a (nonlinear) solver is
applied to the current discretization of the PDE. The algorithm is based on ideas of the
adaptive multilevel inexact SQP-method from [26, 27]. It is inspired by and particularly
shaped for optimization problems governed by parabolic PDEs, since solving a linearized
parabolic PDE or the nonlinear parabolic PDE itself numerically with linear implicit
methods in time, as e.g. Rosenbrock schemes, on a given spatial discretization has about
the same computational costs. The adaptive multilevel trust-region method is designed
to combine efficient optimization techniques and fast PDE solvers with error estimators
in a rigorous way. Therefore, it offers the possibility to use different solvers for the state
PDE and the adjoint PDE. The occuring inexactness in the reduced gradient on a fixed
discretization level is controlled and modern adaptive discretization techniques for PDEs
based on a posteriori error estimators are integrated in this framework. The algorithm
starts with a coarse discretization of the underlying optimization problem and provides
during the optimization process implementable criteria for an adaptive refinement strat-
egy of the current discretization based on error estimators. This offers the possibility to
perform most of the optimization iterations and PDE solves on coarse meshes. Moreover,
the optimization problem is always well represented and the infinite-dimensional problem
is approached during the optimization in an efficient way.

We consider PDE-constrained optimization problems of the form

min
y∈Y,u∈U

f(y, u) s. t. C(y, u) = 0, u ∈ Uad, (1)

where U is the control space, Uad ⊂ U a closed and convex subset representing the set
of admissible controls, Y is the state space, f : Y × U → R is the objective function.
The state equation C : Y × U → Λ, C(y, u) = 0 comprises a (system of) partial differ-
ential equation(s) with appropriate initial and/or boundary conditions in a variational
formulation with V as the set of test functions. V ∗ denotes the dual space of V and,
thus, we have Λ = V ∗. We assume that U are Hilbert spaces and that Y and V are
reflexive Banach spaces. Moreover, we will require that f and C are continuously Fréchet
differentiable on a subset of Y × U .

As an example we will consider in section 5 a semilinear parabolic boundary control
problem of the form

min f(y, u) s. t. yt + Ly + d(y) = 0, on (0, T )× Ω,

yn + b(y) = u, on (0, T )× ∂Ω,

y(0, ·) = y0 on Ω,

a ≤ u ≤ b on (0, T )× ∂Ω,

(2)

where Ω ⊂ Rn is a bounded Lipschitz domain, T > 0, yn denotes the outer normal
derivative, u : (0, T ) × ∂Ω → R is the control and y0 : Ω → R are given initial data. b
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and d are monotone increasing C2-functions. L denotes for each time t a second order
elliptic operator

Ly := −
n∑
i,j

(aij(t, x)yxi)xj +

n∑
i=1

bi(t, x)yxi + c0(t, x)y,

i.e., there exists a constant θ > 0 such that

n∑
i,j=1

aij(t, x)ξiξj ≥ θ‖ξ‖2 for a.a. (t, x) ∈ (0, T )× Ω and all ξ ∈ Rn,

see for example [10,15,20,23].
The proposed adaptive multilevel trust-region algorithm for (1) generates a hierarchy

of finite-dimensional approximations

min
yh∈Yh,uh∈Uh

f(yh, uh) s. t. Ch(yh, uh) = 0, uh ∈ Uhad, (3)

which result from conformal discretizations of (1) on adaptively refined meshes. Our
assumptions on the discretization will be made precise in Section 2.

Multilevel optimization techniques for optimal control problems governed by (nonlin-
ear) PDEs are an active research area. There is a variety of literature for optimization
problems governed by elliptic PDEs as outlined in [26, 27]. However, only a few pub-
lications are concerned with multilevel adaptive solution techniques for optimal control
problems governed by (nonlinear) parabolic PDEs. [3,21] derive error estimates for adap-
tive mesh refinements and show possibilities for derivative evaluations of the reduced cost
functional. The algorithms from [3,21] for adaptive mesh refinement solve the optimiza-
tion problem on the current grid and then refine the mesh.

In [12,13,18] multilevel trust-region methods are proposed that focus on the efficient
use of a hierarchy of discretizations to solve an optimization problem on the finest grid,
but the coupling with adaptive mesh refinement is not considered.

In [17] truncated Newton methods with inexact function and gradient evaluations have
been studied, but the combination with error estimators was not considered. A general
algorithmic framework for dealing with approximate function and gradient evaluations in
steepest descent algorithms for optimal control problems has been proposed in [22]. In
this approach the accuracy control mechanism requires an error estimator for the function
and gradient value depending on a scalar mesh parameter and is quite different from the
method proposed in this work.

The rigorous coupling of error estimators with efficient optimization methods in a
multilevel optimization framework for parabolic PDE constrained optimization problems
(with control constraints) was to the best of our knowledge not considered so far.

In this paper we develop an implementable adaptive refinement strategy based on
error estimators and combine it with an efficient inexact trust-region method. The pos-
sibility to use different solvers for the PDE and the adjoint PDE is given. The resulting
adaptive multilevel trust-region method generates a hierarchy of adaptive discretizations
(3), controls the inexactness of the reduced gradient on the current discretization and
refines the grid — if necessary — adaptively in an appropriate way based on error esti-
mators, e.g. [1, 2, 8, 9, 21, 24], to ensure convergence to a solution of the original problem
(1). We will prove global convergence under standard assumptions to a first-order op-
timal point of the infinite-dimensional problem (1). Moreover, we illustrate how the
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adaptive refinement strategy of the algorithm can be implemented by using a posteriori
error estimators for the state and the adjoint equation.

The presented method has several advantages. The multilevel approach carries out
most optimization iterations on coarse meshes. The accuracy of the optimization result is
controlled and the mesh adaptation is tailored to the needs of the optimization method.
This offers the possibility to obtain optimization results of high accuracy by an effort of
a few simulation runs on the finest grid.

This paper is organized as follows. In section 2 we formulate our general assump-
tions that take the nature of nonlinear PDE constraints into account and can easily be
verified e.g. for semilinear parabolic problems as well as the Navier-Stokes equations.
We derive optimality conditions and formulate our assumptions on the discretization.
In section 3 we develop step by step the adaptive multilevel trust-region method. The
convergence analysis is carried out in section 4. In section 5 the assumptions are verified
for a semilinear parabolic boundary control problem and numerical results are presented.

Notations. For a Gâteaux- or Fréchet-differentiable operator C : Y × U → V ∗, we
denote by Cy(y, u) ∈ L(Y, V ∗) and Cu(y, u) ∈ L(U, V ∗) the partial derivative with respect
to y and u, respectively. If f : Y × U → R is Gâteaux- or Fréchet-differentiable and U is
a Hilbert space then we denote by the gradient ∇uf(y, u) ∈ U the Riesz representation
of fu(y, u) ∈ U∗.

2. Optimality conditions and discretization

We make the following assumptions, which can conveniently be verified, e.g., for semilin-
ear parabolic problems or the unsteady Navier-Stokes equations in 2D and takes care of
the fact that for nonlinear problems often additional regularity of the state is necessary to
obtain differentiability properties of the control to state mapping u ∈ Uad 7→ y = S(u) ∈
Y .

Assumption 2.1. U is a Hilbert space, Y, V are reflexive Banach spaces, Uad ⊂ U is
closed and convex. Moreover, there exists a Banach space Y + ↪→ Y and a convex closed
subset D := DY ×DU ⊂ Y + × U with Uad ⊂ DU such that the following holds.

A1 f : Y × U → R is continuously Fréchet differentiable and the derivative is Hölder
continuous on bounded subsets of Y + × U .

A2 There exists a unique solution operator u ∈ DU 7→ S(u) ∈ DY ⊂ Y + for C(y, u) =
0 that is bounded on bounded sets in (DU , ‖·‖U ). Moreover, u ∈ (DU , ‖·‖U ) 7→
S(u) ∈ Y is continuous.

A3 C : Y + × U → V ∗ is continuously Fréchet differentiable. Moreover, also C :
(DY , ‖·‖Y )×U → V ∗ is continuously Fréchet differentiable. The partial derivative
Cy(x) ∈ L(Y +, V ∗) admits for all x ∈ D an extension Cy(x) ∈ L(Y, V ∗) that has
a bounded inverse Cy(x)−1 ∈ L(V ∗, Y ). Moreover, (y, u) ∈ (DY , ‖·‖Y ) × U 7→
Cx(y, u) ∈ L(Y × U, V ∗) is Hölder continuous on bounded subsets of Y + × U .

