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This paper studies the differentiability properties of the control-to-state mapping for entropy
solutions to a scalar hyperbolic conservation law on R with respect to the switching times
of an on/off-control. The switching times between on-modes and off-modes are the control
variables of the considered optimization problem, where a general tracking-type functional is
minimized.

We investigate the differentiability of the reduced objective function, also in the presence of
shocks. We show that the state y(t̄, ·) at some observation time t̄ depends differentiably on the
switching times in a generalized sense that implies total differentiability for the composition
with a tracking functional. Furthermore, we present an adjoint-based formula for the gradient
of the reduced objective functional with respect to the switching times.
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1. Introduction

This paper is concerned with the optimal control of entropy solutions of a scalar conser-
vation law

yt + f(y)x = g(·, y), (t, x) ∈ ]0,∞[× R, (1.1)

y(0, ·) = u0, x ∈ R,

which contains an on/off-switching control at x = 0, i.e., in the off-state the flux across
x = 0 is zero leading to a decoupling of (1.1) into two conservation laws and in the
on-state the conservation law (1.1) holds on the whole real line R. Such on/off-controls
are essential for modeling flows on networks, for example traffic flow involving traffic
lights and gas-/water-networks involving valves. They can be seen as node conditions
on a simple network consisting of a single node with one incoming and one outgoing
edge. However, the results of this paper are also relevant for larger networks with on/off-
controls.

We develop a sensitivity and adjoint calculus for objective functionals of the form

J(y(σ)) :=

∫ b

a
ψ(y(t̄, x;σ), yd(x)) dx (1.2)
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with respect to the switching times σ = (σ0
on, σ

1
off , σ

1
on, · · · , σnσon , σ

nσ+1
off ). Here, ψ ∈

C1,1
loc(R2) and yd ∈ BV(a, b) is a desired state.
In [48] a sensitivity calculus for the Cauchy problem with respect to the initial data u0

was presented that deals with shocks in the entropy solution and also allows for explicit
shifts of shock generating discontinuities in the initial data. This approach was extended
in [42] to initial-boundary value problems. In this paper we build on the aforementionend
works and develop a sensitivity calculus for the on/off-problem. Furthermore, we present
an adjoint based formula for the reduced gradient d

dσJ(y(σ)) in the flavor of [49]. Our
results are valid for arbitrary shock formations in the solution.

It is well known that weak solutions to hyperbolic conservation laws are in general not
unique. The physically meaningful solution among them is called entropy solution and
can be characterized by an entropy condition, see e.g. [33].

Even for smooth initial data, entropy solutions may develop discontinuities, so called
shocks, cf. [9], that lead to the issue that the control-to-state mapping u0 7→ y(t̄, ·;u0) for
the Cauchy problem is only differentiable with respect to the weak topology of measures.
This topology is not strong enough to directly imply the Fréchet-differentiability of the
reduced objective (1.2).

Despite these difficulties, the optimal control of conservation laws has been studied
intensively in recent years. The existence of optimal controls for the Cauchy and the
initial-boundary value problem is well studied in the literature, e.g. [2, 3, 46, 47].

Several generalized notions of differentiability for the control-to-state mapping have
been considered, see [7, 10, 11, 13, 16, 47, 48]. In the present work we follow the ideas of
[47, 48] and use the concept of shift-differentiability introduced therein. A useful tool for
establishing shift-differentiability is the theory of generalized characteristics by Dafermos
[19]. The shock sensitivity is computed via an appropriate adjoint state which is based
on reversible solutions to linear transport equations with discontinuous coefficients [8].
This adjoint calculus can also be used to derive an easily computable formula for the
gradient of the reduced objective function, see also [22, 23, 49].

Typical applications for networks of conservation laws are traffic flow modeling and
gas pipelines. Traffic networks in the context of the LWR-model [36, 45] and also the Aw-
Rascle-model [4] have been discussed by several authors, see for example [12, 14, 21, 26,
30, 31]. In [5, 17, 25, 32] networks of pipelines are considered. Moreover there are several
further applications, such as supply chain management [24] or population modeling [15].
In many of these network models on/off-switching devices and their control, which are
considered in this paper, are relevant (e.g., valves or traffic lights).

The notion of a “switched control” in the context of hyperbolic conservation laws
was discussed in [28], where also switching in flux function and the source term was
considered. Further considerations on switching controls can be found in [1, 27, 29].

Our results provide the possibility to apply gradient-based optimization methods to the
infinite dimensional optimal control problem for switching times of on-/off-controls and
to derive optimality conditions for it. This in turn can form the basis for the development
of suitable numerical methods for such type of problems. Furthermore, the extension of
our results to systems of conservation laws is of great interest, especially in the context
of the optimal control of valves in gas networks or water networks or of traffic lights for
more involved traffic models by systems of conservation laws.

The paper is organized as follows. In §2 we introduce the considered general on/off-
switching problem and illustrate it by the example of a traffic light in the context of the
LWR-model. In §3 we collect results on the well-posedness for this problem and structural
properties of the corresponding solution. The main results of our paper will be presented
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in §4, where we state the shift-differentiability of the control-to-state mapping and the
adjoint-based formula for the Fréchet-derivative of the reduced objective function. Those
results were already announced in [43]. The proofs of the theorems are postponed to §5.

2. Formulation of the on/off-switching problem

We consider the Cauchy problem for convex scalar conservation laws with source terms
on R. We choose the initial data and the source term in such a way that the solution stays
inside a certain range [ymin , ymax ], which we set to [0, 1] for simplicity. Furthermore, we
assume that the flux function vanishes at the end points of this interval.

We augment the model by the possibility to suspend the flux across the point x = 0
for a certain time. The on/off-switching problem splits the considered time interval ]0, T [
into on-phases ]σi−1

on , σioff [, i = 1, . . . , nσ+1 and off-phases ]σioff , σ
i
on[, i = 1, . . . , nσ, where

the incoming flux at x = 0 is or is not allowed to cross, respectively. This is done by
imposing an artificial boundary at x = 0 during the off-phases.

Before we formally define the solution to a on/off-switching problem, we briefly recall
the notion of a solution to initial (-boundary) value problems.

2.1 Solutions to initial (-boundary) value problems

An initial-boundary value problem (IBVP) on Ω = ]a, b[ is given by

yt + f(y)x = g(·, y), on ΩT , (2.1a)

y(0, ·) = u0, on Ω, (2.1b)

y(·, a+) = uB,a, in the sense of (2.3a) (if a > −∞), (2.1c)

y(·, b−) = uB,b, in the sense of (2.3b) (if b <∞), (2.1d)

where ΩT := ]0, T [× Ω. Usually, we are interested in entropy solutions of (2.1), namely
solutions that satisfy (2.1a)-(2.1b) in the sense of [33], i.e.

(ηc(y))t + (qc(y))x − η
′
c(y)g(·, y) ≤ 0, in D′(ΩT ),

esslim
t→0+

‖y(t, ·)− u0‖1,Ω∩]−R,R[ = 0, for all R > 0

holds for every (Kružkov-) entropy ηc(λ) := |λ − c|, c ∈ R, and associated entropy flux
qc(λ) := sgn(λ − c)(f(λ) − f(c)). In order to get a well posed problem, the boundary
conditions (2.1c), (2.1d) have to be understood in the sense of [6], that is

min
k∈I(y(·,a+),uB,a)

sgn(uB,a − y(·, a+))(f(y(·, a+))− f(k)) = 0, a.e. on ]0, T [, (2.3a)

min
k∈I(y(·,b−),uB,b)

sgn(y(·, b−)− uB,b)(f(y(·, b−))− f(k)) = 0, a.e. on ]0, T [, (2.3b)

with I(α, β) := [min(α, β),max(α, β)], see also [20, 35, 37, 39].
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2.2 Solutions to on/off-switching problems

We will work in the setting σ = (σ0
on, σ

1
off , σ

1
on, . . . , σ

nσ
on , σ

nσ+1
off ) ∈ Σ, where

Σ :=
{
ν ∈ R2(nσ+1) : 0 = ν1 < ν2 < · · · < ν2nσ+1 < ν2nσ+2 = T

}
. (2.4)

Of course, the presented analysis is also applicable if one considers the case where the
first and/or the final phase is an off-phase.

A solution y of an on/off-switching problem (OOSP) on ΩT := ]0, T [×R is determined
as follows. During the i-th on-phase, y solves a Cauchy problem on Ωon,i := ]σi−1

on , σioff [×R
with initial data

u0 = y(σi−1
on −, ·), i = 2, . . . , nσ + 1

in the sense of (2.2), where y(σi−1
on −, ·) is the final state of the previous off-phase.

For the i-th off-phase we consider the restrictions y1 and y2 of y to the incoming and
outgoing arc I1 := R−and I2 := R+. The restriction y1 is the solution of an IBVP
on Ω1

off,i := ]σioff , σ
i
on[ × I1 with initial value y(σioff−, ·) and boundary data uB,0 ≡ 0.

Analogously, y2 solves an IBVP on Ω2
off,i := ]σioff , σ

i
on[ × I2 with uB,0 ≡ 1. For the first

on-phase, i.e. the first IVP, the initial data are given by some function uI . The on/off-
switching problem can then be formulated in the following way.

yt + f(y)x = g(·, y) on Ωon,i+1, i = 0, . . . , nσ, (2.5a)

(yj)t + f(yj)x = g(·, yj) on Ω1
off,i and Ω2

off,i, i = 1, . . . , nσ, , (2.5b)

y(0, ·) = uI on I, (2.5c)

y(σion, ·)
∣∣
Ij

= yj(σ
i
on−, ·) on R− and R+, i = 1, . . . , nσ, , (2.5d)

yj(σ
i
off , ·) = y(σioff−, ·)

∣∣
Ij

on R− and R+, i = 1, . . . , nσ, , (2.5e)

y1(·, 0−) = 0 (in the sense of (2.3a)) on ]σioff , σ
i
on[, i = 1, . . . , nσ, (2.5f)

y2(·, 0+) = 1 (in the sense of (2.3b)) on ]σioff , σ
i
on[, i = 1, . . . , nσ. (2.5g)

As we will see, the boundary conditions (2.5f)–(2.5g) ensure the flux across x = 0 to be
equal to zero during off-phases. Condition (2.5d) and (2.5e) ensure, that t 7→ y(t, ·) ∈
L1

loc(R) is continuous, even between consecutive phases.

2.3 Example: A traffic light on a single road

A typical example for a single conservation law with on/off-switching control is a traffic
light on a unidirectional road. In the LWR-model [36, 45] the traffic at some time t ∈ ]0, T [
and location x ∈ R is expressed by means of a traffic density ρ(t, x) ∈ [0, ρmax ]. Moreover,
the averaged velocity at some point in space and time is assumed to only depend on the
current traffic density at this point, i. e. v = v(ρ). The evolution of the traffic distribution
is then described by

ρt + f̂(ρ)x = 0, f̂(ρ) ..= ρv(ρ).

There are various suggestions for the velocity function ρ 7→ v(ρ) in the literature that

lead often to a strictly concave flux function f̂ . For example, the Greenshield velocity for
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n = 1 given by v(ρ) ..= vmax (1− ρ
ρmax

) yields a strictly concave flux function f̂ . A simple
transformation of variables,

y ..= 1− ρ

ρmax
, f(y) ..= −f̂((1− y)ρmax ) = (y − 1)ρmax v((1− y)ρmax ),

makes the traffic flow model fit into our setting. The possibility of adding a traffic light to
the above model was already discussed in the original works [36, 45] and by many authors
afterwards. In the terms of the traffic light problem (2.5) an off-switching means switching
the traffic light from green to red. Consequently, an on-switching means switching back
from red to green.

3. General and structural properties of the on/off-switching problem

In this section we analyze the structure of solutions to on/off-switching problems. From
this point we focus on the switching time controls and consider fixed initial data, i.e. we
choose a fixed function

uI ∈ PC1(R;x1, . . . , xnx), 0 ≤ uI ≤ 1. (3.1)

By definition a solution of an OOSP is a concatenation of solutions to a finite number of
IVPs and IBVPs. Therefore, the existence, uniqueness and stability properties provided
in the literature carry over to the present problem.

We will work under the following assumptions.

(A1) The flux function satisfies f ∈ C2
loc(R), f(0) = f(1) = 0 and there exists mf ′′ > 0

such that f ′′ ≥ mf ′′ . The source term satisfies g ∈ C
(
[0, T ]; C1(R× [0, 1])

)
and

for all (t, x) ∈ [0, T ]× R

g(t, x, y) ≥ 0 for all y ≤ 0, g(t, x, y) ≤ 0 for all y ≥ 1 (3.2)

holds. Finally there is εg > 0 such that g(t, ·, y)|[−εg,εg] = 0.

Under this assumption one can show that (2.5) is a well posed problem.

