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Abstract. We consider optimal control problems governed by nonlinear
hyperbolic conservation laws at junctions and analyze in particular the
Fréchet-differentiability of the reduced objective functional. This is done
by showing that the control-to-state mapping of the considered problems
satisfies a generalized notion of differentiability. We consider both, the
case where the controls are the initial and the boundary data as well as
the case where the system is controlled by the switching times of the
node condition. We present differentiability results for the considered
problems in a quite general setting including an adjoint-based gradient
representation of the reduced objective function.
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1. Introduction

This paper serves as a final report of the project Optimal Control of Switched
Networks for Nonlinear Hyperbolic Conservation Laws. In this work we con-
sider optimal control problems for entropy solutions of hyperbolic conserva-
tion laws involving objective functionals of the form

J(y(u)) :=

∫ b

a

ψ(y(t̄, x;u), yd(x)) dx, (1.1)

where ψ ∈ C1,1
loc (R2) and yd ∈ BV ([a, b]) is a desired state. The state y is

the entropy solution of either an initial-boundary value problem for a scalar
conservation law

yt + f(y)x = g(·, y, u1)

or of a traffic light problem, as we will call it throughout this paper, where two
conservation laws are coupled through a node at which the switching times
between red and green phases is controlled. Our motivation is to develop
a variational calculus for initial, boundary and switching time control that
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has the potential to be extended to the optimal control of networks with
switching control at nodes.

It is well-known that weak solutions to Cauchy problems of nonlinear
hyperbolic conservation laws are in general not unique and that one has to
consider entropy solutions, that can be obtained as the vanishing viscosity
limit of a parabolic regularization [4, 26]. Even for smooth initial and bound-
ary data entropy solutions can develop discontinuities (shocks) after finite
time [7]. This leads to fundamental difficulties for the sensitivity analysis
and optimal control theory, since the shock locations depend on the control.
Hence, the control-to-state mapping u 7→ y(t̄, ·;u) is at best differentiable
with respect to the weak topology of measures and senistivities are necessar-
ily measures with singular part along the shock curves. For networks, where
the solutions on two or more intervals are connected by a (possibly controlled)
node, the situation gets even more involved.

Motivated by its practical relevance, despite these difficulties the anal-
ysis and numerical solution of optimal control problems for hyperbolic con-
servation laws has become an active research field in recent years.

The existence of optimal controls for the Cauchy problem and the initial-
boundary value problem was discussed for example in [1, 2, 35, 36].

The issue of non-differentiability of the solution operator was treated by
different authors by introducing generalized notions of differentiability, e.g.
[5, 8, 9, 11, 15, 36, 37]. The present work is based on the notion of shift-
differentiability, that was introduced in [36], where it was also shown to hold
for the Cauchy problem. Here the theory of generalized characteristics by
Dafermos [17] is a crucial instrument. This approach also includes an adjoint
calculus for the reduced objective function, see also [19, 20, 38].

Networks for hyperbolic conservation laws have been considered in var-
ious contexts in recent years. Several node conditions have been discussed,
most of them are tailored to specific applications, such as traffic modeling
[25, 13, 10, 22], gas pipelines [3, 16, 23] or supply chains [21]. The conditions
are mostly formulated for Riemann problems and then generalized by wave
front tracking. Besides the question of well-posedness also aspects from the
optimal control viewpoint have been considered. But these approaches often
either consider the linear case or assume the existence of a strong solution.
Conservation laws with modal switching have been discussed for the first time
in [24], where switching is considered in the fluxes, the boundary condition
and the coupling condition at the nodes of a network.