By applying the generalization [11, Thm. 3.1] of the implicit function theorem we
obtain the differentiability of the control-to-state map and of the reduced objective fun-
tional.
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Proposition 2.2. Let Assumption 2.1 hold. Then the mapping u ∈ (DU , ‖·‖U ) 7→ S(u) ∈
Y is continuously Fréchet differentiable with derivative

S′(u) = −Cy(S(u), u)−1Cu(S(u), u) (4)

that is Hölder continuous on bounded subsets of (DU , ‖·‖U ). Moreover, also the reduced
objective functional

u ∈ (DU , ‖·‖U ) 7→ f̂(u) := f(S(u), u)

is continuously Fréchet differentiable with derivative

f̂ ′(u) = fy(S(u), u)S′(u) + fu(S(u), u) ∈ U∗ (5)

that is Hölder continuous on bounded subsets of (DU , ‖·‖U ). Finally, the solution operator

(y, u) ∈ (DY , ‖·‖Y )× (DU , ‖·‖U ) 7→ Sly (y, u) := Cy(y, u)−∗fy(y, u) ∈ V

of the adjoint equation ly(y, u, λ) = 0 is continuous.

Proof. The Fréchet differentiability of u ∈ (DU , ‖·‖U ) 7→ S(u) ∈ Y and (4) follow from
[11, Thm. 3.1] by setting Y1 = Y2 := Y , Z = Z0 := V ∗ and by using (DU , ‖·‖U ) instead
of U . The continuity of S′(u) and boundedness on bounded subsets follows from (4) by
A1–A3. The continuity of Sly (u) is also a consequence of A1–A3. Hence, S is Lipschitz
continuous on bounded subsets and from A1–A3 and (4) it follows that S′ is Hölder
continuous on bounded subsets.

The continuous Fréchet differentiability of u ∈ (DU , ‖·‖U ) 7→ f̂(u) = f(S(u), u) is now

a consequence of A1 and the chain rule. f̂ ′(u) ∈ U∗ follows by (4), A1 and A3. Moreover,
the Hölder continuity on bounded subsets is a consequence of the Hölder continuity of
S′.

We introduce the Lagrangian function

l : Y × U × V → R, l(y, u, λ) = f(y, u) + 〈λ,C(y, u)〉V,V ∗ . (6)

By using Proposition 2.2, differentiating f̂(u) = f(S(u), u) = l(S(u), u, λ) with respect
to u and choosing λ ∈ V as the unique solution of the adjoint equation

ly(S(u), u, λ) = 0, i.e., Cy(S(u), u)∗λ = −fy(S(u), u),

which has a unique solution by A2 and A3, we still obtain the classical adjoint represen-
tation

f̂ ′(u) = lu(S(u), u, λ), where ly(S(u), u, λ) = 0. (7)

We conclude that under Assumption 2.1 the problem (1) can equivelantly be written
as the reduced problem

min
u∈U

f̂(u) := f(S(u), u) sunject to u ∈ Uad. (8)

Moreover, the reduced objective function u ∈ (DU , ‖·‖U ) 7→ f(S(u), u) is continuously
Fréchet differentiability and its derivative can be computed by the adjoint formula (7).
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2.1. Optimality conditions. Let (ȳ, ū) ∈ Y × Uad be a locally optimal solution of
problem (1). Then ȳ = S(ū) ∈ DY ⊂ Y + by A2 and ū is a local solution of the reduced

problem (8). Hence, Proposition 2.2 yields with the Riesz representation ∇f̂(ū) ∈ U of

f̂ ′(ū) ∈ U∗) that for the local solution ū of (8) the optimality condition

ū ∈ Uad, (∇f̂(ū), u− ū)U ≥ 0 ∀u ∈ Uad

holds. Since Uad ⊂ U is closed and convex, it is well known that this variational inequality
is equivalent to

PUad(ū−∇f̂(ū)) = 0,

where PUad : U → Uad − ū denotes the projection onto the closed and convex set Uad i.e.

PUad(u) ∈ Uad, PUad(u) = argmin
w∈Uad

‖w − u‖U ∀u ∈ U,

see, e.g., [15, 23]. Using (7) we conclude that under Assumption 2.1 in a local solution
(ȳ, ū) of (1) the following first-order necessary optimality conditions hold: There exists
an adjoint state λ̄ ∈ V such that

C(ȳ, ū) = 0 (state equation),

ly(ȳ, ū, λ̄) = 0 (adjoint equation),

PUad(ū−∇ul(ȳ, ū, λ̄)) = 0 (stationarity),

(9)

where ∇ul(ȳ, ū, λ̄) ∈ U denotes the Riesz representation of the control gradient lu(ȳ, ū, λ̄)
of the Lagrangian, cf. [15,23]. We will call ‖PUad(u−∇ul(y, u, λ))‖U criticality measure.

2.2. Discretized problem. To allow for a wide variatey of possible PDE solvers
within the proposed optimization method, we assume the following framework.

We assume that there is a suitable solver for the state equation C(y, u) = 0 available,
which generates for simplicity a conformal discretization. More precisely, for a given mesh
Th corresponding to a state space Yh ⊂ Y and Uh ⊂ U it generates for given uh ∈ Uh
a unique solution yh ∈ Yh of a discretized state equation Ch(yh, uh) = 0 leading to a
discrete solution operator Sh : uh ∈ Uh 7→ yh ∈ Yh. By h′ < h we indicate that the mesh
Th′ is a refinement of Th in the sense that Y h ⊂ Y h

′
and Uh ⊂ Uh

′
. Moreover, we denote

by hk ↘ 0 that Thk is a sequence of refined meshes, such that 1) the maximal diameter of
mesh cells tends to zero, 2) dY (y, Yhk ) +dU (u, Uhk )→ 0 for all (y, u) ∈ Y ×U , 3) specific
requirements of the solver are satisfied, e.g. ratio between time step and spacial mesh
size and regularity properties of the meshes. Here, dY and dU denote the distance with
respect to ‖·‖Y and ‖·‖U , respectively. Finally, let Uhad ⊂ Uh be an approximation of Uad
with dU (u, U

hk
ad )→ 0 for all u ∈ Uad as hk ↘ 0. A possible choice is Uhad = Uad∩Uh. This

leads for a mesh Th to the corresponding discretized problem (3). The reduced objective

function for (3) is given by f̂h(uh) = f(Sh(uh), uh) and the equivalent reduced problem
by

min
uh∈Uh

f̂h(uh) := f(Sh(uh), uh) s. t. u ∈ Uhad. (10)

We do not necessarily require that the exact gradient ∇f̂h(uh) ∈ Uh is computed by
using the discrete adjoint. Instead, we assume that for given (yh, uh) ∈ Yh × Uh there is
an appropriate conformal solver available for the adjoint PDE ly(yh, uh, λ) = 0 leading to
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a discrete solution operator (yh, uh) ∈ Yh × Uh 7→ λh = Shly (yh, uh) ∈ Vh, where Vh ⊂ V .

As above, we assume that hk ↘ 0 implies dV (λ, Vhk ) = 0 for all λ ∈ V . For uh ∈ Uh we

approximate now ∇f̂h(uh) ∈ Uh (and thus ∇f̂h(uh) ∈ U) by

ĝh := ∇uh l(y
h, uh, λh) ∈ Uh, λh = Shly (yh, uh),

where ∇uh l(yh, uh, λh) ∈ Uh is the Riesz representation of lu(yh, uh, λh) ∈ U∗ ⊂ U∗h .
We make the following assumptions on the discrete solution operators that are anal-

ogous to Assumption 2.1.

Assumption 2.3. Let Assumption 2.1 hold and let TH be an initial grid. Then for
each refined mesh Th, h ≤ H (see above), let Uh ⊂ U , Yh ⊂ Y +, Uhad ⊂ DU , Vh ⊂ V .
Moreover, the following holds.

D1 There exists a unique continuously differentiable solution operator uh ∈ Uh∩DU 7→
Sh(uh) ∈ Yh ∩ DY ⊂ Y + for Ch(yh, uh) = 0 that is bounded on bounded sets
of (DU , ‖·‖Uh) uniformly in h ≤ H. Moreover, uh ∈ Uh ∩ DU 7→ (Sh)′(uh) ∈
L(Uh, Yh) is Hölder continuous on bounded subset of (DU , ‖·‖Uh) uniformly in h ≤
H.

D2 The discrete solution operator (yh, uh) ∈ (Yh∩DY )×(Uh∩DU ) 7→ Shly (yh, uh) ∈ Vh
of the adjoint PDE ly(yh, uh, λ) = 0 is continuous.

D3 For any sequence hk ↘ 0 of mesh refinements of the initial mesh h0 = H and any
bounded sequence (yhk , u

h
k) ∈ (Yhk ∩DY ) ∩ (Uhk ∩DU ) and vhk ∈ Uhk the discrete

approximations converge, i.e.,

lim
k→∞

‖Shk (uhk)− S(uhk)‖Y → 0,

lim
k→∞

‖(Shk )′(uhk)− S′(uhk)‖L(U,Y ) → 0,

lim
k→∞

‖Shkly (yhk , u
h
k)− Sly (yhk , u

h
k)‖V → 0,

lim
k→∞

‖P
U
hk
ad

(vhk )− PUad(vhk )‖U → 0, U
hk
ad ⊂ U

hk+1

ad ⊂ Uad ∀ k.