Corollary 3.1 (Existence and uniqueness for on/off-switching problems) Let (A1)
hold and consider uI as in (3.1). Then for every σ ∈ Σ there exists a unique entropy
solution y = y(σ) ∈ L∞(ΩT ) of (2.5). After a possible modification on a set of measure
zero it even holds y ∈ C([0, T ]; L1

loc(R)) and y(t, ·) ∈ BVloc(R) for all t ∈ [0, T ]. The
solution satifies y(t, x) ∈ [0, 1] for almost all (t, x) ∈ ΩT .

Moreover, there is a constant LΣ > 0 such that for all σ̃, σ̂ ∈ Σ and all t ∈ [0, T ] holds

‖y(t, ·; σ̃)− y(t, ·; σ̂)‖1,loc ≤ LΣ ‖σ̃ − σ̂‖ .

Proof. The existence of a unique solution is a direct consequence of the respective theo-
rems for Cauchy and initial-boundary value problems, see for example [18, 33, 34, 38, 50],
and the fact, that y is a concatenation of solutions to such problems. The same holds for
the regularity of y.

We prove the L1-stability. We define the componentwise maximum and minimum of
σ̂ and σ̃ as σ and σ. By definition σ and σ are strictly monotone increasing. We will
use the fact, that a solution y to a Cauchy problem can be interpreted as the solution
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of two initial-boundary value problems on R± with boundary data y(·, 0±) and that the
difference between two solutions to (2.5) is uniformly bounded by 1.

We start with t̂ = σ1 = σ1 = 0 and iterate while t̂ < T :

(i) If t̂ = σi < σi+1 for some i, t̂ is the lower endpoint of a time interval on which y(·; σ̃)

and y(·; σ̂) are in the same phase, i.e. both are in the d i2e-th off-phase or on-phase. If

i is odd, t̂ is the beginning of an on-phase and we apply the L1-stability for Cauchy
problems on [σi, σi+1]× R and obtain, that for every t ∈ [σi, σi+1]

‖y(t, ·; σ̃)− y(t, ·; σ̂)‖1,loc ≤ LC ‖y(σi, ·; σ̃)− y(σi, ·; σ̂)‖1,loc

holds. If i is even, t̂ is the beginning of an off-phase and we apply the L1-stability for
the two initial-boundary value problems on [σi, σi+1] × R± for identical boundary
data and obtain for every t ∈ [σi, σi+1] that

‖y(t, ·; σ̃)− y(t, ·; σ̂)‖1,loc ≤ 2LB ‖y(σi, ·; σ̃)− y(σi, ·; σ̂)‖1,loc .

Afterwards we set t̂ = σi+1 and reiterate.

(ii) If t̂ = σi < σi for some i, we define j as the smallest j ≥ i such that σj < σj+1, i.e.,

condition (i) holds. We apply the L1-stability for the two IBVPs on [σi, σj ] × R±
for different boundary data, i.e. for every t ∈ [σi, σj ]

‖y(t, ·; σ̃)− y(t, ·; σ̂)‖1,loc ≤ 2LB

(
‖y(σi, ·; σ̃)− y(σi, ·; σ̂)‖1,loc + σj − σi

)
.

From the definition of j we know that for every k ∈ {i, . . . , j − 1} the inequality
σk+1 ≤ σk holds. Thus, by simple estimation and using a telescope sum, we obtain

σj − σi ≤
∑j

k=i(σk − σk) =
∑j

k=i |σ̃k − σ̂k|. We set t̂ = σj and go to (i) with i = j.

Since the loop terminates after at most 4nσ+2 iterations, we see that the assertion holds
for LΣ := (max{2LB, LC})4nσ+2 and the ‖·‖1-norm on the righthand side. �

Using the regularity properties, we conclude that for an entropy solution y ∈ L∞(ΩT )∩
C([0, T ]; L1

loc(R)) and all (t, x) ∈ (0, T ]×R the one-sided limits y(t, x−) and y(t, x+) exist.
Whenever x 6= 0 or (t, x) ∈ Ωon,i, they satisfy y(t, x−) ≥ y(t, x+). We choose a pointwise
defined representative of y ∈ C([0, T ]; L1

loc(R)) and if (t, x) 6∈ ]σioff , σ
i
on] × {0}, identify

y(t, x) with one of the limits y(t, x−) or y(t, x+).
We recall the definition of generalized characteristics in the sense of [19].

Definition 3.2 (Generalized characteristics) A Lipschitz curve

[α, β] ⊂ [0, T ]→ ΩT , t 7→ (t, ξ(t))

is called a generalized characteristic on [a, b] if

ξ̇(t) ∈ [f ′(y(t, ξ(t)+)), f ′(y(t, ξ(t)−))], a.e. on [α, β]. (3.3)

The generalized characteristic is called genuine if the lower and upper bound in (3.3)
coincide for almost all t ∈ [α, β].

In the following we will also call ξ a (generalized) characteristic instead of t 7→ (t, ξ(t)).
It will also be useful to introduce notions of extreme or maximal/minimal characteristics
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ξ±, that satisfy

ξ̇±(t) = f ′(y(t, ξ(t)±)) for a.a. t.

Assumption (A1) yields, that y is bounded in L∞(ΩT ) and hence the maximum speed
of a generalized characteristic is bounded, too. Therefore, characteristics either exist for
the whole time period [0, T ] or meet the artificial boundary created by the off-mode

condition at x = 0 at some point (θ, 0±) ∈ Ωj
off,i, i ∈ {1, . . . , nσ}, j = 1, 2. Moreover it

can be shown [19] that (3.3) can be restricted to

ξ̇(t) =

{
f ′(y(t, ξ(t))) if f ′(y(t, ξ(t)+)) = f ′(y(t, ξ(t)−)),
[f(y(t,ξ(t)))]

[y(t,ξ(t))] if f ′(y(t, ξ(t)+)) 6= f ′(y(t, ξ(t)−)),
a.e. on [α, β],

where for ϕ ∈ BV(R) the expression

[ϕ(x)] := ϕ(x−)− ϕ(x+)

denotes the jump of ϕ at x.
The next proposition collects useful properties for the solution y of (2.5) along gener-

alized characteristics that do not touch the end points (σioff , 0), (σion, 0) of an off-phase.

Proposition 3.3 (Structure of BV-solutions to the OOSP) Let assumption (A1) hold.
Consider an entropy solution y of the on/off-switching problem (2.5) for σ ∈ Σ, see (2.4),
and uI ∈ BVloc(Ω; [0, 1]).

Let ξ be a generalized characteristic on Ω, defined on a maximal interval ]α, β[ in
]0, t̄] ⊆ ]0, T [. Then the following holds true:

(i) If ξ is an extreme backward characteristic, i. e., ξ = ξ±, then ξ is genuine, i. e.,
y(t, ξ±(t)−) = y(t, ξ±(t)+) for almost all t ∈ ]α, β[.

(ii) If ξ is genuine, then it satisfies

ξ(t) = ζ(t), y(t, ξ(t)) = v(t), t ∈ ]α, β[,

where (ζ, v) is a solution of the characteristic equation

ζ̇(t) = f ′(v(t)), (3.4a)

v̇(t) = g(t, ζ(t), v(t)). (3.4b)

In particular, two different genuine characteristics may intersect only at their end
points. For extreme characteristics ξ± the initial values are given by

(ζ, v)(t̄) = (x̄, y(t̄, x̄±)). (3.4c)

(iii) If ξ is genuine and ξ(β) ..= limt↗β ξ(t) ∈ Ω, then

ξ(β) = ζ(β), y(t, ξ(β)−) ≥ v(β) ≥ y(t, ξ(β)+).

(iv) If ξ is genuine, α = 0 and z ..= ξ(0) ..= limt↘0 ξ(t) ∈ Ω, then

z = ζ(0), uI(z−) ≤ v(0) ≤ uI(z+).
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(v) If there exists i ∈ {1, . . . , nσ}, θ ∈ ]σioff , σ
i
on[ satisfying f ′(y(θ, 0+)) < 0, then there

exists a genuine characteristic ξ on ]α, θ[ satisfying

ξ(θ) ..= lim
t↗θ

ξ(t) = 0, ξ̇(θ) ..= lim
t↗θ

ξ̇(t) = f ′(y(θ, 0+)).

(vi) If there exists i ∈ {1, . . . , nσ}, θ ∈ ]σioff , σ
i
on[ satisfying f ′(y(θ, 0−)) > 0, then there

exists a genuine characteristic ξ on ]α, θ[ satisfying

ξ(θ) = 0, ξ̇(θ) = f ′(y(θ, 0−)).

Let in the following α ∈ ]σioff , σ
i
on[ for some i ∈ {1, . . . , nσ}

(vii) If ξ is genuine and ξ(α) = 0, ξ̇(α) > 0, then we have v(α) = 1.
(viii) If ξ is genuine and ξ(α) = 0, ξ̇(α) < 0, then we have v(α) = 0.
Let in the following β ∈ ]σioff , σ

i
on[ for some i ∈ {1, . . . , nσ}

(ix) If ξ is genuine and ξ(β) = 0, ξ̇(β) < 0, then we have v(β) ≤ 0.
(x) If ξ is genuine and ξ(β) = 0, ξ̇(β) > 0, then we have v(β) ≥ 1.

Proof. The above proposition is a consequence of the application of the results of [19]
and [40, §3] to the present problem (2.5).

Assertions (i)–(iv) describe the behaviour of characteristics away from the artificial
boundary introduced by off-switchings and follow simply from the classical results by
Dafermos [19] for the Cauchy problem.

The remaining statements describe the situation at the artificial boundary. The exis-
tence of backward characteristics emanating from a point at the boundary with outgoing
characteristic speed in (v) and (vi) follows from [40, Lem. 4], where an initial-boundary
value problem with constant boundary data is considered. We recall that the boundary
data for the right boundary of the incoming arc is given by 0 and for the left boundary
of the outoging arc by 1. From [40, Prop. 3.2] we obtain that the limit of the function y
along backward characteristics ending at the artificial boundary is equal to the boundary
data. This shows (vii) for the outgoing and (viii) for the incoming arc. Statements (ix)
and (x) describe the situation for forward characteristics and are consequences of [40,
Prop. 3.3]. �

The following lemma on the differentiability of the solution operator of the character-
istic equation (3.4) is a consequence of a result on ordinary differential equations (cf. [47,
Prop. 3.4.5, Lem. 3.4.6] or [44, §5.6]). Together with Proposition 3.3 this lemma can be
used to show local differentiability properties of a solution y to the OOSP. The occurring
derivatives can be expressed by means of the solution (δζ, δv)(·; θ, z, w; δθ, δz, δw) of the
linearized characteristic equation

˙δζ(t) =f ′′(v(t))δv(t) (3.5a)

˙δv(t) =gx(t, ζ(t), v(t))δζ(t) + gw(t, ζ(t), v(t))δv(t) (3.5b)

(δζ, δv)(θ) =(δz − f ′(w)δθ, δw − g(θ, z, w)δθ). (3.5c)

Lemma 3.4 Let (A1) hold and denote for every (θ, z, w) ∈ [0, T ]×R×R by (ζ, v)(·; θ, z, w)
the solution of (3.4a)-(3.4b) for initial data

(ζ, v)(θ; θ, z, w) = (z, w).
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Let Mw be given and set B := [0, T ]× R× ]−Mw,Mw[, then the mapping

(θ, z, w) ∈ B 7−→ (ζ, v)(·, θ, z, w) ∈ C([0, T ])2

is Lipschitz continuous and continuously Fréchet-differentiable and on B the right hand
side is uniformly Lipschitz w.r.t. t. The derivative is given in terms of the solution of
the linearized characteristic equation (3.5) by

d(θ,z,w)(ζ, w) · (δθ, δz, δw) = (δζ, δv)(·; θ, z, w; δθ, δz, δw).

Finally, for any closed S ⊂ [0, T ] × R, any fixed (θ̄, z̄) ∈ [0, T ] × R and any bounded

intervals T ⊆ [0, T ], Î the mappings

(θ, uB) ∈ C(S; T )× C1(T ) 7−→ (ζ, v)(·t, θ, z̄, uB(θ)) ∈ C(S)2,

(z, u0) ∈ C(S; Î)× C1(Î) 7−→ (ζ, v)(·t, θ̄, z, u0(z)) ∈ C(S)2

are continuously Fréchet-differentiable. Here ·t denotes the t-part of a point (t, x) ∈ S.

Lemma 3.4 is a direct generalization of [47, Lem. 3.4.6] to the case where the depen-
dence on the time θ where the initial datum is specified, is considered, too, and can be
obtained by standard calculus. The interested reader is referred to [41, Lem. 3.1.15] for
the proof of the extension.

We now investigate the solution y = (y1, y2) during an off-phase and at the beginning
of the next on-phase.