This paper is organized as follows. In section 2 we introduce the two
considered problems, the initial-boundary value problem and the traffic light
problem. In section 3 we collect results on the well-posedness for these prob-
lems and structural properties of the corresponding solutions. The main re-
sults will be presented in section 4, where we show the generalized differen-
tiability of the solution operator and the resulting Fréchet-differentiabilty of
the reduced objective function.
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2. The models

In this paper we focus on two types of problems for a scalar conservation
law. The first one is the initial-boundary value problem (IBVP), the second
is the traffic light problem (TLP). We will also consider the pure initial
value problem (IVP), since on one hand the IVP is helpful to understand
the more involved IBVP and on the other hand the traffic light problem is
a combination of both. While the IBVP is an important step towards node
conditions on networks, the traffic light problem can be seen as a relevant
node condition with switching in a traffic network.

2.1. Initial-Boundary Value Problem

The first model problem under consideration is an initial-boundary value
problem (IBVP) on an interval Ω = (a, b), where we explicitly allow for a, b
to be ±∞, respectively. The IBVP is then given by

yt + f(y)x = g(·, y, u1), on ΩT , (2.1a)

y(0, ·) = u0, on Ω, (2.1b)

y(·, a+) = uB,a, in the sense of (2.4a) (if a > −∞), (2.1c)

y(·, b−) = uB,b, in the sense of (2.4b) (if b <∞), (2.1d)

where ΩT := [0, T ] × Ω. In order to show existence of a unique solution,
following [26, 4], the conservation law (2.1a) has to be understood in sense of
an entropic solution, which can be characterized by requiring that for every
(Kružkov-) entropy ηc(λ) := |λ − c|, c ∈ R, and associated entropy flux
qc(λ) := sgn(λ− c)(f(λ)− f(c)) the following entropy inequality holds in the
sense of distributions

(ηc(y))t + (qc(y))x ≤ η
′
c(y)g(·, y, u1) in D′(ΩT ). (2.2)

The initial data in (2.1b) have to be understood in the weak L1
loc-sense, which

means that for every R > 0

esslim
t→0+

‖y(t, ·)− u0‖1,Ω∩(−R,R) = 0 (2.3)

is fulfilled. The Dirichlet-like boundary conditions (2.1c), (2.1d) must not
be understood literally. Rather, the solution y of (2.1a)-(2.1d) has to be
interpreted as the limit of its parabolic regularization, that is (2.1a)-(2.1d)
with the term εyxx added on the right hand side of (2.1a). The boundary
condition of the limit solution can then be characterized, as shown in [4], by

min
k∈I(y(·,a+),uB,a)

sgn(uB,a − y(·, a+))(f(y(·, a+))− f(k)) = 0, a.e. on [0, T ],

(2.4a)

min
k∈I(y(·,b−),uB,b)

sgn(y(·, b−)− uB,b)(f(y(·, b−))− f(k)) = 0, a.e. on [0, T ],

(2.4b)

with I(α, β) := [min(α, β),max(α, β)], see also [18, 28, 30, 31]. In the litera-
ture the above formulation of the boundary condition from [4] is sometimes
called the BLN-condition.
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2.2. Traffic Lights

The second topic of this work is a problem that is motivated by a traffic flow
problem. This special type of problem is also of great interest because it is a
simple example for a network of conservation laws with modular switchings in
the node condition. Before we formulate the mathematical problem, we give
a short overview on traffic flow modeling by hyperbolic conservation laws.

2.2.1. Macroscopic model for traffic flow. In the mid 1950s, Lighthall and
Whitham [29] and Richards [34] proposed a continuum model for heavy traf-
fic. The traffic is described by means of a traffic density ρ and the conservation
of cars is ensured by

ρt + f(ρ)x = 0, f(ρ) := ρv(ρ),

where the velocity v of the traffic depends only on the density. This model
is widely used and is known as the LWR-model. For a detailed overview on
traffic flow modeling by partial differential equations we refer to [25]. Usually
one assumes that f is a concave function, but since most theoretical results
on conservation laws work with convex fluxes, we will make a change of signs
and work with a convex flux function. In the following the state y can be
interpreted as the negative traffic density −ρ. We further assume that the
road reaches its maximum density when y = −1 and is empty for y = 0. The
flux f(y) is equal to 0 for these two values and strictly convex in between. In
particular, f is negative on (−1, 0).