D4 For the state solver Sh and the adjoint solver Shly reliable a posteriori estimators

η
hk
y and η

hk
λ are available, i.e. there exist constants cy, cλ > 0 such that for all

hk ↘ 0 and (yhk , u
h
k) as in D3 it holds

‖C(Shk (uhk), uhk)‖V ∗ ≤ cyηhky (Shk (uhk))→ 0,

‖ly(yhk , u
h
k , S

hk
ly

(yhk , u
h
k))‖Y ∗ ≤ cληhkλ (S

hk
ly

(yhk , u
h
k), yhk , u

h
k)→ 0,

or alternatively

D4′ Instead of the a posteriori estimators for the residuals there are reliable a posteriori
estimators η

hk
y and η

hk
λ available for the error in state and adjoint, more precisely,

‖Shk (uhk)− S(uhk)‖Y ≤ cyηhky (Shk (uhk))→ 0,

‖Shkly (yhk , u
h
k)− Sly (yhk , u

h
k)‖V ≤ cληhkλ (S

hk
ly

(yhk , u
h
k), yhk , u

h
k)→ 0.

For our numerical results we will work with an a posteriori error estimator proposed
in [8], but any reliable a posteriori error estimator could be used, see for example [1,2,9,24].
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Proposition 2.4. Under Assumptions 2.1 and 2.3 the discrete reduced objective function
f̂h : Uh ∩DU → R is continuously differentiable and the derivative is Hölder continuous
on bounded subsets of (DU , ‖·‖Uh) uniformly in h ≤ H.

Proof. By Assumptions 2.1 and D1 this follows analogously as at the end of the proof of
Proposition 2.2.

3. An adaptive multilevel trust-region algorithm

3.1. Main components of the adaptive multilevel trust-region algorithm.
In this section we derive and motivate the adaptive multilevel trust-region method.

3.1.1. Basic concept. Consider the reduced problem (8). Let uk ∈ Uad be a current
iterate. A trust-region type method for (8) computes a step sk by (approximately) solving
the trust-region problem

min
s∈U

q̂k(s) := (∇f̂(uk), s〉U +
1

2
〈s, Ĥks〉U,U∗ s. t. uk + s ∈ Uad, ‖s‖U ≤ ∆k, (11)

where ∆k > 0 is a trust-region radius and Ĥk ∈ L(U,U∗) is an approximation of the

reduced Hessian f̂ ′′(uk) (if it exists). The step is now evaluated by using the decrease
ratio

ρk :=
aredk(sk)

predk(sk)

with actual reduction and predicetd reduction

aredk(sk) := f̂(uk)− f̂(uk + sk), predk(sk) := qk(0)− qk(sk).

If ρk is large enough, the step is accepted, i.e., uk+1 := uk+sk, ∆k+1 ≥ ∆k and otherwise
rejected, i.e., uk+1 := uk, ∆k+1 < ∆k. See below for the precise update mechanism.

By using (7), we have

q̂k(s) = (ĝk, s)U +
1

2
〈s, Ĥks〉U,U∗ ,

where

ĝk = ∇ul(yk, uk, λk), yk = S(uk), λk = Sly (yk, uk).

Let now Th0 be an initial mesh that is adaptively refined during the optimization and
let hk with hk ≤ hk−1 ≤ · · · ≤ h0 be the current grid and uhk ∈ Uhk the current control.

We approximate now the trust-region problem (11) by using the solvers Shk and S
hk
ly

for the state equation and the adjoint equation on the current mesh. This leads to the
approximation of (11)

min
s∈Uhk

q̂hk (s) := (ĝhk , s〉U +
1

2
〈s, Ĥks〉U,U∗ s. t. uhk + s ∈ Uhkad , ‖s‖U ≤ ∆k, (12)

where

ĝhk := ∇uhk l(y
h
k , u

h
k , λ

h
k) ∈ Uhk , yhk = Shk (uhk), λhk = S

hk
ly

(yhk , u
h
k). (13)
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The basic idea is now to apply a trust-region method on the current mesh hk until
error control criteria based on error estimators indicate that the mesh should be refined
in order to approach the solution of (8) efficiently. Then the mesh is refined accordingly
and the trust region method is continued on the new mesh.

To this end, the following errors have to be controlled.

• The error f̂(uhk) − f̂hk (uhk) in the reduced objective function can be reduced by
choosing an adaptively refined mesh hk+1 < hk for the state solver Shk+1 .

• The error ∇f̂(uhk) − ĝhk in the reduced gradient at the current control uhk as well

as the inexactness ∇f̂hk (uhk) − ĝhk of the discrete reduced gradient resulting from
using independent state and adjoint solvers can be controlled by adaptive mesh

refinement for the state solver Shk+1 and the adjoint solver S
hk+1

ly
.

• The error in the admissible sets Uad and U
hk
ad can be reduced by mesh refinement

hk+1 < hk of the control space Uhk+1 .

3.1.2. Sufficient decrease condition for the trust-region step. Let hk be the
current mesh. We compute now an approximate solution shk of the trust-region problem
(12) that satisfies the generalized Cauchy decrease condition

uhk + shk ∈ Uhkad , ‖shk‖U ≤ ∆k,

predhk(shk) := q̂hk (0)− q̂hk (shk)

≥ κ1‖P
U
hk
ad

(uhk − ĝhk )‖U min

{
κ2‖P

U
hk
ad

(uhk − ĝhk )‖U , κ3∆k

}
,

(14)

where κ1, κ2, κ3 are positive constants independent of k and the grid.

If Uad = U then we have ‖P
U
hk
ad

(uhk − ĝhk )‖U = ‖ĝhk‖U and (14) is just the classical

Cauchy decrease condition ensuring that shk provides a fraction of the decrease that is
possible along the direction of steepest descent inside the trust-region. We refer to [27,
§5.3] for several possibilities to compute suitable steps.

If control constraints are considered, the decrease condition is generalized to the pro-
jected negative gradient path direction. Possibilities to compute such steps are discussed
in [26]. A simple procedere to guarantee the generalized Cauchy decrease condition is to
compute the projected negative gradient direction with Armijo or Goldstein type line-
search. If the Hessians are bounded, which will be guaranteed by Assumption 4.1, then
one can show that in this way (14) can be ensured, cf. [26].

To invoke second order methods, in the case of simple pointwise bound constraints it
is possible to compute a projected inexact Newton step ( [4,16]) and to check if the gen-
eralized Cauchy decrease condition (14) is satisfied as described in the fallback projected
inexact Newton algorithm in [26, Alg. 5.10]. By [26, Rem. 5.11] the step shk computed
by Algorithm [26, Alg. 5.10] satisfies the generalized Cauchy decrease condition (14).

3.1.3. Acceptance of steps. As in the standard trust-region method sketched above
the decision about the acceptance of the step and the update of the trust-region radius
∆k is based on the ratio

ρhk :=
aredhk(shk)

predhk(shk)
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of the actual reduction

aredhk(shk) := f̂hk (uhk)− f̂hk (uhk + shk), (15)

and the predicted reduction based on the quadratic model on the current mesh

predhk(shk) = q̂hk (0)− q̂hk (shk). (16)

Note that q̂hk is an approximation of the reduced cost functional f̂hk , but the gradient ĝhk
is in general inexact. This issue will be considered in 3.1.4.

The step shk is accepted if
ρhk ≥ η1,

otherwise shk is rejected and the trust-region is reduced.
We choose the trust-region radius as follows:

For fixed 0 < α0 ≤ α1 < 1 < α2, 0 < η1 < η2 < 1, and ∆min ≥ 0 set

∆k+1 ∈


[α0∆k, α1∆k] , if ρhk < η1

[max{∆min, α1∆k},max{∆min,∆k}] , if ρhk ∈ [η1, η2)

[max{∆min,∆k},max{∆min, α2∆k}] , if ρhk ≥ η2.

(17)

3.1.4. Accuracy control of the inexact reduced gradient. To control the
inexactness of the reduced gradient ĝhk we use the following condition, which is a weakened
variant of the condition proposed in [14], see also [25–27].

If the step shk was rejected then the gradient accuracy condition

|(∇f̂hk (uhk), shk)U − (ĝhk , s
h
k)U | ≤ ξ2 min{‖P

U
hk
ad

(uhk − ĝhk )‖U ,∆k}‖shk‖U (18)

is checked, where ξ2 > 0 is a fixed constant. Note that the directional derivative
(∇f̂hk (uhk), shk)U can also be computed approximately by a difference quotient using the
state solver. If (18) is satisfied, the accuracy of ĝhk is sufficient and no mesh refinement
is required.