Lemma 3.5 Let (A1) hold and uI be as in (3.1). Denote by y = (y1, y2) the solution to
(2.5). Consider i = 1, . . . , nσ, εg > 0 from (A1) and

Mf ′ := max(−f ′(0), f ′(1)) > 0. (3.6)

Then the following holds true:

(i) Let t∗ ∈ [σioff , σ
i
on[ such that y1(t∗, 0−) < 1. Then there exist 0 < δ ≤ εg and mη̇ > 0

such that y1(t, x) = 0 holds for all (t, x) ∈ ]t∗, σion]× ]− δ, 0[ with x > −mη̇(t− t∗).
(ii) Let t∗ ∈ [σioff , σ

i
on[ such that y2(t∗, 0+) > 0. Then there exist 0 < δ ≤ εg and mη̇ > 0

such that y2(t, x) = 1 holds for all (t, x) ∈ ]t∗, σion]× ]0, δ[ with x < mη̇(t− t∗).
(iii) Let ε̃ ∈ ]0, εg] be such that y(σioff , ·) is bounded away from 0 and 1 on [−ε̃, ε̃], then

there are 0 < δ ≤ ε̃ and mη̇ > 0 such that

y1(t, x) = 0, (t, x) ∈ Doff ∩ Ω1
off,i, (3.7)

y2(t, x) = 1, (t, x) ∈ Doff ∩ Ω2
off,i (3.8)

holds with Doff :=
{

(t, x) ∈ (σioff , σ
i
on]× (−δ, δ) : |x| < mη̇

(
t− σioff

)}
.

(iv) If there exists δ̃ ∈ ]0, εg] such that y(σion, ·) = 1I2 holds on [−δ̃, δ̃], then

y(t, x) = min

(
1,max

(
f ′−1

(
x

t− σion

)
, 0

))
, (t, x) ∈ Don (3.9)

holds with Don :=
{

(t, x) ∈ ]σion, σ
i+1
off [× ]− δ̃, δ̃[ : |x| < δ̃ −Mf ′(t− σion)

}
.
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(v) If the conditions from (iv) are satisfied for some σ̄ion, then we can reduce δ̃ such
that with τ̃ := δ̃/(4Mf ′) > 0 and 0 < ρ < τ̃ small enough holds

y(t, x; σ̃) = min

(
1,max

(
f ′−1

(
x

t− σ̃ion

)
, 0

))
(3.10)

for all σ̃ ∈ BΣ
ρ (σ̄) ..= {σ ∈ Σ : ‖σ − σ̄‖∞ < ρ} and all (t, x) ∈ ]σ̃ion, σ̄

i
on + τ̃ [ × R

such that

x ∈]− 2

3
δ̃ + f ′(0)(t− σ̄ion − τ̃),

2

3
δ̃ + f ′(1)(t− σ̄ion − τ̃)[, (3.11)

and the latter interval contains ]− 1
6 δ̃,

1
6 δ̃[ by the definition of τ̃ and ρ.

Proof. We recall that by the BLN-boundary condition for almost every t ∈ ]σioff , σ
i
on[ we

have y(t, 0±) ∈ {0, 1}.
Consider the setting of (i). We set

ε̃ ..= −1

2
· inf {x ∈ ]− εg, 0[ : y1(t∗, x) < 1} and τ ..=

ε̃

2Mf ′
.

If y1(t∗, ·) is constantly equal to 0 on ]− ε̃, 0[, we choose mη̇
..= f ′(0), otherwise we set

mη̇ := inf
x∈]−ε̃,0[

∣∣∣∣f(y1(t∗, x))− f(0)

y1(t∗, x)

∣∣∣∣ .
Consider the unique generalized forward characteristic η through (t∗, 0). For every t ∈
]t∗, t∗ + τ [ the maximal backward characteristic through (t, η(t)) is a straight line ending
at the artificial boundary at x = 0. Hence, by Proposition 3.3 (viii) we have y1(t, η(t)+) =
0. Moreover, the minimal backward characteristic is a straight line, too, and intersects
the line {t∗}× ]− ε̃, 0]. Hence, the right limit of y1(t, ·) in η(t) is equal to 0 while the left
limit is contained in {f(y1(t∗, x)) : x ∈ ]− ε̃, 0[} and in particular bounded away from
1. From this we conclude that η̇(t) ≤ −mη̇ < 0 holds for every t ∈ ]t∗, t∗ + τ [.

Now let δ ..= τmη̇ and tδ ..= inf
(
{t : η(t) = −δ} ∪ {σion}

)
. Using similar arguments as

before, we obtain, that y1 is constantly equal to 0 on {(t, x) ∈ [t∗, tδ]×[−δ, 0[ : η(t) < x}.
(i) can now be proven by induction. From the previous considerations we know that

y1(t̂, ·)
∣∣
]−δ,0[

≡ 0 (3.12)

holds true for t̂ = tδ. We prove that, whenever (3.12) holds for some t̂ ∈ ]σioff , σ
i
on[, the

same must be true for all t ∈ [t̂,min(t̂+ τ̂, σion)], where

τ̂ ..=
|f ′(0)|

3 ‖f ′′‖C([0,1]) ‖g‖∞
> 0.

To prove this claim, we show first that the unique forward characteristic through (t̂,−δ),
again denoted by η, satisfies η(t) ≤ −δ for all t ∈ ]t̂,min(t̂+ 2τ̂, σion)[: For this purpose,
assume that inf{t ∈ ]t̂, T [ : η(t) > −δ} < min(t̂ + 2τ̂, σion) holds true. Then there
exists t̃ ∈ ]t̂,min(t̂+ 2τ̂, σion)[ such that η(t̃) > −δ and η̇(t̃) > 0. The maximal backward
characteristic ξ+ through (t̃, η(t̃)) must end at the artificial boundary at some time θ̃. The
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curve t 7→ ξ+(t) is a straight line—at least for t sufficiently close to t̃ or θ̃, respectively.
Since η̇(t̃) > 0 we can deduce y(t̃, η(t̃)+) > 0 and hence, the characteristic must not be a
straight line for the whole interval ]t̃, τ̃ [ but must leave and re-enter ]− εg, 0[ ⊃ ]− δ, 0[.
From the characteristic equation (3.4) and Proposition 3.3 we obtain that the acceleration
of ξ+, i.e. ξ̈+, is uniformly bounded by ‖f ′′‖C([0,1]) ‖g‖∞ and hence the time between

leaving and re-entering ]− δ, 0[ with speed f ′(0) is at least 3τ̂ . Thus, ξ+ has to intersect
η which is a contradiction. By using the same arguments we deduce, that y(t, ·)|]−δ,0[ ≡ 0

must hold for all t ∈ [t̂,min(t̂+ τ̂, σion)].
This concludes the proof of (i). The proof of assertion (ii) is analogous and statement

(iii) is a direct consequence of the first two.
For the proof of (iv) we consider the Cauchy problem on Ωon,i. By the boundedness of

speed of characteristics by Mf ′ from (3.6) every backward characteristic through a point
in Don ends at t = σion in (−δ, δ). Hence, on Don the solution y coincides with the solution
of the Riemann problem for initial data 1R+ . That solution contains a rarefaction wave
and is given by (3.9).

To prove (v) we reduce δ̃ > 0 obtained from (iv) such that there exists ρ > 0 with

min
(
−f ′(0), f ′(1)

)
(σ̄ion − σ̄ioff − ρ) > δ̃.

We reduce ρ > 0 such that τ̃ ..= δ̃
4Mf′

> ρ and find ε > 0 satisfying

min (−f ′(ε), f ′(1− ε)) (σ̄ion + τ̃ − σ̄ioff − ρ) > δ̃. We use the local L1-stability of the
solution operator to (2.5) obtained in Corollary 3.1 to further reduce ρ > 0 such that

∥∥y(σ̄ion + τ̃, ·; σ̄)− y(σ̄ion + τ̃, ·; σ̃)
∥∥

1,]− 3

4
δ̃, 3

4
δ̃[\[− 2

3
δ̃, 2

3
δ̃]
<
εδ̃

12
, for all σ̃ ∈ BΣ

ρ (σ̄).

By the choice of δ̃ and τ̃ , we know that y(σ̄ion + τ̃, ·; σ̄)
∣∣
]− 3

4
δ̃, 3

4
δ̃[\[− 2

3
δ̃, 2

3
δ̃]

= 1R+ . From

the above inequality we deduce that for every σ̃ ∈ BΣ
ρ (σ̄) there exist continuity points

xl ∈ ]− 3
4 δ̃,−

2
3 δ̃[ and xr ∈ ]2

3 δ̃,
3
4 δ̃[ of y(σ̄ion + τ̃, ·; σ̃) such that

y(σ̄ion + τ̃, xl; σ̃) ∈ [0, ε[, y(σ̄ion + τ̃, xr; σ̃) ∈ [1− ε, 1[.

Since in the considered area the source term vanishes, we conclude that the unique
genuine backward characteristics ξl/r through (σ̄ion + τ̃, xl/r) are straight lines, traveling

with speed ξ̇l ∈ [f ′(0), f ′(ε)], ξ̇r ∈ [f ′(1 − ε), f ′(1)]. By the choice of ε, the curves ξl/r
intersect {x = 0} at some time θl/r > σ̄ioff + ρ ≥ σ̃ioff . Moreover, the choice of τ̃ > ρ > 0

implies θl/r < σ̄ion − ρ ≤ σ̃ion. By Proposition 3.3 the solution y(·; σ̃) along ξl must be
equal to 0 and along ξr it must be equal to 1. By the non-intersection property of genuine
characteristics the same holds for all points (t, x) ∈ ]σ̃ion, σ̄

i
on + τ̃ [× R such that

x satisfies (3.11) and x /∈ [f ′(0)(t− σ̃ion), f ′(1)(t− σ̃ion)].

For x ∈ [f ′(0)(t− σ̃ion), f ′(1)(t− σ̃ion)] the backward characteristics must end in (σ̃ion, 0).
Hence, the final claim is proven. �
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4. Shift-differentiability

In this section we give the main result of this paper, that is the shift-differentiability of
the control-to-state mapping for (2.5).

Before we introduce the notion of shift-variations and finally state the main theorems,
we give a simple example to illustrate how shocks in the entropy solution cause the
nondifferentiability of the control-to-state mapping.

Example 4.1 Let y(·;σ) be the solution of (2.5) for T = 3, nσ = 1, f(w) = 1
2w(w − 1),

g ≡ 0 and uI ≡ 0. Consider switching vectors of the form σ = (0, σoff , 2, 3) with a single
control variable σoff ∈ ]0, 1[. Then a representative of the entropy solution is given by

y(t, x; (0, σoff , 2, 3)) =


0 if x ∈

]
− t−σoff

4 ,min
(
− t−2

2 , 0
)[
,

1 if x ∈
]
max

(
t−2

2 , 0
)
, t−σoff

4

[
,

x
t−2 + 1

2 if x ∈
]
− t−2

2 , t−2
2

[
,

1
2 else.

For t̄ ∈ ]2, 3[ we consider the mapping S : ]0, 1[→ L1(]− 1, 1[), σoff 7→ y(t̄, ·; (0, σoff , 2, 3)).
Clearly, S is not differentiable, since the obvious candidate for the derivative, 1

8δz−
1
8δ−z

with the Dirac measure δz at z = t−σoff

4 , does not belong to L(]0, 1[,L1(]− 1, 1[)). In fact,
differentiability does only hold in the weak topology of the measure space M(]− 1, 1[).

4.1 Definitions and preliminary work

As we have seen in Example 4.1, the nondifferentiability of the solution operator is
created by the shock discontinuity that changes its position depending on the control. In
[11] and [47, 48] the authors used the specific structure to develop a suitable variational
calculus. In this approach, the additive variations (e.g. in L1) are augmented by possible
horizontal shifts of discontinuities.

We recall the definition of the notions of shift-variations and shift-differentiability.

Definition 4.2 (Shift-variations, shift-differentiability)

(i) Let a < b and v ∈ BV(a, b). For a < x1 < x2 < · · · < xnx < b we associate with

(δv, δx) the shift-variation S
(xi)
v (δv, δx) ∈ L1(a, b) of v by

S(xi)
v (δv, δx)(x) := δv(x) +

n∑
i=1

[v(xi)]sgn(δxi)1I(xi,xi+δxi)(x),

where [v(xi)] := v(xi−)− v(xi+) and I(α, β) := [min(α, β),max(α, β)].
(ii) Let U be a real Banach space and D ⊂ U open. Consider a locally bounded mapping

v : D → L∞(R), u 7→ v(u). For ū ∈ U with v(ū) ∈ BV(a, b), we call v shift-
differentiable at ū if there exist a < x1 < x2 < · · · < xnx < b and Dsv(ū) ∈
L(U,Lr(a, b)×Rnx) for some r ∈ (1,∞], such that for δu ∈ U , (δv, δx) := Dsv(ū)·δu
holds ∥∥∥v(ū+ δu)− v(ū)− S(xi)

v (δv, δx)
∥∥∥

1,]a,b[
= o(‖δu‖U ).

The mapping v is said to be continuously shift-differentiable at ū if v is shift-
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differentiable in a neighborhood of ū and if Dsv(·) and xi(·), v(·)(xi(·)±), i =
1, . . . , nx are continuous in ū.