2.2.2. A traffic light on an open road. We consider a long unidirectional road
I = R that has to be closed for some reason (e.g. because of pedestrian or
railway crossings) for some time periods at a specific point x = 0, most
likely by a traffic light. So the considered time interval [0, T ] is split into
two different types of phases, namely green [σi−1

g , σir), i = 1, . . . , nσ + 1 and

red phases [σir, σ
i
g), i = 1, . . . , nσ where the incoming traffic at x = 0 is or

is not allowed to cross respectively. A similar problem was already briefly
introduced in [29].

For the sequel we assume σ = (σ0
g , σ

1
r , σ

1
g , . . . , σ

nσ
g , σnσ+1

r ) ∈ Σ, where

Σ :=
{
ν ∈ R2(nσ+1) : 0 = ν1 < ν2 < · · · < ν2nσ+1 < ν2nσ+2 = T

}
. (2.5)

for the sake of simplicity. The presented analysis can also be carried over to
the case where the first and/or the final phase is a red phase.

During the i-th green phase a solution y of such a traffic light problem
(TLP) is determined by solving a Cauchy problem on Ωg,i := [σi−1

g , σir] × R
with initial data

u0 = y(σi−1
g −, ·), i = 2, . . . , nσ + 1.

Here, y(σi−1
g −, ·) is the final state of the previous red phase.

For the i-th red phase the solution y consists of two parts, namely y1

and y2, its restriction to the incoming and outgoing part I1 := (−∞, 0)
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and I2 := (0,∞) of the road. The restriction y1 is the solution of an initial-
boundary value problem on Ω1

r,i := [σir, σ
i
g]×I1 with initial value y(σir−, ·) and

boundary data uB,0 ≡ −1. Similarly, y2 solves an IBVP on Ω2
r,i := [σir, σ

i
g]×I2

with uB,0 ≡ 0. For the first green phase, i.e. the first IVP, the initial data are
given by some function uI . The traffic light problem can then formulated in
the following way:

yt + f(y)x = g(·, y, u1), on Ωg,i+1, i = 0, . . . , nσ, j = 1, 2, (2.6a)

yt + f(y)x = g(·, y, u1), on Ωjr,i, i = 1, . . . , nσ, j = 1, 2, (2.6b)

y(0, ·) = uI , on I, (2.6c)

y(σig, ·)
∣∣
Ij

= yj(σ
i
g−, ·), on Ij , i = 1, . . . , nσ, j = 1, 2, (2.6d)

yj(σ
i
r, ·) = y(σir−, ·)

∣∣
Ij
, on Ij , i = 1, . . . , nσ, j = 1, 2, (2.6e)

y1(·, 0−) = −1, on [σir, σ
i
g], i = 1, . . . , nσ, (2.6f)

y2(·, 0+) = 0, on [σir, σ
i
g], i = 1, . . . , nσ. (2.6g)

The conservation laws (2.6a), (2.6b) model the conservation of cars. The
source term g can be seen as additional traffic that enter or leave the road
from minor roads or parking lots, that are not modeled in detail. The bound-
ary conditions that model the red lights (red light conditions) (2.6f), (2.6g)
guarantee, that during these periods no cars enter or leave the two roads
over the artificial boundary, since, as stated in 2.2.1, the flux f(y) is equal
to zero for y ∈ {−1, 0}. Moreover, even if formally one has to interpret these
boundary conditions in the BLN-sense, we will see that under mild assump-
tions they may be considered literally. We will discuss these conditions more
detailed in section 3.2. The continuity conditions between the phases (2.6d),
(2.6e) describe the transition from one phase into another.

3. Properties of entropy solutions

In this section we collect important properties of the solutions to (2.1) and
(2.6).