If (18) fails, then the discretization is refined and the iteration is recomputed until
either the stopping criterion of the algorithm is satisfied or the trial step is accepted or
the gradient accuracy condition (18) is satisfied. The latter can be achieved by sufficient
refinement as shown in the convergence analysis.

Remark 3.1. If ĝhk is the exact discrete reduced gradient, i.e., ĝhk = ∇f̂hk (uhk) then (18)
is always satisfied, since the left hand side vanishes.

3.1.5. Refinement criteria. So far only the gradient accuracy condition (18) may
require a mesh refinement. As we will see, the trust-region method together with the ac-
curacy condition (18) ensures that the criticality measure satisfies lim infk→∞ ‖P

U
hk
ad

(uhk−

ĝhk )‖U = 0 under weak additional assumptions.
To ensure that for the generated iterates (yhk , u

h
k , λ

h
k) the residual of the optimality

system (9) for the infinite dimensional optimization problem (1) is driven to zero, we have
to refine the meshes accordingly during the optimization.

The main idea for refinement is to control the residuals in the infinite dimensional
optimality system (9) with the discrete criticality measure ‖P

U
hk
ad

(uhk − ĝhk )‖U . As long

as the criticality measure is large enough compared to the residuals ‖C(yhk , u
h
k)‖V ∗ of the
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state equation and ‖ly(yhk , u
h
k , λ

h
k)‖Y ∗ of the adjoint equation, the current discretization

can be considered as sufficiently accurate to compute productive steps. On the other
hand, if the norm of the discrete criticality measure on the current grid is small com-
pared to the residuals of state and adjoint equation then one has to ensure by refinement
of the discretizations that the infinite dimensional problem and, in particular, the infi-
nite dimensional reduced gradient and its projection are well represented in the current
discretization such that reasonable steps can be computed. Observe that the inexact re-
duced gradient ĝhk depends on the (inexact) state yhk = Shk (uhk) and the (inexact) adjoint
λhk = S

hk
ly

(yhk , u
h
k). Therefore, the residual norms of the infinite dimensional state- and

adjoint equation must be controlled. Since these residual norms cannot be computed
directly, we will use reliable error estimators instead.

Hence, we would like to ensure the following inequalities

‖C(yhk , u
h
k)‖V ∗ ≤ Ky‖P

U
hk
ad

(uhk − ĝhk )‖U
‖ly(yhk , u

h
k , λ

h
k)‖Y ∗ ≤ Kλ‖P

U
hk
ad

(uhk − ĝhk )‖U
‖PUad(uhk − ĝhk )− P

U
hk
ad

(uhk − ĝhk )‖U ≤ Ku‖P
U
hk
ad

(uhk − ĝhk )‖U
(19)

with fixed constants Ky,Kλ,Ku > 0, where

yhk = Shk (uhk), λhk = S
hk
ly

(yhk , u
h
k).

The third inequality in (19) results from the difference of the (infinite dimensional) pro-
jection onto Uad and the discrete projection onto U

hk
ad . Note that it implies

‖PUad(uhk − ĝ
h(k)
k )‖U ≤ (Ku + 1)‖P

U
hk
ad

(uhk − ĝhk )‖U (20)

Since a direct computation of the residual norms of the state and adjoint PDE is too
expensive to compute, we use the reliable error estimators in Assumption 2.3, D4. Then
instead of (19) we check the condition

ηhky (yhk ) ≤ c̃y ‖P
U
hk
ad

(uhk − ĝhk )‖U (21a)

η
hk
λ (λhk , y

h
k , u

h
k) ≤ c̃λ ‖P

U
hk
ad

(uhk − ĝhk )‖U (21b)

‖PUad(uhk − ĝhk )− P
U
hk
ad

(uhk − ĝhk )‖U ≤ c̃u ‖P
U
hk
ad

(uhk − ĝhk )‖U (21c)

with fixed (arbitrary) constants c̃y, c̃λ, c̃u > 0. By D4 this implies (19) with Ky = cy c̃y,
Kλ = cλc̃λ and Ku = c̃u.

Remark 3.2. In the important case U = L2((0, T )×Ωc) and Uad = {u ∈ U : a ≤ u ≤ b}
with a, b ∈ L∞((0, T ) × Ωc) the left hand side of (21c) can usually be estimated directly
as long as a, b are not too complicated.

If according to D4′ a posteriori estimators for the error in state and adjoint are
available then one can use the fact that by A1 and A3 the mapping C : (DY , ‖·‖Y )×U →
V ∗ is Lipschitz continuous on bounded subsets of Y + × U and ly(y, u, ·) ∈ L(V, Y ∗) is
bounded on bounded subsets of Y + ×U . If DU in Assumptions 2.1 and 2.3 are bounded
in U then by A2 and D1 we can choose DY ⊂ Y + bounded and have S(uhj ) ∈ DY and

Shk (uhj ) ∈ DY for all uhj ∈ U
hj
ad ⊂ DU . Now let Ly and Lλ be the corresponding local
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Lischitz constants of C and ly(y, u, ·) on DY × DU . Under assumption D4′ we obtain
with xhk = (yhk , u

h
k)

‖C(xhk)‖V ∗ = ‖C(yhk , u
h
k)− C(S(uhk), uhk)‖V ∗ ≤ Ly‖yhk − S(uhk)‖Y ,

‖ly(xhk , λ
h
k)‖Y ∗ = ‖ly(xhk , λ

h
k)− ly(xhk , Sly (xhk))‖Y ∗ ≤ Lλ‖λhk − Sly (xhk)‖V .

(22)

If we use now (21) with the a posteriori error estimators in D4′ then (22) yields that
again (19) holds with constants Ky = Lycy c̃y, Kλ = Lλcλc̃λ, and Ku = c̃u.

3.1.6. Sufficient mesh refinement. After the computation of a successful step on
the current grid we need (at least after some iteration K) that the decrease produced for

f̂hk on the current grid ensures also decrease for the exact objective function f̂hk . To
this end, we impose the following condition for sufficient refinement

aredhk(shk) ≥ (1 + δ)
((
f̂(uhk + shk)− f̂hk (uhk + shk)

)
−
(
f̂(uhk)− f̂hk (uhk)

))
∀ k ≥ K,

(23)

with 0 < δ < 1. If criterion (23) is not satisfied the Y -grid is refined properly and the
step is recomputed until (23) holds.

To implement condition (23) assume that the algorithm generates a sequence hk ↘ 0.
If uhk , u

h
k + shk ⊂ DU remain bounded, D3 and A1 yield

α(uhk) := f̂(uhk)− f̂hk (uhk) =→ 0

α(uhk + shk) := f̂(uhk + shk)− f̂hk (uhk + shk)→ 0.
(24)

Assume now that we have a realible estimator βhk (uhk , s
h
k) > 0, which can be contructed

from the error estimator η
hk
y in D4 or D4′, such that

α(uhk + shk)− α(uhk) ≤ Kβhk (uhk , s
h
k)→ 0 for k →∞ (25)

with some fixed possibly unkown K > 0.
Then to ensure (23) it suffices to verify the following sufficient refinement condition

aredhk(shk) ≥ ξβhk (uhk , s
h
k)ω (26)

for fixed ω ∈ (0, 1) and ξ > 0. In fact, having (26), assumption (24) yields with (25)

(1 + δ)(α(uhk + shk)− α(uhk)) ≤ (1 + δ)Kβhk (uhk , s
h
k) ≤ ξβhk (uhk , s

h
k)ω ∀ k ≥ K

with K large enough and consequently (23).
An alternative criterion to (23) is the sufficient refinement condition

∞∑
k=0

f(Shk+1(uhk+1), uhk+1)− f(Shk (uhk+1), uhk+1) <∞ (27)

that originates from the jumps in the differences of the cost functional due to refinement
of the meshes which shall be summable.

Our convergence proof is given for criterion (26) which implies (23) after finitely
many iterations if the algorithm refines infinitely many times. A convergence proof using
condition (27) instead of (23) or (26) in the algorithm is very similar. Only a few details
in the proof of Theorem 4.5 need to be adapted.
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3.2. Statement of the adaptive multilevel trust-region algorithm. We now
state the complete algorithm.

Algorithm 3.3. Adaptive multilevel trust-region algorithm

S0 Initialization: Choose εtol > 0, 0 < α0 ≤ α1 < 1 < α2, 0 < η1 < η2 < 1, ∆min ≥ 0,
ξ2 > 0, δ > 0, c̃y, c̃λ, c̃u > 0, an initial mesh Th0 , uh0 ∈ Uh0

ad and ∆0 > 0 with
∆0 ≥ ∆min. Set k := 0.

For k = 0, 1, 2, ...

S1 Compute yhk = Shk (uhk) as solution of the discretized state equation and the error
estimator η

hk
y (yhk ) for the state as in D4 or D4′ (if not already done).