As shown in [48, Lem. 2.3] this variational concept is strong enough to imply the
Fréchet-differentiability of tracking type functionals as in (1.2) as long as yd and y(t̄, ·)
do not share discontinuities on [a, b]. The derivative is given by

duJ(y(u)) · δu = (ψy(y(t̄, ·;u), yd), δy)2,[a,b] +

nx∑
i=1

ψ̄y(xi)[y(t̄, ·;u)]δxi, (4.1)

with

ψ̄y(x) :=

∫ 1

0
ψy (y(t̄, x+;u)) + τ [y(t̄, x;u)], yd(x)) dτ. (4.2)

Here, we use again the convention, that yd(x) is identified with one of the limits yd(x−)
or yd(x+), which makes ψ̄y be defined pointwise everywhere.

If the sets of discontinuities of y(t̄, ·;u) and yd intersect, the reduced objective functional
is still directionally differentiable. The directional derivative is given by (4.1) with yd(xi)
replaced by the corresponding one-sided limit yd(xi + 0 · sgn(δxi)). For a proof we refer
to [48, Lem. 2.3].

The proof of Theorem 4.6 and the formula for the gradient of the reduced objective
function in Theorem 4.8, which will be stated in §4.2 and are the main results of this
paper, are based on an appropriately defined adjoint state. Formally the adjoint equation
is given by

pt + f ′(y)px = −gy(·, y)p, on Ωt̄ := [0, t̄]× R,

p(t̄, ·) = pt̄, on R.
(4.3)

Since the state y is in general discontinuous, the coefficients in (4.3) are discontinuous,
too. This makes the analysis of the linear transport equation more involved. Nevertheless,
for g ≡ 0 and Lipschitz continuous end data pt̄, Bouchut and James [8] give a definition
of a reversible solution for (4.3), which satisfies a crucial duality relation.

In [47, 49] it was shown that the reversible solution of (4.3) is exactly the solution
along the generalized characteristics of y. Using this characterization, the notion could
be extended to more general source terms g, including all source terms satisfying (A3)
and discontinuous end data.

In the present case we only consider the adjoint state on the set

Ω̂t̄ := (]0, t̄]× R) \

(
nσ⋃
i=1

([σioff , σ
i
on]× {0}) ∪ Ξ̂

)
,

where Ξ̂ denotes the set of points (t, x) lying on a backward characteristic through a
point (σioff , 0).

Definition 4.3 (Adjoint state) Let pt̄ be a bounded function that is the pointwise

everywhere limit of a sequence (wn) in C0,1(R), with (wn) bounded in C(R) ∩W1,1
loc(R).

The adjoint state p associated to (4.3) is characterized by the requirement that for every
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generalized characteristic ξ of y through (t̄, x̄) ∈ ΩT the function

t 7→ pξ(t) = p(t, ξ(t))

is the solution of the ordinary differential equation

ṗξ(t) = −gy(t, ξ(t), y(t, ξ(t)))pξ(t), (t, ξ(t)) ∈ Ω̂t̄,

pξ(t̄) = pt̄(x̄).

4.2 Main results

We are now able to formulate our main results for the on/off-switching problem. We
state the shift-differentiability of the control-to-state operator from which we can deduce
the total differentiability of the reduced objective functional. Finally, we give a formula
for the gradient of the reduced objective in terms of an adjoint state.

We will work under the following assumptions:

(A2) Σad ⊂ Σ is a closed set in [0, T ]2(nσ+1), with Σ defined in (2.4).
(A3) Assumption (A1) holds and in addition the source term satisfies g ∈

C1 ([0, T ]× R× [0, 1]) and is affine linear w. r. t. y.
(A4) The off-switching points σioff are nondegenerated in the sense of the following

Definition 4.4.

The affine linearity of g w. r. t. y implies, that the coefficient at right hand side of (4.3) is
continuous in space, which is needed in order to apply the theory of reversible solutions,
cf. [48, §7].

Definition 4.4 (Nondegeneracy of σioff) An off-switching point σioff is called nondegen-
erated, if x = 0 is a continuity point and no shock generation point of y(σioff , ·; σ̃), where σ̃

denotes the truncated switching vector σ̃ ..= (σ0
on, σ

1
off , σ

1
on, . . . , σ

i−1
off , σi−1

on , T ). Moreover,
the unique backward characteristic through (σioff , 0) does not intersect any of the points

(σjoff , 0), j = 1, . . . , i− 1. In addition, there is t∗ ∈ ]σioff , σ
i
on[ such that assertions (i) and

(ii) of Lemma 3.5 are applicable.

Remark 4.5 The existence of t∗ such that (i) and (ii) of Lemma 3.5 hold means, that
the shock generated by the off-switching moves away from the boundary x = 0 until the
next on-switching occurs.

The following main theorem on the shift-differentiability of the control-to-state map-
ping for the OOSP assumes a nondegeneracy condition to hold for all shocks at observa-
tion time t̄. The formulation of that condition is rather technical and thus, postponed to
§5. Roughly speaking it ensures that the shock structure at t̄ does not change for small
perturbations of the control.

Theorem 4.6 (Shift-Differentiability for on/off-switching problems) Let σ̄ =
(σ̄0

on, σ̄
1
off , σ̄

1
on, . . . , σ̄

nσ
on , σ̄

nσ+1
off ) ∈ Σad and uI as in (3.1). Let (A3), (A4) hold and for every

σ ∈ Σad denote by y = y(σ) ∈ L∞(ΩT ) ∩ C([0, T ]; L1
loc(R)) the solution of the on/off-

switching problem (2.5). Let a < b and t̄ ∈ ]σ̄nσon , σ̄
nσ+1
off [ such that y(t̄, ·; σ̄) has on [a, b]

no shock generation points and only a finite number of shocks at a < x̄1 < · · · < x̄N̄ < b,
that all are neither degenerated according to Definition 5.1 nor shock interaction points.
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Consider the mapping

σ ∈ Σad 7−→ y (t̄, ·;σ) ∈ L1(a, b). (4.4)

Then the following holds:

(i) If none of the backward characteristics through continuity points x ∈ [a, b] of
y(t̄, ·; σ̄) intersect (σ̄ion, 0) for some i, then the mapping (4.4) is continuously shift-
differentiable on the ball BΣ

ρ (σ̄) for sufficiently small ρ > 0. The shift-derivative sat-

isfies Dsy(t̄, ·; σ̄) ∈ L(Σ0,PC([a, b]; x̄1, · · · , x̄N̄ )×RN̄ ), where Σ0 := {ν ∈ R2(nσ+1) :
ν1 = ν2(nσ+1) = 0}.

(ii) If there are continuity points x ∈ [a, b] of y(t̄, ·; σ̄) that intersect (σ̄ion, 0) for some
i, then the mapping (4.4) is shift-differentiable in σ̄. The shift-derivative satisfies

Dsy(t̄, ·; σ̄) ∈ L(Σ0,PC([a, b]; x̃1, · · · , x̃Ñ ) × RÑ ), where (x̃j) is the set of shock
points extended by all continuity points of y(t̄, ·; σ̄) with backward characteristics
through some (σ̄ion, 0).

If in addition f ∈ C3, g ∈ C
(
[0, T ]; C2(R× [0, 1])

)
, and uI ∈ PC2(R;x1, . . . , xnx) then

the above assumption on shocks and shock generation points holds for almost all t̄ ∈ ]0, T [.

Proof. The proof is given in section 5. The fact that at almost all t̄ ∈ ]0, T [ the assumption
on shocks and shock generation points hold can be shown as in [48, Thm. 3.8]. �

It is important to emphasize that for the on/off-switching problem also off-switching
times, i.e. rarefaction centers, may explicitly be shifted, whereas for the initial
(-boundary) value problem in [42, 48] only the shifting of shock creating discontinu-
ities was allowed. This is a particular challenge in the analysis of the on/off-switching
problem OOSP. We will use the fact that for OOSPs the solution in a neighborhood of
an on switching rarefaction centers is thoroughly known, cf. Lemma 3.5.

From [48, Lem. 2.3] we can deduce the total differentiability for reduced objective
functionals.

Corollary 4.7 Let the assumptions of Theorem 4.6 (ii) hold and consider J defined
as in (1.2). Then the reduced functional

σ ∈ Σad 7−→ J(y(σ)) (4.5)

is directionally differentiable in σ̄. The directional derivative is given by (4.1) with yd(xi)
replaced by the corresponding one-sided limit yd(xi + 0 · sgn(δxi)).

If even the assumptions of Theorem 4.6 (ii) are satisfied and yd is continuous in a
small neighborhood of {x̄1, . . . , x̄N̄}, then (4.5) is continuously differentiable on BΣ

ρ (σ̄)
for ρ > 0 small enough with derivative given by (4.1), (4.2).

In the following theorem we give a representation of the gradient of the reduced ob-
jective function based on the appropriate notion of an adjoint state from Definition 4.3.

Theorem 4.8 Let the assumptions of Corollary 4.7 hold and let the terminal data pt̄ in
(4.3) pt̄ be given by ψ̄y defined in (4.2). Then there exists an adjoint state p according to
Definition 4.3 as the reversible solution of the adjoint equation (4.3).

The derivative of the reduced functional σ ∈ Σad 7→ Ĵ(σ) = J(y(σ)) in σ̄ and direction
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δσ ∈ Σ0 is given by

Ĵ ′(σ̄) · δσ =

nσ∑
i=1

(
pioff · δσioff + pion · δσion

)
,

where

pion :=

∫ f ′(0)

f ′(−1)
lim
s↘σ̄ion

p(s, (s− σ̄ion) · w) · w ·
(
f ′
−1
)′

(w) dw,

pioff :=
(
p(σ̄ioff , 0+)− p(σ̄ioff , 0−)

)
· f(y(σ̄ioff−, 0; σ̄)).

Proof. The proof is given in section 5. �

One may also consider the initial data as additional control. The derivatives w. r. t. the
initial data are then given as for the Cauchy problem without on/off-switching, cf. [48].

5. Proof of the main results

In this section we prove the results of §4.2. For the whole section we will work in the
setting of Theorem 4.6, i.e. we assume (A3), (A4) to hold.

5.1 Classification of continuity and shock points

In this subsection we classify the different types of continuity points and shock points x̄
of y(t̄, ·;σ). To this purpose, we denote for a continuity point x̄ of y(t̄, ·;σ) the unique
backward characteristic by ξ̄. By Proposition 3.3 ξ̄ is genuine and coincides with the
solution ζ(·; t̄, x̄, y(t̄, x̄;σ)) of the characteristic equation (3.4). The genuine backward
characteristic ξ̄ propagates until it reaches the initial data, the boundary data during an
off-phase or the rarefaction center (σion, 0) at the beginning of an on-phase.

We start by collecting the classes of points where ξ̄ does not touch the artificial bound-
ary at x = 0 during an off-phase [σioff , σ

i
on] including the on-switching time. Thus, ξ̄ exists

on the whole interval [0, t̄] and ends in a point z̄ at t = 0. Those points have already
been categorized and analyzed in [48]. We briefly recall the classifications. We denote by
w̄ := v(0; t̄, x̄, y(t̄, x̄;σ)) the value of the v-part of the solution of (3.4) corresponding to
ξ̄.

Case C: z̄ 6= xl for l = 1, . . . , nx.
There exists an interval J with z̄ ∈ J and uI |J ∈ C1(J) and

d

dz
ζ(t; 0, z, uI(z))|z=z̄ ≥ 0, t ∈ [0, t̄]. (5.1)

We say that x̄ is of class Cc if even

d

dz
ζ(t; 0, z, uI(z))|z=z̄ ≥ β > 0, t ∈ [0, t̄]. (5.2)

As shown in [48] (5.2) holds if (t̄, x̄) is no shock generation point.
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Case CB: z̄ = xl for some l ∈ {1, . . . , nx} and uI(xl−) = uI(xl+).
By the same arguments the one-sided derivatives satisfy (5.1). If even the one-sided
version of (5.2) holds, we call x̄ of case CBc.

Case R: z̄ = xl for some l ∈ {1, . . . , nx} and w̄ ∈ ]uI(xl−), uI(xl+)[.
In this case we have

d

dw
ζ(t; 0, z̄, w)|w=w̄ ≥ 0, t ∈ [0, t̄]. (5.3)

The Rc-Case is characterized by the stronger inequality

d

dw
ζ(t; 0, z̄, w)|w=w̄ ≥ βt > 0, t ∈ ]0, t̄], (5.4)

which again is ensured by the requirement that no shock is generated at (t̄, x̄).
Case RB: z̄ = xl for some l ∈ {1, . . . , nx}, uI(xl−) < uI(xl+) and w̄ ∈
{uI(xl+), uI(xl−)}.
The point (t̄, x̄) lies on the left or right boundary of a rarefaction wave. The one-sided
derivatives satisfy (5.1) and (5.3), respectively. If even (5.2) and (5.4) are satisfied, x̄ is
of class RBc.

For brevity we collect these classes of continuity points with ξ̄ starting from the initial
data in the classes XI := {C,CB,R,RB} and Xc

I := {Cc, CBc, Rc, RBc}, respectively.
The following classes of continuity points x̄ are special to the on/off-switching problem,

namely points whose backward characteristics end at {x = 0} during or at the end of an
off-phase at some time θ̄ ∈ [σioff , σ

i
on]. We denote by w̄ := v(θ̄; t̄, x̄, y(t̄, x̄;σ)) the value of

the v-part of the solution (ζ, v) of (3.4) corresponding to ξ̄.
Case CS: θ̄ ∈ ]σioff , σ

i
on[ for some i ∈ {1, . . . , nσ}.