3.1. General and structural properties of solutions to IBVPs

First we consider the initial value problem (2.1a)-(2.1b) for Ω = R. We make
the following assumptions:

(A1) The flux function satisfies f ∈ C2(R) and there exists mf ′′ > 0 such

that f ′′ ≥ mf ′′ . The source term satisfies g ∈ L∞
(

ΩT ;C0,1
loc (R× Rm)

)
∩

L∞
(
0, T ;C1

loc(R× R× Rm)
)

and for all Mu > 0 there exist constants
C1, C2 > 0 such that for all (t, x, y, u1) ∈ ΩT ×R× [−Mu,Mu]m it holds
that

g(t, x, y, u1)sgn(y) ≤ C1 + C2|y|.
(A2) The set of admissible controls Uad is bounded in U∞ := L∞(R) ×

L∞(ΩT )m by some constantMu and closed in U1 := L1
loc(R)×L1

loc(ΩT )m.
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We recall Proposition 1 from [38], that covers some of the most important
properties of the solution to the IVP.

Proposition 3.1 (Existence and Uniqueness for Cauchy problems). Let (A1)
and (A2) hold. Then for every u = (u0, u1) ∈ U∞ there exists a unique en-
tropy solution y = y(u) ∈ L∞(ΩT ) of (2.1a)-(2.1b) on Ω = R. After a possi-
ble modification on a set of measure zero it even holds y ∈ C([0, T ];L1

loc(R)).
There are constants My, Ly > 0 such that for every u, û ∈ Uad and all
t ∈ [0, T ] the following estimates hold:

‖y(t, ·;u)‖∞ ≤My,

‖y(t, ·;u)− y(t, ·; û)‖1,[a,b] ≤ Ly(‖u0 − û0‖1,It + ‖u1 − û1‖1,[0,t]×It),

where a < b and It := [a− tMf ′ , b+ tMf ′ ], Mf ′ := max|y|≤My
|f ′(y)|.

Set Ûad := {u ∈ Uad : ‖u1‖L∞(0,T ;C1(ΩT )m) ≤ Mu}. Then there is a

constant M > 0 such that for all u ∈ Ûad and all t ∈ (0, T ] Oleinik’s entropy
condition

yx(t, ·;u) ≤
(
(1− e−mf′′Mt)M−1 + e−mf′′Mt(Cu,M )−1)

)−1

holds with Cu,M := max
{
M, esssupx6=z

u0(x)−u0(z)
x−z

}
. In particular y(t, ·) ∈

BVloc(R) for all t ∈ (0, T ] and y ∈ BV ([s, T ]× [−R,R]) for all s,R > 0.

For the case of an initial-boundary value problem we have a similar
result. We restrict ourselves to the case of Ω = (0,∞). The first thing to
mention here is the fact that the BLN-condition (2.4a) involves the boundary
trace y(·, 0+). When Bardos, le Roux and Nédélec stated this formulation
they only considered the case where the solution has bounded total variation,
see Remark 3.3. In order to also allow for L∞-data in [31, 30] Otto proposed
another characterization of the boundary condition that is equivalent to the
one in [4] if the boundary trace exists. But Vasseur showed [39] that under
mild assumptions even for L∞-entropy solutions there always exist boundary
traces. Therefore the formulation in (2.4a) (and (2.4b)) is valid even in the
L∞-setting, see also [14].

We make the following assumptions:

(A1’) The flux function satisfies f ∈ C2(R) and there exists mf ′′ > 0 such
that f ′′ ≥ mf ′′ . The source term is non-negative and satisfies g ∈
C
(

ΩT ;C0,1
loc (R× Rm)

)
∩C1

(
[0, T ];C1

loc (Ω× R× Rm)
)

and for allMu >

0 there exist constants C1, C2 > 0 such that for all (t, x, y, u1) ∈ ΩT ×
R× [−Mu,Mu]m holds:

g(t, x, y, u1)sgn(y) ≤ C1 + C2|y|.