S2 Compute the discretized adjoint state λhk = S
hk
ly

(yhk , u
h
k) and the error estimator

η
hk
λ (λhk , y

h
k , u

h
k) for the adjoint as in D4 or D4′. Determine the inexact reduced

gradient ĝhk by (13) and the criticality measure ‖P
U
hk
ad

(uhk − ĝhk )‖U .

S3 If the refinement condition (21) holds then goto S5.

S4 If the refinement condition (21a) fails then refine the Y -grid adaptively. If (21b)
or (21c) is violated then refine the V - or U-grid, respectively. Goto S1.

S5 If η
hk
y (yhk ) + ηλ(λhk , y

h
k , u

h
k) + ‖P

U
hk
ad

(uhk − ĝhk )‖U ≤ εtol holds in S5 or during the

refinement in S4 then stop and return (yhk , u
h
k) as approximate solution for problem

(1).

S6 Compute shk as inexact solution of (12) satisfying (14) and compute predhk(shk) in
(16).

S7 Compute a discrete state yhk+1 = Shk (uhk + shk) and aredhk(shk) as in (15).

S8 If ρhk = aredhk(shk)/predhk(shk) ≥ η1, then provisionally accept shk , update the trust-
region radius according to (17) and goto S9.

If the gradient accuracy condition (18) is violated then refine the Y - and V -grid
properly leading to a new mesh hk and go back to S1 with uhk .

Otherwise reject the step shk and reduce the trust-region radius according to (17).
Set (yhk+1, u

h
k+1) := (yhk , u

h
k), k := k + 1 and goto S6.

S9 If (26) is satisfied (or (23)) then accept shk , set (yhk+1, u
h
k+1) := (yhk+1, u

h
k + shk),

k := k + 1 and goto S2. Otherwise reject shk , refine the Y -grid properly leading to
a new mesh hk and go back to S1 with uhk .

4. Convergence analysis

We make the following assumption.

Assumption 4.1. The iterates uhk , u
h
k + shk remain in a bounded closed convex set DU ⊂

U with Uad ⊂ DU and Assumptions 2.1 and 2.3 hold. By A2 and D1 we can choose
DY ⊂ Y + bounded and S(uhk), S(uhk + shk), Shk (uhk), Shk (uhk + shk) ∈ DY holds for all k.
Finally, there exists MH > 0 with

‖Ĥk‖L2(U,U∗) ≤MH ∀ k.

Throughout this section we assume that Assumption 4.1 holds.
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4.1. Well definedness of refinement conditions. First we will show that the
gradient accuracy condition (18) can always be satisfied by sufficient refinement.

Lemma 4.2. Let Assumption 4.1 hold. If ‖PUad(uhk −∇f̂(uhk))‖U > 0 then a new itera-
tion k := k + 1 is generated after finitely many grid refinements.

Proof. As long as the algorithm stays in iteration k, the control uhk remains unchanged.
By Assumption 2.3, D3 and D4 or D4′ the refinement (hk,j)j ↘ 0 within iteration k

ensures together with the continuity properties in Assumption 2.1 that the left hand side
of (21) tends to zero for j → ∞. Moreover, by D3 we have with yhk,j := Shk,j (uhk) and

λhk,j := S
hk,j
ly

(yhk,j , u
h
k)

ĝ
hk,j
k (uhk) = lu(yhk,j , u

h
k , λ

h
k,j)→ lu(S(uhk), uhk , Sly (S(uhk), uhk)) = ∇f̂(uhk). (28)

Hence, the right hand side of (21) satisfies

‖P
U
h
j
k

ad

(uhk − ĝ
hk,j
k (uhk))‖U → ‖PUad(uhk −∇f̂(uhk))‖U =: ε > 0 (29)

and thus (21) holds after finitely many refinements and S5 ist reached.
We show that after finitely many refinements also the gradient accuracy condition

(18) in S8 is satisfied if it is checked. In fact, by D3 we have

(f̂hk,j )′(uhk) = fy(yhk,j , u
h
k)(Shk,j )′(uhk) + fu(yhk,j , u

h
k)

→ fy(S(uhk), uhk)S′(uhk) + fu(S(uhk), uhk) = f̂ ′(uhk).

Hence, together with (28) we see that (18) eventually holds, since by (29) the right hand

side of (18) is eventually> ξ2/2 min{‖PUad(uhk −∇f̂(uhk))‖U ,∆k}‖shk,j‖U ≥ const. ‖shk,j‖U .
Finally, also the sufficient refinement criterion (26) in step S9 is satisfied after finitely

many refinements. In fact, uhk and ∆k remain unchanged and thus (29) yields after finitely
many refinements ‖P

U
hk
ad

(uhk − ĝhk )‖U ≥ ε/2. Since S9 is only reached if aredhk(shk,j) ≥

η1predhk(shk,j), the decrease condition (14) yields

aredhk(shk,j) ≥ η1predhk(shk,j) ≥ 1
2
η1κ1εmin{κ2

1
2
ε, κ3∆k} ≥ ε′ > 0.

Since βhk,j (uhk , s
h
k,j) → 0 as j → 0 by (25), the sufficient refinement criterion (26) is

satisfied after finitely many iterations.

4.2. Acceptance of steps. We start by estimating the difference of actual and pre-
dicted reduction.

Lemma 4.3. Let Assumption 4.1 hold and let 0 < γ ≤ 1 be such that f̂hk is γ-Hölder
continuously differentiable, which is ensured Proposition 2.4. Then there exists Cred > 0
such that for any inexact reduced gradient ĝhk satisfying the gradient accuracy condition
(18) and any step shk computed by the Algorithm 3.3 the inequality

|aredhk(shk)− predhk(shk)| ≤ Cred(∆1+γ
k + ∆2

k)

holds.
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Proof. By the definition of actual and predicted reduction we have by using the γ-Hölder
continuous differentiability of f̂hk on bounded sets, see Proposition 2.4, and the mean
value theorem with a τ ∈ [0, 1]

|aredh(shk)− predhk(shk)| ≤|(∇f̂hk (uhk + τshk)−∇f̂hk (uhk), shk)U |

+ |∇f̂hk (uhk)− ĝhk , shk)U |+ 1
2
〈shk , Ĥkshk〉U,U∗

≤Lg∆1+γ
k + ξ2∆2

k + 1
2
MH∆2

k.

Here, Lg denotes the uniform local Hölder constant of ∇f̂hk and we have used (18), the

boundedness of Ĥk and ‖shk‖U ≤ ∆k.

We next show that after finitely many trial iterations with possible refinements and
reductions of the trust-region radius there will be a successful step. In particular, there
is a lower bound for the trust-region radius if the criticality measure is bounded from
below.

Lemma 4.4. Let Assumption 4.1 hold. Let ε > 0, then there exists a constant ∆′ > 0
depending on ε such that if ‖P

U
hk
ad

(uhk − ĝhk )‖U > ε and the gradient accuracy condition

(18) holds then

aredh(shk) ≥ η1predhk(shk)

for ∆k ≤ ∆′. In particular the step shk will be eventually accepted in S8 and ∆k+1 ≥ ∆k.

Proof. By Lemma 4.3 we have

|aredhk(shk)− predhk(shk)| ≤ Cred(∆1+γ
k + ∆2

k).

On the other hand the decrease condition (14) yields

predhk(shk) :=≥ κ1‖P
U
hk
ad

(uhk − ĝhk )‖U min

{
κ2‖P

U
hk
ad

(uhk − ĝhk )‖U , κ3∆k

}
≥ κ1εmin {κ2ε, κ3∆k} .

Hence, there exists ∆′ = ∆′(ε) > 0 such that

aredhk(shk)

predhk(shk)
− 1 ≥ −|aredhk(shk)− predhk(shk)|

predhk(shk)
≥ η1 − 1 ∀ 0 < ∆k ≤ ∆′.

This proves the first assertion.

Now consider step S8. The next iteration k+1 is only reached if the step is accepted or
if possibly after mesh refinement the gradient accuracy condition (18) is satisfied. Hence,
the decrease ratio is tested with (18) holding before a step is rejected and the trust region
radius is reduced. After finitely many unsuccessful iterations we have ∆k ≤ ∆′ and the
step is accepted.
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4.3. Global convergence result. We show now global convergence to a stationary
point of the infinite dimensional problem (1) if εtol = 0 or finite termination if εtol > 0,
respectively. We start with the following result.