Depending on the orientation of ξ̄ we have

d

dθ
ζ(t; θ, 0, 0)|θ=θ̄ ≥ 0, θ̄ ≤ t ≤ t̄, if ˙̄ξ(θ̄+) < 0, (5.5a)

d

dθ
ζ(t; θ, 0, 1)|θ=θ̄ ≤ 0, θ̄ ≤ t ≤ t̄, if ˙̄ξ(θ̄+) > 0. (5.5b)

We say that x̄ is of class CcS if even

d

dθ
ζ(t; θ, 0, 0)|θ=θ̄ ≥ β > 0, θ̄ ≤ t ≤ t̄, if ˙̄ξ(θ̄+) < 0, (5.6a)

d

dθ
ζ(t; θ, 0, 1)|θ=θ̄ ≤ −β < 0, θ̄ ≤ t ≤ t̄, if ˙̄ξ(θ̄+) > 0. (5.6b)

By using the same arguments as in [48, §4.3], one can show that (5.6) holds if (5.5) is
satisfied and (t̄, x̄) is no shock generation point.

Case RS: θ̄ = σion for some i ∈ {1, . . . , nσ} and ˙̄ξ(σion+) = f ′(w̄) ∈ ]f ′(0), f ′(1)[.
The point x̄ is located in the interior of a rarefaction wave created by an on-switching.
In this case we have

d

dw
ζ(t;σion, 0, w)|w=w̄ ≥ 0, t ∈ [σion, t̄]. (5.7)
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The RcS-Case is characterized by the stronger inequality

d

dw
ζ(t;σion, 0, w)|w=w̄ ≥ β(t− σion) > 0, t ∈ ]σion, t̄]. (5.8)

which, again is ensured by the requirement that no shock is generated at (t̄, x̄).

Case RBS: θ̄ = σion for some i ∈ {1, . . . , nσ} and ˙̄ξ(σion+) = f ′(w̄) ∈ {f ′(0), f ′(1)}.
The point x̄ is located at the boundary of a rarefaction wave created by an on-switching.
The one-sided derivatives satisfy (5.7) and (5.5). If even (5.8) and (5.6) are satisfied, we
say that x̄ is of class RBc

S .
Case CBS: θ̄ = σioff for some i ∈ {1, . . . , nσ}.

The genuine backward characteristic touches the i-th off-switching point with w̄ ∈ {0, 1}.
If w̄ = 0, the characteristic ξ̄ reaches the off-phase from the left. The right-sided

derivative satisfies (5.5a) for θ̄ = σion. Moreover, the characteristic does not end at this
point but continues until t < σion and either ends at the interior of an earlier off-phase

]σjoff , σ
j
on[, j < i, in an earlier on-switching point σjon, j < i, or at t = 0. Depending on

its endpoint the left-sided derivative satisfies (5.5), (5.7), (5.1) or (5.3).
If w̄ = 1, the characteristic ξ̄ reaches the off-phase from the right. The same properties

as above hold with “left” and “right” swapped.
If the one-sided derivatives even satisfy the stronger inequalities (5.6), (5.8), (5.2) or

(5.4), we say that x̄ is of class CBc
S .

The shock points are categorized by the classes of their minimal and maximal charac-
teristics ξ̄l and ξ̄r. We introduce the notion of a nondegenerated shock as follows.

Definition 5.1 (Nondegeneracy of shock points) A point x̄ of discontinuity of y(t̄, ·;σ)
is called nondegenerated, if it is no shock interaction point and is of class XlXr with
Xl, Xr ∈ {Xc

I , R
c
S , C

c
S}.

Using the introduced classifications, we are able to reformulate the nondegeneracy
condition for off-switching points as follows.

Remark 5.2 An off-switching point σioff is nondegenerated according to Definition 4.4
if and only if x = 0 is a continuity point of y(σioff , ·; (0, σ1

off , . . . , σ
i−1
on , T )) of class X̌i ∈

{Xc
I , R

c
S , RB

c
S , C

c
S} and if there exists a time t∗ ∈ ]σioff , σ

i
on[ such that assertions (i) and

(ii) of Lemma 3.5 are applicable.

For nondegenerated off-switching points σioff we will also refer to X̌i as the class of σioff .

5.2 Differentiability at continuity points

As already mentioned, continuity points of class Xc
I have been considered in [48], where

optimal control of the Cauchy problem has been studied. Since in the on-/off switching
problem (2.5) the initial value and the source term are assumed to be fixed, the solution
in continuity points of class Xc

I , for which the backward characteristic reaches the initial
data, are independent of the control. Therefore, the results of [48] can be boiled down to
the following corollary.

Corollary 5.3 Let (A3) hold, consider uI as in (3.1), σ̄ ∈ Σ and let (t̄, x̄) be a Xc
I -

point. Then there exists a neighborhood S of the genuine backward characteristic ξ̄ and
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ρ > 0 such that for every s > 0 it holds that y(·; σ̄) ∈ C0,1(S ∩ {t ≥ s}) and

y(t, x;σ) = y(t, x; σ̄), ∀ (t, x) ∈ S, ∀σ ∈ BΣ
ρ (ρ).

We turn now to continuity points (t̄, x̄) of class CcS , CB
c
S , R

c
S , RB

c
S , where the backward

characteristic ξ̄ ends at an artificial boundary [σioff , σ
i
on]× {0}.

Let x̄ be a continuity point of y(t̄, ·; σ̄) of class CcS with ξ̄ approaching the boundary
at (θ̄, 0) from the left, i.e. (5.6a) is satisfied. Then by continuity we can find θl < θ̄ < θr
and κ > 0, such that (after a possible reduction of β) holds

d

dθ
ζ(t; θ, 0, 0) ≥ β > 0, for all (t, θ) ∈ Tt̄, (5.9)

where for every s > 0 the set Ts is defined by

Ts := {(t, θ) ∈ [0, s]× T : t ≥ θ} with T = ]θl − κ, θr + κ[ ⊂ ]σioff , σ
i
on[.

Lemma 5.4 Let (A3) hold and let (5.9) be satisfied for some β, κ > 0. Let x̄ be a
continuity point of y(t̄, ·; σ̄) of class CcS with ξ̄ approaching the boundary at (θ̄, 0) from
the left. Then the following holds true:

(i) There exists τ > 0 such that

d

dθ
ζ(t; θ, 0, 0) ≥ β

2
> 0, ∀(t, θ) ∈ Tt̄+τ .

(ii) Consider a point (t, x) ∈ S = S(τ), where

S(τ) := {(t, x) ∈ [θl, t̄+ τ ]× R : x ∈ [ξl(t), ξr(max(t, θr))]}

and ξl/r(t) := ζ(t; θl/r, 0, 0). Then the equation

x = ζ(t; θ, 0, 0)

is uniquely solvable w.r.t. θ on T from (5.9) with solution θ = Θ(t, x).
Moreover, let YC(t, x) be defined by

YC(t, x) := v(t; Θ(t, x), 0, 0).

Then
(iii) Θ, YC ∈ C1(S).
(iv) The mapping

x ∈ ]ξl(t), ξr(max(t, θr))[ 7−→ (Θ, YC)(t, x), t ∈ [θl, t̄+ τ [

is continuously differentiable with derivatives

dxΘ(t, x) = (δζ(t; θ, 0, 0; 1, 0, 0))−1 ,

dxYC(t, x) = δv(t; θ, 0, 0; 1, 0, 0) · dxΘ(t, x)

where θ = Θ(t, x) and (δζ, δv) as defined in (3.5).
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Analogous results hold for continuity points x̄ of y(t̄, ·; σ̄) of class CcS with ξ̄ approaching
the boundary at (θ̄, 0) from the right.

Proof. Lemma 5.4 is a special case of [42, Lem. 4.2] for constant boundary data and fixed
source term. The assertions can be proven in the same way as [48, Lem. 5.1], see also the
proof of Lemma 5.6 below. �

Lemma 5.5 Let (A3) hold, consider uI as in (3.1), σ̄ ∈ Σ and let x̄ be a CcS-point of
y(t̄, ·; σ̄) with ξ̄ approaching x = 0 from the left. Then the following holds.

(i) There exists a maximal open interval I 3 x̄, such that {t̄} × I contains no point of
the shock set and that all backward characteristics through a point (t̄, x) ∈ {t̄} × I
intersect {x = 0} in a point θ ∈ ]σ̄ioff , σ̄

i
on[ from the left. In particular, none of those

characteristics intersects {x = 0} during another off-phase [σ̄soff , σ̄
s
on] with s ≥ i+1.

(ii) y(t̄, ·; σ̄) is continuously differentiable on I.

(iii) Let Î := ]xl, xr[ be an interval with xl, xr ∈ I. Denote by ξl/r the genuine backward
characteristics through (t̄, xl/r) with endpoints θl/r at {x = 0}. Then there exist
κ, β > 0, such that (5.9) is satisfied.

(iv) After the possible reduction of τ from Lemma 5.4 there exists ρ > 0 such that

y(t, x;σ) = YC(t, x) ∀(t, x) ∈ S, ∀σ ∈ BΣ
ρ (σ̄).

Analogous results hold for continuity points x̄ of class CcS with ξ̄ approaching the boundary
at (θ̄, 0) from the right.

Proof. Lemma 5.5 is a special case of [42, Lem. 4.3] for constant boundary data and fixed
source term. The assertions can be proven in the same way as [48, Lem. 5.5]. �

Now let x̄ be a continuity point of y(t̄, ·; σ̄) of class RcS with ξ̄ approaching the rarefac-
tion center (σ̄ion, 0), i.e. (5.8) is satisfied for σion = σ̄ion. Then by continuity we can find
wl < w̄ < wr and κ > 0, such that (after a possible reduction of β) holds

d

dw
ζ(t; σ̄ion, 0, w) ≥ β(t− σ̄ion) > 0, ∀ (t, w) ∈ ]σ̄ion, t̄]× Jw, (5.10)

where Jw ..= ]wl − κ,wr + κ[.

Lemma 5.6 Let (A3) hold and let (5.10) be satisfied for some β, κ > 0. Then for every
τ̂ ∈ ]0, εg

2‖f ′‖∞,Jw
[ the following holds true:

(i) There exists τ > 0 and ρ > 0 such that for all σ ∈ BΣ
ρ (σ̄) we have

d

dw
ζ(t;σion, 0, w) ≥ β

2
(t− σion) > 0, ∀ (t, w) ∈ ]σion, t̄+ τ ]× Jw.

(ii) There exists ρ ∈ ]0, τ̂ [ such that for σ ∈ BΣ
ρ (σ̄) and S ..= S(τ, σ) ..= S1(τ) ∪ S2(σ),

where

S1 = S1(τ) ..= {(t, x) ∈ [σ̄ion + τ̂, t̄+ τ ]× R : x ∈ [ξl(t), ξr(t)]},

S2 = S2(σ) ..=

{
(t, x) ∈ ]σion, σ̄

i
on + τ̂ ]× R : x ∈

[
zl
t− σion

τ̂
, zr

t− σion

τ̂

]}
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with ξl/r(t) := ζ(t; σ̄ion, 0, wl/r), zl/r
..= ξl/r(σ̄

i
on + τ̂) for every (t, x) ∈ S the equation

x = ζ(t;σion, 0, w)

is uniquely solvable w.r.t. w on Jw from (5.10) with solution w = W (t, x, σ).
Moreover, let YR(t, x, σ) be defined by

YR(t, x, σ) := v(t;σion, 0,W (t, x, σ)).

Then he have:
(iii) For every σ ∈ BΣ

ρ (σ̄) and s > σion there holds W (·, σ), YR(·, σ) ∈ C1(S ∩ {t ≥ s}).
(iv) The mapping

(x, σ) ∈ ]ξl(t), ξr(t)[×BΣ
ρ (σ̄) 7−→ (W,YR)(t, x, σ), t ∈ [σ̄ion + τ̂, t̄+ τ)

is continuously differentiable with derivatives

d(x,σ)W (t, x, σ) · (δx, δσ) =
δx− δζ(t;σion, 0, w; δσion, 0, 0)

δζ(t;σion, 0, w; 0, 0, 1)
,

d(x,σ)YR(t, x, σ) · (δx, δσ) = δv(t;σion, 0, w; δσion, 0, 0)

+ δv(t;σion, 0, w; 0, 0, 1) · d(x,σ)W (t, x, σ) · (δx, δσ),

with w = W (t, x, σ) and (δζ, δv) as defined in (3.5).
(v) The mapping

σ ∈ BΣ
ρ (σ̄) 7−→ (W,YR)(·, σ) ∈ C(S1)

is continuously Fréchet-differentiable with derivative

dσ(W,YR)(·, σ) · δσ = d(x,σ)(W,YR)(·, σ) · (0, δσ).