(A2’) The set of admissible controls Uad is bounded in U∞ := L∞(R) ×
L∞(0, T )× L∞([0, T ]× R)m by some constant Mu and closed in U1 :=
L1

loc(R)× L1(0, T )× L1
loc([0, T ]× R)m.
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For technical reasons we consider the source term and the corresponding
control u1 not only for the considered spatial domain. Of course the solution
depends only on its restriction to ΩT .

Under the above assumptions we get the following properties of a solu-
tion to (2.1), c.f. [4, 14, 31].

Proposition 3.2 (Existence and Uniqueness for IBVPs). Let (A1’) and (A2’)
hold. Then for every u = (u0, uB , u1) ∈ U∞ there exists a unique entropy
solution y = y(u) ∈ L∞(ΩT ) of (2.1) on Ω = (0,∞). After a possible mod-
ification on a set of measure zero it even holds that y ∈ C([0, T ];L1

loc(Ω)).
Moreover, there are constants My, Ly > 0 such that for every u, û ∈ Uad and
all t ∈ [0, T ] the following estimates hold:

‖y(t, ·;u)‖∞ ≤My,

‖y(t, ·;u)− y(t, ·; û)‖1,[a,b] ≤ Ly(‖u0 − û0‖1,It
+ ‖uB − ûB‖1,[0,t] + ‖u1 − û1‖1,[0,t]×It),

where a < b and It := [a− tMf ′ , b+ tMf ′ ] ∩ Ω, Mf ′ := max|y|≤My
|f ′(y)|.

Remark 3.3. Under the stronger assumptions u0 ∈ BVloc(Ω) and uB ∈
BV ([0, T ]), (2.1) admits a solution satisfying y ∈ BV ([0, T ] × [0, R]) for all
R > 0 (c.f. [27, 4]).

The basic idea behind the proof of the main result of this work is the
theory of generalized characteristics from [17], which will be considered in the
remaining part of this section. We will assume that in addition to (A1)-(A2),
(A1’)-(A2’) respectively, the following assumption holds.

(A3) g is globally Lipschitz w.r.t. x and y.

Furthermore we will only consider (u0, u1) ∈ Ûad (see Proposition 3.1), u0 ∈
BVloc(Ω) and boundary data uB ∈ PC1([0, T ]; t1, . . . , tnt), that is a piecewise
continuously differentiable function with possible kinks or discontinuities at
0 < t1 < · · · < tnt for some nt ∈ N.

Using the properties collected in Propositions 3.1 and 3.2, we conclude
that y ∈ L∞(ΩT ) ∩ C([0, T ];L1

loc(Ω)) has the following properties: For all
(t, x) ∈ (0, T ]×Ω the one-sided limits y(t, x−) and y(t, x+) exist and satisfy
y(t, x−) ≥ y(t, x+). It will be convenient to work with a pointwise defined
representative of y ∈ C([0, T ];L1

loc(Ω)) where y(t, x) is identified with one of
the limits y(t, x−) or y(t, x+).

We now recall the definition of a generalized characteristic in the sense
of Dafermos from [17].

Definition 3.4 (Generalized characteristics). A Lipschitz curve

[α, β] ⊂ [0, T ]→ ΩT , t 7→ (t, ξ(t))

is called a generalized characteristic on [a, b] if

ξ̇(t) ∈ [f ′(y(t, ξ(t)+)), f ′(y(t, ξ(t)−))], a.e. on [α, β]. (3.1)

The generalized characteristic is called genuine if the lower and upper bound
in (3.1) coincide for almost all t ∈ [α, β].
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In the following we will also call ξ a (generalized) characteristic instead
of t 7→ (t, ξ(t)). It will also be useful to introduce notions of extreme or
maximal/minimal characteristics ξ±, that satisfy

ξ̇±(t) = f ′(y(t, ξ(t)±)).