Theorem 4.5. Let Assumption 4.1 hold. If εtol > 0 then Algorithm 3.3 terminates
finitely. If εtol = 0 then Algorithm 3.3 terminates finitely or the sequence of iterates
generated by Algorithm 3.3 satisfies

lim inf
k→∞

‖P
U
hk
ad

(uhk − ĝhk )‖U + ηy(yhk ) + ηλ(λhk , y
h
k , u

h
k) = 0. (30)

Proof. Consider first the case εtol > 0. Suppose that Algorithm 3.3 runs infinitely. Since
‖P

U
hk
ad

(uhk − ĝhk )‖U + ηy(yhk ) + ηλ(λhk , y
h
k , u

h
k) > εtol in S5 and (21) holds by S3, S4, there

exists ε > 0 such that

‖P
U
hk
ad

(uhk − ĝhk )‖U ≥ ε ∀k.

By Lemma 4.4 there exists ∆′ > 0 such that for all accepted steps we obtain by the
update rule for the trust-region radius

∆k ≥ α0∆′ =: ∆∗

and there is an infinite sequence of accepted steps. For all eccepted steps we get by the
generalized Cauchy decrease condition (14)

aredhk(shk) ≥ η1κ1εmin{κ2ε, κ3∆∗} ≥ ε′ > 0 (31)

for constants κ1, κ2, κ3 > 0.

We will distinguish the two different cases where either only finitely many mesh
refinements are performed by the algorithm or the algorithm produces infinitely many
mesh refinements.

Let us first consider the case where only finitely many mesh refinements are carried
out by the algorithm. Then there exists K ∈ N such that the mesh is not refined for
all iterations with k larger than K. Consequently, condition (26) does not necessarily
imply (23). Therefore, we give a separate proof for this case that is similar to the finite
dimensional convergence theory.

By Assumption 4.1, uhk remains in a bounded set DU and consequently yhk = Shk (uhk)

and also S(uhk) remain in a bounded subset DY ⊂ Y +. Hence, the sequence f̂hk (uhk) =

f(yhk , u
h
k) as well as f̂(uhk) = f(S(uhk), uhk) is bounded below. Summation of the actual

reduction in the successful steps gives

∞∑
k=0

aredhk(shk) =

∞∑
k=0

(f̂hk (uhk)− f̂hk (uhk+1))

=
∑
k<K

aredhk(shk) +

∞∑
k≥K

(f̂hK (uhk)− f̂hK (uhk+1))

=
∑
k<K

aredhk(shk) + f̂hK (uhk)− lim
k→∞

f̂hK (uhk) <∞.

Hence, the summability yields aredh(shk)→ 0 as k →∞ bus this contradicts (31).
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Let us now consider the case where the algorithm produces infinitely many refine-
ments. Then condition (26) implies condition (23) for all k ≥ K with some K > 0. We
then consider the exact actual reduction

ared(shk) := f̂(uhk)− f̂(uhk + shk) = f(S(uhk), uhk)− f(S(uhk + shk), uhk + shk),

where S denotes the solution operator of the PDE constraint. Condition (23) then yields

aredhk(shk) =
δ

1 + δ
aredhk(shk) +

1

1 + δ
aredhk(shk)

≥ δ

1 + δ
aredhk(shk) +

((
f̂hk (uhk)− f̂(uhk)

)
−
(
f̂hk (uhk+1)− f̂(uhk+1)

))
=

δ

1 + δ
aredhk(shk) + aredhk(shk)− ared(shk)

for all k ≥ K, with some δ > 0. Hence, using this inequality, we obtain

ared(shk) ≥ δ

1 + δ
aredhk(shk) ≥ δ

1 + δ
η1predhk(shk) ≥ δ

1 + δ
η1ε
′ (32)

for all k ≥ K. Now, by assumption, f̂(uhk) is bounded below. Summation of the infinite
dimensional actual reduction in the successful steps gives

∞∑
k=0

ared(shk) = f̂(uh0 )− lim
k→∞

f̂(uhk) <∞.

Hence, the summability yields ared(shk)→ 0 as k →∞ which contradicts (32).

Now let εtol = 0 and assume that (30) does not hold. Then there exists ε′tol > 0
small enough such that the algorithm would also not terminate for the stopping tolerance
ε′tol > 0. But this contradicts the finite termination for εtol > 0.

By using the reliability of the error estimators, we obtain the following convergence
result.

Corollary 4.6. Let Assumption 4.1 hold. If εtol = 0 then Algorithm 3.3 terminates
finitely with a stationary point of problem (1) or the sequence of iterates generated by
Algorithm 3.3 satisfies

lim inf
k→∞

∥∥C(yhk , u
h
k)
∥∥
V ∗

+
∥∥ly(yhk , u

h
k , λ

h
k)
∥∥
Y ∗

+
∥∥PUad(uhk −∇ul(yhk , , uhk , λhk))

∥∥
U

)
= 0. (33)

Proof. The steps S3 and S4 ensure that (21) holds and we have shown in 3.1.5 that
Assumption 2.3, D4 or D4′ ensure (19).

Hence, if the algorithm runs infinitely then (30) implies by (19) the assertion (33).

If the algorithm terminates finitely then ‖P
U
hk
ad

(uhk − ĝhk )‖U = 0 and (19) shows with

U
hk
ad ⊂ Uad (see D3) that (yhk , u

h
k) satisfies (9).
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5. Numerical results

In this section we present some numerical results for the adaptive multilevel trust-region
method. The algorithm has been implemented in Matlab. We use the method of lines
with conformal finite element discretization in space by quadratic finite elements and the
3-stage Rosenbrock method ROS3P from [19] in time. Moreover, our Matlab imple-
mentation uses adaptive refinement in time and uniform refinement in space. We present
results for a semilinear parabolic boundary control problem with control constraints of
the form (2).

Further results can be found in [25]. Moreover, we have coupled the presented algo-
rithm with the highly efficient PDAE solver Kardos, which uses adaptive refinements
in space and time, and have applied it to a realistic glass cooling problem as well as a
thermistor problem, see [5–7]

5.1. An a posteriori error estimator for parabolic PDEs. In our numerical
examples we used the error estimator from [8]. We briefly sketch the main ideas of this
error estimator. The derivation, proofs and numerical tests can be found in [8].

The error estimator is designed for parabolic initial boundary value problems as the
state PDE in (2). The PDE is discretized with the method of lines using for example
finite elements in space with a spatial mesh of characteristic mesh size h and an existing
time integrator for the resulting system of ordinary diferential equations (ODEs). Let
yh(t) be the unique solution vector of the resulting system of ODEs representing the
spatial degrees of freedom. Moreover, let vh(ti) denote its approximations in the time
grid point ti on a certain timegrid obtained by applying a numerical integration method
of order p ≤ 3 and denote by vh(t) an interpolatory polynomial by using Lagrange or
Hermite interpolation. The global time error is then defined by eh(t) = vh(t)−yh(t). Let
Rh : y(t, ·) 7→ Rhy(t) be the restriction operator which maps y(t) to its spatial degrees of
freedom. Then the spatial discretization error is defined by ηh(t) = yh(t)−Rhy(t), where
y denotes the solution of the PDE. The overall discretization error Eh(t) = vh(t)−Rhy(t)
is then given as the sum of global time and spatial error, Eh(t) = eh(t) + ηh(t).

Debrabant and Lang approximate these residuals by solving a linear spatial error
transport equation and a linear time error transport equation. They involve the spatial
truncation error, which is in [8] estimated by Richardson extrapolation, and the resid-
ual time error, respectively. The obtained approximations of the global error Ẽh(t) =
ẽh(t)+ η̃h(t) can be controlled by spatial and temporal adaptivity. [8] conclude that based
on tolerance proportionality, reducing the local error tolerances by a factor will reduce
the global error by the same factor. Hence, given a prescribed tolerance for the global
error, the local tolerances can be chosen appropriately. If the global error is not below a
prescribed tolerance, the state computation is redone with adjusted tolerances and refined
spatial resolution, cf. [8].

In the context of our adaptive multilevel trust-region algorithm global error estima-
tors for the difference between the solution yh of the discretized PDE and the infinite
dimensional solution y of the original PDE are required. With the global estimates of the
space and time error from [8], we obtain the error estimate

‖vh −Rhy‖2L2(0,T ;H1(Ω)) ≈
∫ T

0

‖Ẽh(t)‖2H1(Ω)dt. (34)
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Numerical tests show that the approach yields accurate estimates of global space and
time error [8].

5.2. Local refinement and its implementation. The error estimator of Debra-
bant and Lang [8] provides an estimate of the global space and time error. Moreover,
since the error estimator is computed while solving the discretized PDE, the timestep
size can be adjusted adaptively such that the local time residual estimation is a suitable
portion of a predefined tolerance for the global time error. Thus, a time refinement re-
sults in a change of the predefined tolerance for the local time residual, a solve of the
discretized PDE including the residual estimation and the possible insertion of additional
timepoints.