Proof. For (i) we consider two cases. Let σ ∈ BΣ
ρ (σ̄) with ρ < τ̂ . Then σ̄ion + τ̂ < σion +2τ̂

and by the choice of τ̂ we obtain for t ∈ ]σion, σ̄
i
on + τ̂ [ for (3.4) the solution

ζ(t;σion, 0, w) = f ′(w)(t− σion), v(t) = w,

since g vanishes for |x| < εg. Hence, d
dwζ(t;σion, 0, w) = f ′′(w)(t − σion) ≥ β(t − σion) by

(5.10). For the remaining t ∈ [σ̄ion + τ̂, t̄+τ ] (i) follows from (5.10) by continuity for ρ > 0
and τ > 0 small enough.

For (ii)–(v) we note that as a consequence for every σ ∈ BΣ
ρ (σ̄) and t ∈ ]σion, t̄+ τ ] the

mapping

w ∈ Jw 7−→ ζ(t;σion, 0, w) (5.11)

is strictly montone increasing and thus one-to-one. By the choice of τ̂ for t ∈ ]σion, σ̄
i
on + τ̂ ]

we have as in (i) simply W (t, x, σ) = f ′−1( x
t−σion

). For t ∈ [σ̄ion + τ̂, t̄+τ ] by (i) the interval]
ζ(t;σion, 0, wl)−

βκ

2
(τ̂ − ρ), ζ(t;σion, 0, wr) +

βκ

2
(τ̂ − ρ)

[
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is contained in the image of (5.11), since τ̂ −ρ ≤ σ̄ion + τ̂ −σion and hence also [ξl(t), ξr(t)]
is in the image of (5.11) if ρ > 0 is chosen sufficiently small. The Lipschitz continuity of
W (·, σ) follows directly from (i) and the Lipschitz continuity of YR(·, σ) is a consequence
of (3.4). The differentiability of the considered mappings and the derivative formulas in
(iv), (v) follow from the implicit function theorem. �

Lemma 5.7 Let (A3), (A4) hold, consider uI as in (3.1), σ̄ ∈ Σ and let x̄ be a continu-
ity point of y(t̄, ·; σ̄) of class RcS with ξ̄ approaching the rarefaction center (σ̄ion, 0), i.e.
ξ̄(σ̄ion) = 0. Then the following holds.

(i) There exists a maximal open interval I 3 x̄, such that {t̄} × I contains no point of
the shock set and that all backward characteristics through a point (t̄, x) ∈ {t̄} × I
end in (σ̄ion, 0). In particular, none of those characteristics intersects {x = 0} during
another off-phase [σ̄soff , σ̄

s
on] with s ≥ i+ 1.

(ii) y(t̄, ·; σ̄) is continuously differentiable on I.

(iii) Let Î := ]xl, xr[ be an interval with xl, xr ∈ I. Denote by ξl/r the genuine backward

characteristics through (t̄, xl/r) and set wl/r
..= v(σ̄ion; t̄, xl/r, y(t̄, xl/r; σ̄)). Then

there exist κ, β > 0, such that (5.10) is satisfied.
(iv) After the possible reduction of τ from Lemma 5.6 there exists ρ > 0 such that for

every σ ∈ BΣ
ρ (σ̄) and s ∈ ]σion, t̄[ with S = S(τ, σ) from Lemma 5.6 holds

y(t, x;σ) = YR(t, x, σ) ∀(t, x) ∈ S ∩ {t ≥ s}. (5.12)

Proof. To show (i) assume that there is a sequence xk → x̄ of continuity points, such that
the genuine bachward characteristic ξk through (t̄, xk) does not end in (σ̄ion, 0). Since ξk
and ξ̄ may not intersect at some time t > σ̄ion, ξk reaches t = σ̄ion and by the backward
stability of solutions (ζ, v) to (3.4) we have ξk(σ̄

i
on) → ξ(σ̄ion) and y(σ̄ion, ξk(σ̄

i
on); σ̄) =

v(σ̄ion; t̄, xk, y(t̄, xk; σ̄)) → v(σ̄ion; t̄, x̄, y(t̄, x̄; σ̄)) = y(σ̄ion+, 0; σ̄) = w̄ /∈ {0, 1}. But for k
large enough we have y(σ̄ion, ξk(σ̄

i
on); σ̄) ∈ {0, 1} by (A4) and Lemma 3.5, which yields

a contradiction. Hence, (i) holds in an open neighborhood of x̄ and thus there exists a
maximal interval I as asserted in (i) and every point (t̄, x), x ∈ I is of class Rc.

By (i) and its proof every point (t̄, x), x ∈ I is of class Rc and thus y(t̄, x; σ̄) =
YR(t̄, x, σ̄) with YR from Lemma 5.6 and thus (ii) follows from Lemma 5.6, (iii).

Let Î be as in (iii). By continuity for every x ∈ [xl, xr] we find an open neighborhood
and κ̃, β̃ > 0 such that (5.10) is satisfied. We choose a finite covering to obtain κ, β > 0

such that (5.10) holds for the whole interval Î.
By (iii) we can apply Lemma 5.6 and obtain S = S(τ, σ) and ρ > 0 such that there

exists a function YR with YR(·, σ) ∈ C1(S ∩ {t ≥ s}) for all σ ∈ BΣ
ρ (σ̄) and all s > σion

that describes a rarefaction wave centered at (σion, 0). If η > 0 is chosen sufficiently small,
we have [xl−2η, xr + 2η] ⊂ I and we can reapply Lemma 5.6 to ]xl−η, xr +η[ instead of

Î obtaining smaller values τ̂, τ, ρ, a larger interval J̃w ⊃ Jw and a new stripe S̃ ⊃ S. Since
(A4) holds, we can after a possible reduction of ρ > 0 also apply Lemma 3.5 (v) and

obtain y(t, x;σ) = f ′−1( x
t−σion

) = YR(t, x, σ) for all σ ∈ BΣ
ρ (σ̄) and all t ∈ ]σion, σ̄

i
on + τ̃ [

and x ∈ ]f ′(0)(t− σion), f ′(1)(t− σion)[.
By construction (5.12) holds for σ̄ and as just shown also for σ ∈ BΣ

ρ (σ̄) and

t ∈ ]σion, σ̄
i
on + τ̃ [. To establish (5.12) it is enough to show that possibly after reduc-

ing ρ > 0 for all σ ∈ BΣ
ρ (σ̄) there are continuity points x̃l ∈ ]xl − 2η, xl − η[ and

x̃r ∈ ]xr + η, xr + 2η[ such that the backward characteristics ζ(t; t̄, x̃l/r, y(t̄, x̃l/r;σ)) meet

t = σ̄ion + τ̃ in Iσ := ]f ′(0)(σ̄ion + τ̃ − σion), f ′(1)(σ̄ion + τ̃ − σion)[. In fact, since genuine
backward characteristics may intersect only at their end points, this ensures that all
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backward characteristics through continuity points x ∈ ]xl − η, xr + η[ meet t = σ̄ion + τ̃
in Iσ and thus (5.12) holds on S̃ ∩{s ≤ t ≤ t̄} and thus for τ < η/max{f ′(0), f ′(1)} also
on S̃ ∩ {s ≤ t}.

Assume the contrary. Then there exists a sequence (σk) ⊂ BΣ
ρ (σ̄), σk → σ̄ such that

ζ(σ̄ion + τ̃ ; t̄, x, y(t̄, x;σk)) /∈ Iσk for all continuity points x of y(t̄, ·;σk) in ]xl − 2η, xl − η[
or in ]xr + η, xr + 2η[. By the L1

loc-stability from Corollary 3.1 we can select a sub-
sequence such that y(t̄, ·;σk) → y(t̄, ·; σ̄) a.e. on ]xl − 2η, xr + 2η[. Since the union
of all points of discontinuity of y(t̄, ·;σk) has measure zero, we thus find continuity
points x̃l ∈ ]xl − 2η, xl − η[, x̃r ∈ ]xl − 2η, xl − η[ of all y(t̄, ·;σk) with y(t̄, x̃l/r;σk) →
y(t̄, x̃l/r; σ̄) and hence ζ(σ̄ion + τ̃ ; t̄, x̃l/r, y(t̄, x̃l/r;σk)) → ζ(σ̄ion + τ̃ ; t̄, x̃l/r, y(t̄, x̃l/r; σ̄)) =
f ′(w̃l/r)τ̃ for some w̃l/r ∈ ]0, 1[. Since there exist open neighborhoods Jl/r of f ′(w̃l/r)τ̃
with Jl/r ⊂ Iσk we see that for k large enough the backward characteristics satisfy

ζ(σ̄ion + τ̃ ; t̄, x̃l/r, y(t̄, x̃l/r;σk)) ∈ Iσk , which yields a contradiction. �

We turn now to continuity points of class RBc
S .

Lemma 5.8 Let (A3), (A4) hold, consider uI as in (3.1), σ̄ ∈ Σ and let x̄ be a RBc
S-point

of y(t̄, ·; σ̄) on the left boundary of a rarefaction wave, i.e. ξ̄(σ̄ion) = 0, w̄ = 0. Then the
following holds.

(i) There exists a maximal open interval I 3 x̄, such that {t̄}×I contains no point of the
shock set and that all backward characteristics through a point (t̄, x) ∈ {t̄} × I end
in ]σ̄ioff , σ̄

i
on] × {0}. In particular, none of those characteristics intersects {x = 0}

during another off-phase [σ̄soff , σ̄
s
on] with s ≥ i+ 1.

(ii) y(t̄, ·; σ̄) is continuously differentiable on I \ x̄ and Lipschitz continuous on I.

(iii) Let Î := ]xl, xr[ 3 x̄ be an interval with xl, xr ∈ I. Denote by ξl/r the gen-

uine backward characteristics through (t̄, xl/r) and set θl ..= max{t ∈ ]σ̄ioff , σ̄
i
on[ :

ζ(t; t̄, xl, y(t̄, xl; σ̄)) = 0}, wr ..= v(σ̄ion; t̄, xr, y(t̄, xr; σ̄)). Then there exist κ, β > 0,
wl < w̄ and θr > σ̄ion such that (5.9) and (5.10) are satisfied.

(iv) After a possible reduction of τ from Lemmas 5.4 and 5.6 there exists ρ > 0 such
that for every σ ∈ BΣ

ρ (σ̄) and s ∈ ]σion, t̄[ there holds

y(t, x;σ) =

{
YC(t, x) if x ≤ ζ(t;σion, 0, 0),

YR(t, x, σ) else,
∀(t, x) ∈ S ∩ {t ≥ s}, (5.13)

where S ..=
(
Sl ∩ {x ≤ ξ̄}

)
∪
(
Sr ∩ {x ≤ ξ̄}

)
with Sl and Sr obtained from Lemma

5.4 and 5.6, respectively.
(v) The mapping

σ ∈ BΣ
ρ (σ̄) 7−→ y(t̄, ·;σ) ∈ Lr(Î) (5.14)

is continuously Fréchet-differentiable for all r ∈ [1,∞[ with derivative

dσy(t̄, ·;σ) = 1x≥ζ(t;σion,0,0) dσYR(t̄, ·, σ).

(vi) The mapping

σ ∈ BΣ
ρ (σ̄) 7−→ y(·;σ) ∈ C(S ∩ {t ≥ s}) (5.15)

is Lipschitz continuous.
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Analogous results hold for continuity points x̄ of class RBc
S on the right boundary of the

rarefaction wave, i.e. ξ̄(σ̄ion) = 0, w̄ = 1.

Proof. (i)-(iii) can be proven in a similar fashion as in Lemma 5.7.

For claim (iv) we remark that for ε > 0 sufficiently small, the intervals Îl ..= ]xl, x̄− ε[
and Îr ..= ]x̄+ ε, xr[ contain only CcS and RcS points, respectively. Hence, Lemmas 5.5

and 5.7 are applicable and (5.13) holds on some smaller stripes S̃l/r. Thus, the genuine
backward characteristics through the remaining points in S cannot escape, which proves
(5.13).

The differentiability of (5.14) and Lipschitz-continuity of (5.15) stated in (v) and
(vi) follow from the differentiability and Lipschitz-continuity of YR, see Lemma 5.6, the
regularity of YC , see Lemma 5.4, and the Lipschitz continuity of σ 7→ ζ(t;σion, 0, 0),
cf. Lemma 3.4. �

We remark that by assumption (A4) and the previously stated results in this section,
for every off-switching point σ̄ioff and genuine backward characteristic ξ̌i through (σ̄ioff , 0)

there exists a stripe Ši around ξ̌i, ρ > 0 and s ∈ ]0, σ̄ion[ such that the mappings

σ ∈ BΣ
ρ (σ̄) 7−→ y(·; (0, σ1

off , . . . , σ
i−1
on , T )) ∈ C(Ši ∩ {t ≥ s}), (5.16a)

(t, x) ∈ Ši 7−→ y(t, x; (0, σ̄1
off , . . . , σ̄

i−1
on , T )) (5.16b)

are Lipschitz continuous. This fact will be of special interest in the consideration of
CBc

S-points in the following lemma.

Lemma 5.9 Let (A3), (A4) hold, consider uI as in (3.1), σ̄ ∈ Σ and let x̄ be a CBc
S-point

with ξ̄ approaching (σ̄ioff , 0) from the left, i.e. ξ̄(σ̄ioff) = 0, w̄ = 0.
Then the following holds.

(i) There exists a maximal open interval I 3 x̄, such that all points in I ∩ {x < x̄} are
of the same class Xl ∈ {Xc

I , R
c
S , C

s
S} and all points in I ∩ {x > x̄} are CcS-points.

(ii) y(t̄, ·; σ̄) is continuously differentiable on I \ {x̄} and Lipschitz continuous on I.

(iii) Let Î := ]xl, xr[ 3 x̄ be an interval with xl, xr ∈ I. Denote by ξl/r the gen-

uine backward characteristics through (t̄, xl/r) and set θr ..= max{t ∈ ]σ̄ioff , σ̄
i
on[ :

ζ(t; t̄, xr, y(t̄, xr; σ̄)) = 0}. Then there exist κ, β > 0 and θl < σ̄ioff such that (5.9)
is satisfied. Thus we can apply Lemma 5.4. Denote by Sr the stripe and by YC the
local solution therein.

(iv) For each x ∈ ]xl, x̄[ we can apply either Corollary 5.3, Lemma 5.4 or Lemma 5.6 and
obtain local solutions Y x on stripes Sx around the unique backward characteristics.

There exists an extension Yl of these solutions Y x, that is defined on a stripe Sl
around ξ̄, such that Yl obeys the same continuity and stability properties than Y x.

(v) Consider Sl/r as above and set S ..=
(
Sl ∩ {x ≤ ξ̄}

)
∪
(
Sr ∩ {x ≥ ξ̄}

)
and define

Ỹ (t, x, σ) ..=

{
Yl(t, x;σ) if x ≤ ξ̄(t),
YC(t, x) else,

∀(t, x) ∈ S. (5.17)

Then it holds for every r ∈ [1,∞[ that

lim
σ→σ̄

∥∥∥Ỹ (t̄, ·, σ)− y(t̄, ·;σ)
∥∥∥
r,Î

‖σ − σ̄‖
= 0.
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(vi) The mapping σ ∈ Σad 7→ y(t̄, ·;σ) ∈ Lr(Î) is Fréchet-differentiable in σ̄.

Proof. Assertions (i)-(iii) can be proven in a similar fashion as in Lemma 5.6.
The precise proof of statement (iv) depends on the class Xl, but follows the same

ideas for each case. We give the proof for Xl = RcS exemplarily. By assumption (5.8)

holds for some σ̄jon, j < i, and every backward characteristic through {t̄}× [xl, x̄]. We set

wl ..= v(σ̄jon; t̄, xl, y(t̄, xl; σ̄)). By continuity we find κ, β > 0 and wr > w̄ such that (5.10)
is satisfied. Now, we can apply Lemma 5.6 to obtain Sl and Yl.

For claim (v) we remark that by Corollary 5.3, Lemma 5.5 and Lemma 5.7 (once more
depending on the class Xl) for ε > 0 sufficiently small we can construct smaller stripes

S̃l/r based on the intervals Îl ..= ]xl, x̄− ε[ and Îr ..= ]x̄+ ε, xr[ such that for σ sufficiently

close to σ̄ we have Ỹ (t̄, ·, σ) = y(t̄, ·;σ) on Îl ∪ Îr. Moreover, we may let ε tend to zero
as ‖σ̄ − σ‖ does. Using again the non-intersection property of genuine characteristics we
know that for σ sufficiently close to σ̄, the backward characteristics through continuity
points x ∈ Iε ..= [x̄ − ε, x̄ + ε] of y(t̄, ·;σ) may not escape. For such a point one simply
verifies that for z ..= ζ(σ̄ioff ; t̄, x, y(t̄, x;σ)) we have

|y(t̄, x;σ)− y(t̄, x; σ̄)| ≤
∣∣v(t̄; σ̄ioff , z, ur(σ, z))− v(t̄; σ̄ioff , z, ur(σ̄, z))

∣∣
+ Ly(t̄,·;σ̄)

∣∣ζ(t̄; σ̄ioff , z, ur(σ, z))− ζ(t̄; σ̄ioff , z, ur(σ̄, z))
∣∣

≤
(
1 + Ly(t̄,·;σ̄)

)
Lζ,v |ur(σ, z)− ur(σ̄, z)|

with ur(σ, z) ..=

{
y(σ̄ioff , z; (0, σ1

off , . . . , σ
i−1
on , T )) if z < (σ̄ioff − σioff)f ′(0),

0 else.

By construction and (5.16) we obtain

|ur(σ, z)− ur(σ̄, z)| ≤
(
Ly,σ + |f ′(0)| · Ly,x

)
‖σ̄ − σ‖ ,

where Ly,σ and Ly,x denote the Lipschitz constants of (5.16a) and (5.16b), respectively.

Recall that by construction the function σ ∈ BΣ
ρ (σ̄) 7→ Ỹ (t̄, ·, σ) ∈ Lr(Î) is Lipschitz

continuous for some ρ > 0 with Lipschitz constant LỸ . We combine these results and
obtain∥∥∥Ỹ (t̄, ·, σ)− y(t̄, ·;σ)

∥∥∥
r,Î
≤ ‖y(t̄, ·;σ)− y(t̄, ·; σ̄)‖r,Iε +

∥∥∥Ỹ (t̄, ·, σ)− Ỹ (t̄, ·, σ̄)
∥∥∥
r,Iε

≤
((

1 + Ly(t̄,·;σ̄)

)
Lζ,v

(
Ly,σ + |f ′(0)| · Ly,x

)
+ LỸ

)
(2ε)

1

r ‖σ − σ̄‖ .

Letting ε, ‖σ̄ − σ‖ tend to zero concludes the proof of (v).
(vi) is a consequence of the differentiability of σ 7→ Yl(t̄, ·, σ) ∈ Lr(Sl ∩ {t = t̄}) and

hence of σ 7→ Ỹl(t̄, ·, σ) ∈ Lr(Î) combined with (v). �

5.3 Differentiability at shock points

Before we state the differentiability of the shock position, we show that it depends at
least locally Lipschitz continuous on the control and separates two smooth parts of the
solution.

Lemma 5.10 (Stability of the shock position) Let (A3), (A4) hold and let uI be as in
(3.1) and σ̄ ∈ Σad. Furthermore, let x̄ be a XlXr-point with Xl/r ∈ {Xc

I , C
c
S , R

c
S}. Denote
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by Yl/r the local solution constructed on the stripe Sl/r by applying Corollary 5.3, Lemma
5.4 or Lemma 5.6 to ξl/r.

Then, there exists a neighborhood I := ]xl, xr[ of x̄ such that the following holds:

(i) y(·; σ̄) is locally given by

y(t, x;σ) =

{
Yl(t, x, σ̄) if (t, x) ∈ Sl ∩ {x < η(t)},
Yr(t, x, σ̄) if (t, x) ∈ Sr ∩ {x > η(t)}.

(ii) There exists ρ > 0 and a Lipschitz continuous function

xs : σ ∈ BΣ
ρ (σ̄) 7−→ xs(σ) (5.18)

with xs(σ̄) = x̄, such that for all σ ∈ BΣ
ρ (σ̄) holds

y(t̄, x;σ) =

{
Yl(t̄, x, σ) if x ∈ ]xl, xs(σ)[,

Yr(t̄, x, σ) if x ∈ ]xs(σ), xr[.

Proof. The first assertion can be proven by using the backward stability of genuine
backward characteristics according to Lemma 3.4.

A reinspection of the proof of [48, Lem. 6.2] shows, see [41, Lem. 6.3.1 & 7.3.1], that
the class (Cc) of the extreme characteristics is not explicitly used, but only the results
on the local solutions Y± on the stripes S±, which also hold true for the current setting
by Corollary 5.3, Lemma 5.4 or Lemma 5.6. �

In the following lemma we consider an Xc
IX

c
I -shock, that has only one off-phase

]σioff , σ
i
on[ in its shock funnel. Then the point σioff must be of class X̌i = Xc

I , too.
Afterwards we discuss how the result can be extended to general XlXr-shocks with
Xl/r ∈ {Xc

I , C
c
S , R

c
S}, X̌i ∈ {Xc

I , C
c
S , R

c
S , RB

c
S}.

Lemma 5.11 (Differentiability of the shock position) Let the assumptions of Lemma 5.10
hold. Consider a shock point xs(σ̄) = x̄ of class Xc

IX
c
I with a single off-phase ]σ̄ioff , σ̄

i
on[ in

its shock funnel. Let σ̄ioff be nondegenerated according to Definition 4.4. Then for ρ > 0
sufficiently small the mapping (5.18) is continuously differentiable.

Proof. Denote by ξ̌ the genuine backward characteristic through (σ̄ioff , 0) and by Ši and
Y̌ i the stripe and the local solution from Corollary 5.3. Let ρ be small enough such that
Ši ⊃ [σ̄ioff − ρ, σ̄ioff + ρ] × I(0, ξ̌(σ̄ioff − ρ)). Consider δ̃ > 0 and si := σ̄ion + τ̃ with τ̃
from Lemma 3.5(v). Furthermore, let σ ∈ BΣ

ρ (σ̄) and set δσ := σ − σ̄. By ȳ := y(·; σ̄),
y := y(·;σ) we denote the respective solutions of (2.5) and by ∆y := y−ȳ their difference.
As in [48, §8] one of the key points of the proof is the fact that for ε > 0 sufficiently
small and x̂l/r := xs(σ̄)∓ ε ∈ ]xl, xr[ (from Lemma 5.10) the following equality holds:

∫ x̂r

x̂l

∆y(t̄, x) dx = (xs(σ)− xs(σ̄))[y(t̄, xs(σ̄))] +O(‖δσ‖2). (5.19)

The above equation is obtained as in [48] using the Lipschitz continuity of Yl/r from
Corollary 5.3 w.r.t. x, the Lipschitz continuity of (5.18) and the fact that Yl/r do not
depend on σ.
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The rest of this proof will be concerned with the derivation of an adjoint-based formula
for the left hand side of (5.19). We avoid the introduction of a detailed analysis for linear

transport equations with discontinuous coefficients on sliced domains, such as Ω̂t̄. Instead
we show how the considered equation can be modified so that the results of [48, §7] can
be used. A detailed description of the utilized localizing arguments can be found in [41,

§4.2]. We denote by ζ̂l/r the genuine backward characteristics through (t̄, x̂l/r) and by

D̃0 := {(t, x) ∈ [si, t̄]× R : ζ̂l(t) ≤ x ≤ ζ̂r(t)}

the area confined by them, see Figure 1. For (t, x) ∈ D̃0 we define

a(t, x) := f ′(ȳ(t, x)), ã(t, x) :=

∫ 1

0
f ′(ȳ(t, x) + λ∆y(t, x)) dλ,

b(t, x) = b̃(t, x) := gy(t, x, ȳ(t, x)).

Using the above abbreviations and the assumption that g is affine linear w.r.t y, we
deduce that on D̃0 the difference of y and ȳ is a weak solution of

∂t∆y + ∂x(ã∆y) = b̃∆y. (5.20)

We extend the functions a, ã, b, b̃ to [si, t̄]× R by setting

(ã, b̃)(t, x) = (a, b)(t, x) =

{
(Mf ′ , b(t, ζ̂l(t)+)) if x < ζ̂l(t),

(−Mf ′ , b(t, ζ̂r(t)−)) if x > ζ̂r(t),
(5.21)

with Mf ′ from (3.6). On D̃0 the adjoint state p according to Definition 4.3 can be
interpreted as the restriction of the reversible solution to the adjoint equation (4.3) on
[si, t̄]× R in the sense of [48, Def. 7.5] for the same end data.

We define p̃ to be the reversible solution of the averaged adjoint equation

∂tp̃+ ã∂xp̃ = −b̃p̃, p̃(t̄, ·) = pt̄ ≡ 1

[y(t̄, xs(σ̄); σ̄)]
(5.22)

on [si, t̄]×R in the sense of [48, Def. 7.5]. We multiply (5.20) by p̃ and apply integration
by parts on D̃0, which yields∫ x̂r

x̂l

p̃(t̄, x)∆y(t̄, x) dx =

∫∫
D̃0

∆y(∂tp̃+ ã∂xp̃+ b̃p̃) dx dt

+

∫ t̄

si
p̃(t, ζ̂l(t))(−f ′(y)∆y + f(y)− f(ȳ))(t, ζ̂l(t)) dt

+

∫ t̄

si
p̃(t, ζ̂r(t))(f

′(y)∆y − f(y) + f(ȳ))(t, ζ̂r(t)) dt+

∫ ζ̂r(si)

ζ̂l(si)
p̃(si, x)∆y(si, x) dx

=

∫ ζ̂r(si)

ζ̂l(si)
p(si, x)∆y(si, x) dx+ o(‖δσ‖) (5.23)

The first integral in the middle part of the above equation vanishes since by [48, Thm.
7.7] p̃ solves (5.22) almost everywhere on D̃0, the left and right boundary integrals vanish,
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since y is independent of the control σ and therefore y and ȳ coincide locally. Finally,
[48, Thm. 7.8] yields p̃ → p in C(D̃0) and by Corollary 3.1 ∆y(s, ·) → 0 in L1

loc, which
shows the second equality. Let

[x̃l, x̃r] ⊂ ]− δ̃ +Mf ′(s
i − σ̄ion), δ̃ −Mf ′(s

i − σ̄ion)[ \[f ′(0)(si − σ̄ion), f ′(1)(si − σ̄ion)].