Thus, since the error estimator provides a global time and space error estimation, we
implement the refinement criteria (21) by first checking the refinement condition just for
the global time error, here given exemplarily for the state equation

ηy,t(y
h
k ) ≤ cy,t ‖P

U
hk
ad

(uhk − ĝhk )‖U , (35)

where ηy,t denotes the error estimator for the time error and cy,t > 0 is the (appropriately
chosen) constant for the time refinement in the state. For the adjoint state the equation
looks the same with λ instead of y. After having checked the refinement condition for the
state in time, the refinement condition (21) with the estimation of the global space-time
error is tested.

To prevent too much spatial refinements if the stationary measure becomes very small
on the current grid, we modify the spatial refinement condition (21) with an additional
space residual tolerance εx > 0 of the form

ηy,x(yhk ) ≤ max{c̃y ‖P
U
hk
ad

(uhk − ĝhk )‖U , εx} (36)

and analogously for the adjoint with y replaced by λ. By choosing the space residual
tolerance for example as εx = min{c̃y, 1/3}εtol, an additional refinement when the crit-
icality measure drops below the stop tolerance can be prohibited. Nevertheless, space
refinements are still possible through the gradient condition (18) such that convergence
of the criticality measure to the prescribed tolerance εtol can still be guaranteed.

We describe the adaptive refinement strategy. If a time refinement is triggered by
the state error estimation we do not only compute the state on an adaptively refined
timegrid but also perform an adaptive solve of the discretized adjoint PDE with the
same predefinded tolerance for the global time residual estimation in the adjoint state as
before and possibly additional timepoints due to the (slightly) different state. If a time
refinement is necessary by the adjoint error estimate it is done vice versa. After such a
refinement the timegrid is fixed. In our implementation a spatial refinement is performed
as a uniform refinement of the space grid followed by an adaptive time refinement during
the state and adjoint computation as described above. For numerical results with the
fully space-time adaptive solver Kardos, we refer to [5–7].

Let TolA,y, T olR,y > 0 denote the tolerances for the control of the adaptive stepsize
choice for the state computation as described in [8] and TolA,λ, T olR,λ > 0 the corre-
sponding ones for the adjoint state computation. Let ηy,t denote the estimator for the
time error in the state computation. Let cy,t > 0 denote the refinement constant in (21a)
for the time error. We then implemented the following refinement procedere for the state
in time:
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While ηy,t > cy,t‖P
U
hk
ad

(uhk − ĝhk )‖U , do

1. Set ε = (cy,t‖P
U
hk
ad

(uhk − ĝhk )‖U )/(1.2 · ηy,t).
Set TolA,y = max(0.2,min(ε, 0.9)) · TolA,y.
Set TolR,y = max(0.2,min(ε, 0.9)) · TolR,y.

2. Recompute the state with TolA,y, TolR,y and insert additional timepoints
when necessary.

3. Recompute the adjoint state with TolA,λ, TolR,λ and insert additional time-
points when necessary.

4. Recompute ĝhk and ‖P
U
hk
ad

(uhk − ĝhk )‖U .

The refinement procedere for the adjoint state in time is the same as for the state with
changed roles of y and λ. In our examples, the refinement procedures both in time or in
space and time usually needed only one refinement iteration.

5.3. A semilinear parabolic optimal boundary control problem. We con-
sider the following semilinear parabolic boundary control problem of the form (2).

Let Ω = (0, 1) × (0, 1) ⊂ R2, T = 1, ΣT := (0, T ) × ∂Ω, α > 0, a, b ∈ L∞(ΣT ) and
set U = L2(ΣT ), H = L2((0, T )× Ω), and Q = H1((0, T )× Ω). With the Gelfand triple
Q ↪→ H = H∗ ↪→ Q∗ we set

Y = W (0, T ) = {y ∈ L2(0, T ;Q) : yt ∈ L2(0, T ;Q∗)}, V = V1 × V2 = L2(0, T ;Q)×H.

Moreover, let y0 ≡ 1 in Ω, yd ≡ 0.2 in Ω and let yQ(t, x) = 1 − 0.8t, (t, x) ∈ [0, 1] × Ω.
Then the problem is given by

min
y∈Y,u∈U

f(y, u) := 1
2
‖y(T )− yd‖2L2(Ω) + 1

2
‖y − yQ‖2L2((0,T )×Ω) + α

2
‖u‖2U

s.t. yt −∆y = 0 in (0, T )× Ω,
yn = u− y3|y| on (0, T )× ∂Ω =: ΣT ,

y(0, ·) = y0 in Ω,
a ≤ u ≤ b,

(37)

where yn denotes the outer normal derivative and the state equation has to be understood
in the weak sense.

Hence, Uad = {u ∈ U : a ≤ u ≤ b} is a bounded, convex and closed subset of L∞(ΣT )
and of U .

5.3.1. Verification of Assumption 2.1. We now verify Assumption 2.1 with
Y + := Y ∩ C([0, T ]× Ω) and DU := Uad. A1 is obvious.

Since Uad is bounded in L∞(ΣT ), the state PDE admits for all u ∈ Uad a unique
weak solution y ∈ Y ∩ C([0, T ] × Ω), see [23, Thm. 5.5] and the solution remains in a
convex bounded closed set DY ⊂ Y +. Moreover, by [23, Thm. 5.8] the solution mapping
S : u ∈ Ls(ΣT ) → S(u) ∈ Y + is Lipschitz continuous for s > 3. Since DU = Uad

is bounded in L∞(ΣT ) and by interpolation ‖u‖Ls ≤ ‖u‖
2
s
U‖u‖

1− 1
s

L∞ , we conclude that
S : (DU , ‖·‖U )→ Y + is Hölder continuous. This proves A2.
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To verify A3 we note that the weak solution of the state equation is the unique solution
of the operator equation C(y, u) = 0, where

C : Y + × U 7→

(
L2(0, T ;Q∗)

H

)
= V ∗1 × V ∗2 = V ∗

C(y, u) :=

(
yt + (∇y,∇·)L2((0,T )×Ω) + (y3|y| − u, ·)L2(ΣT )

y(0, ·)− y0

)
.

From standard parabolic theory it is obvious that the linear part of C(y, u) is in L(Y ×
U, V ∗). We study now the differentiability properties of the nonlinear term

B : y ∈ Y + 7→ (y3|y|, ·)L2(ΣT ) ∈ L
2(0, T ;Q∗) = V ∗1 .

It is obvious that B : Y + → V ∗1 is continuously Fréchet differentiable with derivative

B′(y)v = (4|y|3v, ·)L2(ΣT ) ∈ V
∗
1 .

Since DY ⊂ Y + is bounded, also the operator B : (DY , ‖·‖Y ) → V ∗1 is well defined.
Moreover, for all y ∈ DY the operator B′(y) admits an extension B′(y) ∈ L(Y, V ∗1 ). In
fact, we have Y ↪→ V1 ↪→ L2(0, T ;Lp(∂Ω)) for all 1 ≤ p <∞ and thus

〈B′(y)v, w〉V ∗1 ,V1 = (4|y|3v, w)L2(ΣT ) ≤ 4‖y‖3Y +‖v‖L2(ΣT )‖w‖L2(ΣT )

≤ c‖y‖3Y +‖v‖Y ‖w‖V1 .

Finally, we show that also B : (DY , ‖·‖Y ) → V ∗1 is continuously Fréchet differentiable
with γ-Hölder continuous derivative for all 0 < γ < 1.

We start by showing that B′ : (DY , ‖·‖Y ) → L(Y, V ∗1 ) is γ-Hölder continuous for all

0 < γ < 1. We will need the embedding Y ↪→ L
2
s (0, T ;L

1
1−s (∂Ω)) for all 1/2 < s < 1.

In fact, the embedding can be proven as follows. The trace theorem and interpolation
yields for 1/2 < s < 1

‖·‖
H
s− 1

2 (∂Ω)
≤ c‖·‖Hs(Ω) ≤ c‖·‖sQ‖·‖1−sH

and thus, since Y = W (0, T ) ↪→ C([0, T ];H) and Hs− 1
2 (∂Ω) ↪→ L

1
1−s (∂Ω)

‖·‖
L

2
s (0,T ;L

1
1−s (∂Ω))

≤ c‖·‖
L

2
s (0,T ;H

s− 1
2 (∂Ω))

≤ c‖·‖1−sL∞(0,T ;H)‖·‖
s
L2(0,T ;Q) ≤ c‖·‖Y .

There exists a constant R > 0 such that

‖y‖Y + , ‖y + h‖Y + ≤ R ∀ y, y + h ∈ DY .

For all y, y + h ∈ DY Taylor expansion yields with r :=
∫ 1

0
12(y + τh)|y + τh| dτ

〈(B′(y + h)−B′(y))v, w〉V ∗1 ,V1 = (rhv, w)L2(ΣT ).