We split the integral on the righthand side of (5.23) into three parts:

∫ ζ̂r(si)

ζ̂l(si)
p(si, ·)∆y(si, ·) dx

=

∫ x̃l

ζ̂l(si)
p(si, ·)∆y(si, ·) dx+

∫ x̃r

x̃l

p(si, ·)∆y(si, ·) dx+

∫ ζ̂r(si)

x̃r

p(si, ·)∆y(si, ·) dx

The middle part of the above integral can be computed using Lemmas 5.7 and 5.8.
We now show how to compute the first part, with the third being similar. Consider

t̂ := si − f ′(0)x̃l and σ+ := σ̄ioff + max(δσioff , 0) and σ− := σ̄ioff + min(δσioff , 0). Let

D̃ := D̃1 ∪ D̃2 ∪ D̃3 with

D̃1 := {(t, x) ∈ [t̂, si]× R− : ζ̂l(t) ≤ x ≤ f ′(0)(t− t̂)},
D̃2 := {(t, x) ∈ [σ−, t̂]× R− : ζ̂l(t) ≤ x},
D̃3 := {(t, x) ∈ [0, σ−]× R : ζ̂l(t) ≤ x ≤ ξ̌(t)}.

We consider the reversible solutions p̃, p of

∂tp+ a∂xp = −bp, p(si, ·) = p(si+, ·)
∂tp̃+ ã∂xp̃ = −b̃p̃, p̃(si, ·) = p(si+, ·)

on D̃, where we extend the coefficients outside D̃ analogous to (5.21). Integration by
parts on D̃ yields∫ x̃l

ζ̂l(si)
p(si, x)∆y(si, x) dx = I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8, (5.24)

where

I1 :=

∫∫
D̃

∆y(∂tp̃+ ã∂xp̃+ b̃p̃) dx dt,

I2 :=

∫ si

0
p̃(t, ζ̂l(t))(−f ′(ȳ)∆y + f(y)− f(ȳ))(t, ζ̂l(t)) dt,

I3 :=

∫ ξ̌(0)

ζ̂l(0)
p̃(0+, x)∆y(0+, x) dx,

I4 :=

∫ σ−

0
p̃(t, ξ̌(t))(f ′(ȳ)∆y − f(y) + f(ȳ))(t, ξ̌(t)) dt,

I5 :=

∫ 0

ξ̌(σ−)
p̃(σ−, ·)∆y(σ−, ·) dx,
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Figure 1. Illustration of the proof of Lemma 5.11

I6 :=

∫ σ+

σ−

p̃(t, 0−)(f(ȳ(t, 0−))− f(y(t, 0−))) dt,

I7 :=

∫ t̂

σ+

p̃(t, 0−) · 0 dt,

I8 :=

∫ si

t̂
p̃(t, f ′(0) · (t− t̂))(f ′(ȳ)∆y − f(y) + f(ȳ))(t, f ′(0) · (t− t̂)) dt.

The domain of integration is also illustrated in Figure 1 with the boundary integrals I2

to I8 labeled counterclockwise. Since p̃ is an almost everywhere solution of the averaged
adjoint equation, I1 vanishes. Furthermore, I2 = I4 = I5 = 0 because the local solutions
Y around ζ̂l and ξ̌ are independent of δσ. I3 vanishes, too, because the initial data are
independent of the control. Obviously, I7 = 0 and by Lemma 3.5 also I8 = 0. Finally we
have

I6 = p(σ̄ioff , 0−)

∫ σ+

σ−

(f(ȳ(t, 0−))− f(y(t, 0−))) dt+ o(‖δσ‖)

by the convergence of the averaged adjoint state. And depending on the sign of δσioff we
have for t ∈ [σ−, σ+]

f(ȳ(t, 0−))− f(y(t, 0−)) =

{
0− f(Y̌ i(t, 0)), if δσioff > 0,

f(Y̌ i(t, 0))− 0, if δσioff < 0,

where we used, that Y̌ i is independent of the control σ. The continuity of Y̌ i on Ši now
shows

I6 = p(σ̄ioff , 0)

∫ σ+

σ−

sgn(δσioff)(−f(Y̌ i(t, 0))) dt+ o(‖δσ‖)

= p(σ̄ioff , 0)

∫ σ+

σ−

sgn(δσioff)(−f(Y̌ i(σ̄ioff , 0))) dt+ o(‖δσ‖)
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t̄

Figure 2. Illustration of Remark 5.12

= p(σ̄ioff , 0)(−f(Y̌ i(σ̄ioff , 0))) · δσioff + o(‖δσ‖).

The continuity of the derivative d
dσxs(σ) is a consequence of the stability of the solution

p of the adjoint equation w.r.t. small perturbations in the coefficients and the fact that
p is continuous in a neighborhood of σ̄ioff , see [48, Thm. 7.7]. �

Remark 5.12 The results of Lemma 5.11 are also valid if one considers the following
modifications:

(i) If there are further off-phases in the shock funnel, the integration on D̃ is only
applied up to time si−1. This means, that the integral I3 in (5.24) does no longer
vanish, but must be computed similar as the righthand side of (5.23) by reapplica-
tion of the above explained procedure, see Figure 2.

(ii) If one or more of the classes X̌i, Xl/r is CcS , the proof of Lemma 5.11 can easily be
adapted. One can use exactly the same arguments. The only difference is the shape
of the areas D̃i confined by the respective characteristics.

(iii) If one or more of the classes X̌i, Xl/r is RcS or X̌i = RBc
S , cf. ξr in Figure 2,

the proof of Lemma 5.11 needs some further modifications: Since in (5.19) Yl/r
may depend on the control σ, we have to use the Lipschitz continuity of the local
solution σ 7→ Yl/r(·, σ) from Lemma 5.6, yielding

∫ x̂r

x̂l

∆y(t̄, x) dx = (xs(σ)− xs(σ̄))[y(t̄, xs(σ̄))] +O(‖δσ‖ (ε+ ‖δσ‖)). (5.25)

Moreover, all integrals along characteristics, i.e. the second and third integral in
the middle part of (5.23), as well as I2 and I4 in (5.24), need no longer be equal to
zero, but are O(‖δσ‖2). This can be shown by overestimating the remainder of the
Tailor expansion by O(‖Y (·, σ̄)− Y (·, σ)‖2C(S)) and using the Lipschitz continuity

of σ 7→ Y (·, σ) with Y = YR from Lemma 5.6 or Y as in (5.13) in Lemma 5.8.

30



5.4 Proof of Theorem 4.6 and Theorem 4.8

We finally have established all ingredients to prove our main theorems by piecing together
the results of this section.

Proof of Theorem 4.6. In a first step we find ρ > 0 and neighborhoods Ij of the shock-
points x̄j such that on each of them Lemma 5.10 is applicable and (5.18) is continuously
differentiable, see Lemma 5.11 and Remark 5.12. From this we obtain continuous shift

differentiability of σ ∈ BΣ
ρ (σ̄) 7→ L1(

⋃N̄
j=1 Ij).

If there exist CBc
S-points xĵ ∈ [a, b], we find neighborhoods Îĵ of xĵ , on which we apply

Lemma 5.9 (vi).

It remains to consider the compact set K ..= [a, b] \
(⋃N̄

j=1 Ij ∪
⋃
ĵ Îĵ

)
of continuity

points. For each of these points x we can apply one of the Lemmas in §5.2 yielding an
interval Î = Î(x) such that the solution y(t̄, ·;σ) ∈ Lr(Î) depends continuously differ-
entiably on the control σ ∈ BΣ

ρ (σ̄) for ρ > 0 sufficiently small. We can choose a finite

covering
⋃
x∈F Î(x) ⊃ K and reduce ρ > 0 such that the assertion of Theorem 4.6 is

proven to hold. �

Proof of Theorem 4.8. The proof is mainly a combination of the one of Lemma 5.11 and
[49, Thm. 5]. Basically, the adjoint calculus from Lemma 5.11 is used on the whole domain
in order to find a first order approximation of

∫
Ω ψ̄y∆y dx instead of the lefthand side of

(5.19) or (5.25), respectively. Working in the setting of a single off-phase, one obtains

Ĵ ′(σ̄) · δσ =

∫ f ′(1)(si−σ̄ion)

f ′(0)(si−σ̄ion)
p(si, x) · (f ′−1)′

(
x

si − σ̄ion

)
x

(si − σ̄ion)2
dx · δσion

+
(
p(σoff , 0+)− p(σ̄ioff , 0−)

)
· f(y(σ̄ioff , 0) · δσioff .

We consider the integral in the above formula and make some change of variables:

∫ f ′(1)(si−σ̄ion)

f ′(0)(si−σ̄ion)
p(si, x) · (f ′−1)′

(
x

si − σ̄ion

)
x

(si − σ̄ion)2
dx

=

∫ f ′(1)

f ′(0)
p(si, (si − σ̄ion)w) · w · (f ′−1)′(w) dw.

The time si > σ̄ion is ensured to exist by Lemma 3.5, but is not an a priori known quantity.
Since we are in the εg-neighborhood of x = 0, all characteristics are straight lines and
p is constant along them. Therefore, we can pass to the limit s ↘ σ̄ion and obtain the
formula presented in Theorem 4.8. �

6. Conclusion and future work

In this paper we have analyzed the differentiability of the reduced objective function for
optimal control problems, where the state is governed by a hyperbolic conservation law
on a simple switched network with on/off-switching. Based on an appropriate adjoint
calculus we were able to deal with shocks in the entropy solution and to show that the
state depends shift-differentiably on the switching times of the node condition. Here, we
were able to allow arbitrary shock formations, the only restriction was the requirement

31



(which was shown to hold for almost all times) that at the observation time t̄ there are on
[a, b] no shock generation points and only a finite number of shocks, that all are neither
degenerated nor shock interaction points. By applying [48, Lem. 2.3] we were able to
deduce the differentiability of reduced objective function from that result. Based on the
introduced adjoint calculus we have also derived a formula for the gradient of the reduced
objective. The result of this paper forms the basis for the application of gradient-based
optimization methods to such problems.

One can straight forward extend the presented analysis to the case where the initial
data are additionally controlled. The same holds, if one considers several positions of
on/off-switching devices in a row, or even nodes with multiple incoming and outgoing
edges with a modal node condition, that either suspends the inflow from or the outflow
into certain arcs or directly connects pairs of in- and outgoing arcs time dependently.

In the future we want to investigate how to deal with situations where the assumptions
on the off-switching points are no longer satisfied. This means that we have to explore
the case where no shock is introduced at the artificial boundary during the whole off-
phase and the case where the location of the switching device, i. e. x = 0, is not a
continuity point of y(σioff , ·). In the first case, the difficulty arises from the fact the small
perturbations of the control may entirely change the structure in the neighborhood of the
considered off-phase: There might be two shocks emanating from the artificial boundary
or the off-switching point, and a rarefaction wave at the corresponding on-switching
point. For the second case, we expect directional differentiability for the shock position
and the reduced objective function to hold. This can be seen from I6 in Lemma 5.11, for
which the limit δσioff → 0 depends on the the direction in which the incoming shock at
(σ̄ion, 0) moves.

Further questions are for example, whether one may choose different fluxes on the
different edges and if one can combine the problem with more common node conditions
allowing for splitting and merging of incoming and outgoing flow, as those from [12, 14].

It would be of practical interest to investigate whether the considered approach is
extendable to systems of conservation laws where one has multiple conserved quantities,
as in models for gas or water pipelines.

The presented sensitivity and adjoint calculus can be used for the numerical approx-
imation of the optimal control problem under consideration. For the Cauchy problem
there exist several works on the convergence of optimal solutions of discretized optimal
control problems, e.g. [13, 46], and the convergence of sensitivities, adjoints and reduced
gradients, see [22, 23, 47–49] and also [13] for an alternating descent method.

Our current investigations focus on the extension of those convergence results to the
problem considered in this paper. The main question arising in this context is the appro-
priate discrete approximation of the shift of switching times between on- an off-phases.
Here, we will consider and compare two different approaches. In the first one, we consider
the variation of the times step sizes between switching times, while for the latter we want
to use fixed time steps.
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[37] J. Málek, J. Nečas, M. Rokyta, and M. Růžička, Weak and measure-valued solutions to evolutionary
PDEs, Applied Mathematics and Mathematical Computation, Vol. 13, Chapman & Hall, London,
1996.
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