We have the embedding V1 ↪→ L2(0, T ;H1/2(∂Ω)) ↪→ L2(0, T ;Lp(∂Ω)) for all 1 ≤ p <∞.
Let now p ≥ 2 (will be adjusted later depending on γ) and let p′ be the dual index with
1/p+ 1/p′ = 1. Then

(rhv, w)L2(ΣT ) ≤ 12R2c‖hv‖L2(0,T ;Lp
′
(∂Ω))‖w‖V1 .
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Fix an arbitrary 0 < γ < 1 and set q = 2γ + 2. Moreover, choose 1/2 < s < 1 with

2/s = q and 1 < p′ < 2 with 2p′ ≤ 1
1−s . Then Y ↪→ Lq(0, T ;L2p′(∂Ω))), 1/2 = 1/q+ γ/q

and thus

‖hv‖L2(0,T ;Lp
′
(∂Ω)) ≤ ‖h‖

L
q
γ (0,T ;L2p′ (∂Ω))

‖v‖Lq(0,T ;L2p′ (∂Ω)) ≤ cR
1−γ‖h‖γY ‖v‖Y .

Thus, B′ : (DY , ‖·‖Y )→ L(Y, V ∗1 ) is γ-Hölder continuous for all 0 < γ < 1.
Now the Fréchet-differentiability of B : (DY , ‖·‖Y ) → V ∗1 follows easily. Pointwise

Taylor expansion with integral remainder term yields with the γ-Hölder continuity of B′

〈B(y + h)−B(y)−B′(y)h,w〉V ∗1 ,V1

≤
∫ 1

0

‖B′(y + τh)−B′(y)‖L(Y,V ∗1 ) dτ‖h‖Y ‖w‖V1 ≤ c‖h‖
1+γ
Y ‖w‖V1 .

Using the properties of B we have shown that C : (DY , ‖·‖Y ) × U 7→ V ∗ is Fréchet-
differentiable with γ-Hölder continuous derivative for all 0 < γ < 1. To conclude the
verification of A3 we note that for (y, u) ∈ DY × DU the linear parabolic operator
Cy(y, u) ∈ L(Y, V ∗) has a bounded inverse by standard parabolic theory, since the non-
linear term (4|y|3·, ·)L2(ΣT ) is continuous and nonnegative on L2(ΣT )× L2(ΣT ).

Finally, it can be shown that the problem (37) has at least one optimal solution,
cf. [23, Thm. 5.7].

5.3.2. Numerical results. We present now numerical results for problem (37). We
use the method of lines with quadratic finite elements in space and the 3-stage Rosenbrock
method ROS3P from [19] in time. For the discretization of the adjoint equation we use
also quadratic finite elements in space and ROS3P in time. For the mesh refinement we
apply the a posteriori time and space error estimator of [8] and adaptive time refinement
as described in 5.2 as well as uniform refinement in space.

For the approximate solution of the trust-region problem we use the projected cg-
Newton algorithm [26, Alg. 5.10] with at most 10 cg iterations, where we compute Ĥkv
by the discretized version of the exact evaluation of the Hessian vector product based on
the standard adjoint formula, see [15, §1.6.5].

For the particular instance of (37) we set a = −0.2, b = 0.3, and α = 1e − 2. In
Algorithm 3.3 with the implementation details of 5.2 we have chosen εtol = 5e − 5,
εx = 8e−4, cy,t = 0.5, c̃y = 10, cλ,t = 0.5, c̃λ = 10, c̃u = 0.25, and ξ2 = 1.5. The starting
control was uh0 ≡ 0.

Table 1 depicts the iteration history. The first column shows the iteration number,
the second column the type of refinement. cm is the discrete criticality measure, ηu is
the error in the discrete criticality measure (left hand side of (21c)), ηy,t / ηλ,t and ηy,x
/ ηλ,x denote the time and space error of state / adjoint according to 5.2 and the last
column shows the size of the (x, t)-grid.

Figure 1 shows the computed optimal state at end time T with two different scalings of
the y-axis. One sees that the desired state yd ≡ 0.2 is reached quite accurately. Moreover,
the adaptive time grid of the final discretization is shown. The bound constraints become
sigificantly active for the computed optimal control uhk .

It can be seen that the algorithm requires several refinements for the state and the
adjoint in time and two times also in space to achieve the prescribed spatial tolerance.
Particularly, the refinement for the adjoint in time in iteration 2 shows that the current
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Table 1. Iteration history for problem 37

It. Refine cm ηu ηy,t ηy,x ηλ,t ηλ,x (x, t)-grid

0 2.7e−1 0.0e0 1.8e−4 4.6e−3 5.3e−3 7.7e−2 289×32

1 4.4e−2 0.0e0 2.8e−4 9.6e−3 1.3e−2 2.1e−2 289×32

2 1.4e−2 8.6e−4 1.6e−2 8.0e−3 1.4e−2 289×32
adjoint t 1.4e−2 1.9e−4 5.2e−4 7.6e−3 3.6e−4 7.5e−3 289×57

3 8.4e−3 8.5e−4 2.4e−4 9.4e−3 1.6e−4 3.7e−3 289×57

4 3.2e−3 7.2e−4 5.3e−4 1.1e−2 8.8e−5 1.8e−3 289×57

5 1.2e−3 2.2e−4 3.2e−4 1.0e−2 4.6e−5 9.9e−4 289×57

6 1.5e−3 1.6e−4 4.9e−4 9.5e−3 7.6e−5 1.5e−3 289×57

7 1.5e−3 2.0e−4 4.4e−4 1.0e−2 6.7e−5 1.3e−3 289×57

8 4.0e−4 4.1e−4 1.0e−2 6.1e−5 1.2e−3 289×57
state x,t 4.8e−3 1.6e−5 2.0e−4 2.9e−3 7.2e−5 1.1e−3 1089×113

9 2.1e−3 2.2e−6 2.0e−4 2.8e−3 6.8e−5 1.0e−3 1089×113

10 1.8e−3 1.2e−4 9.8e−5 2.7e−3 7.4e−5 1.1e−3 1089×113

11 7.8e−4 1.2e−5 9.8e−5 2.8e−3 4.9e−5 4.5e−4 1089×113

12 4.5e−4 3.3e−5 4.5e−5 2.8e−3 5.7e−5 7.4e−4 1089×113

13 1.1e−4 3.9e−5 2.8e−3 4.6e−5 6.3e−4 1089×113
state x,t 8.0e−5 1.0e−5 1.3e−5 7.2e−4 1.8e−5 3.1e−4 4225×228

14 1.1e−4 1.2e−5 9.8e−6 7.3e−4 1.9e−5 3.2e−4 4225×228

15 1.2e−4 9.5e−6 5.4e−6 7.6e−4 2.0e−5 3.3e−4 4225×228

16 1.1e−4 9.0e−6 5.4e−6 7.6e−4 2.0e−5 3.3e−4 4225×228

17 2.1e−5 5.4e−6 7.6e−4 1.9e−5 3.1e−4 4225×228
adjoint t 2.3e−5 5.0e−6 3.0e−6 3.9e−4 9.0e−6 1.8e−4 4225×306

discretization was not suitable to compute a sufficiently accurate adjoint state, implying
that the gradient could not be resolved adequately. All residuals are driven to zero by
suitable refinement. Thus, the residuals in the optimality system are reduced efficiently
to the desired tolerance and most of the optimization iterations are carried out on coarser
grids, only the last few iterations require execution on the finest mesh.

6. Conclusions

In this paper we have presented an adaptive multilevel trust-region algorithm for opti-
mization problems governed by nonlinear PDEs with control constraints. The algorithm
starts on a coarse discretization of the problem and combines an efficient trust-region
method with an implementable adaptive refinement strategy for the current discretiza-
tion based on a posteriori error estimators. The refinements are controlled by a criticality
measure which we choose as the norm of the projected gradient step. The optimization
method can be used with any given adaptive state and adjoint solvers. In particular,
highly efficient solvers for unsteady PDEs can be coupled with the optimization frame-
work. The resulting inexactness of the reduced gradient in the discretizations is controlled
by the algorithm. The presented numerical example shows that the algorithm carries out
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Figure 1. Optimal state of problem (37) at time T in two scalings of the y-axis (top) and
adaptive time grid of the last discretization (bottom).

most optimization iterations on relatively coarse discretizations. The error estimators
for the state and the adjoint equation as well as the criticality measure are efficiently
driven to zero. Thus, the algorithm is a promising rigorous framework for a globally
convergent adaptive multilevel method for PDE constrained optimization problems with
control constraints that can be used with PDE solvers provided by the user. The approach
presented in this paper has several advantages: 1) Different solvers for the state and the
adjoint PDE can be used within this optimization framework. 2) The mesh is refined
as needed during the optimization algorithm to approach the solution of the PDE con-
strained problem with control constraints efficiently. 3) (First order) convergence of the
proposed multilevel algorithm for nonlinear, non-convex, PDE constrained optimization
problems with control constraints is proven.
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