Since by Proposition 3.1 or 3.2 y is (essentially) bounded on ΩT , an a
priori bound on the speed of all generalized characteristic is known. There-
fore, characteristics do not escape and they either exist for the whole time
period [0, T ] or (in the bounded case) leave the spatial domain at some point
(θ, ξ(θ)) ∈ [0, T ] × ∂Ω. Moreover it can be shown [17] that (3.1) can be re-
stricted to

ξ̇(t) =

{
f ′(y(t, ξ(t))) if f ′(y(t, ξ(t)+)) = f ′(y(t, ξ(t)−))
[f(y(t,ξ(t)))]

[y(t,ξ(t))] if f ′(y(t, ξ(t)+)) 6= f ′(y(t, ξ(t)−))
, a.e. on [α, β],

where for ϕ ∈ BV (R) the expression

[ϕ(x)] := ϕ(x−)− ϕ(x+)

denotes the height of the jump of ϕ across x.
Based on the notion of generalized characteristics in [17] Dafermos ex-

ploits structural properties of BV -solutions that are essential for the analysis
in the present paper.

Proposition 3.5 (Structure of BV-Solutions). Let (A1)-(A3) hold. Consider
an entropy solution y = y(u) of the Cauchy problem (2.1a)-(2.1b) on Ω = R
for controls u = (u0, u1) ∈ Ûad, u0 ∈ BVloc(R).

For (t̄, x̄) ∈ ΩT fixed denote by ξ a backward characteristic on [0, t̄]
through (t̄, x̄). Then ξ has the following properties:

1. if ξ is an extreme backward characteristic, i.e. ξ = ξ±, then ξ is genuine,
i.e. y(t, ξ±(t)−) = y(t, ξ±(t)+) for all t ∈ (0, t̄).

2. if ξ is genuine, i.e. y(t, ξ(t)−) = y(t, ξ(t)+), t ∈ (0, t̄), then it satisfies

ξ(t) = ζ(t), t ∈ [0, t̄], y(t, ξ(t)) = v(t), t ∈ (0, t̄), (3.2a)

u0(ξ(0)−) ≤ v(0) ≤ u0(ξ(0)+), y(t̄, ξ(t̄)−) ≥ v(t̄) ≥ y(t̄, ξ(t̄)+), (3.2b)

where (ζ, v) is a solution of the characteristic equation

ζ̇(t) = f ′(v(t)), (3.3a)

v̇(t) = g(t, ζ(t), v(t), u1(t, ζ(t))). (3.3b)

For extreme characteristics ξ± the initial values are given by

(ζ, v)(t̄) = (x̄, y(t̄, x̄±)). (3.3c)

Although this classical result by Dafermos is widely-known and gives
important information about the inner structure of entropy solutions, the
earliest extension to be found in the literature to a bounded spatial domain
is in a work of Perrollaz in [32] published in 2013. Here the situation for
characteristics ξ that stay inside the spatial domain for the whole considered
time interval is exactly the same as in Proposition 3.5. But there are two
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cases that require special consideration. On the one hand there are backward
characteristics through some (t̄, x̄) ∈ ΩT that leave the spatial domain at
some time, say θ ∈ (0, t̄), on the other hand one has to consider characteristics
that enter the spatial domain at some time θ.

It turns out that for Ω = (0,∞) the non-negativity condition on g is
crucial for the second and third part of Proposition 3.6, since it avoids some
degeneracy of the characteristics near the boundary. For a spatial domain
(−∞, 0) the condition on the source term becomes a non-positivity condition
and consequently this leads to the requirement that g has to vanish if one
considers general intervals (a, b) of finite length. But as mentioned, this prop-
erty is only important near the boundary and can therefore be weakened to
a local condition.

The following proposition collects the results of section 3 in [32].

Proposition 3.6. Let (A1’), (A2’) and (A3) hold. Consider an entropy solu-
tion y = y(u) of the mixed initial-boundary value problem (2.1) on Ω = (0,∞)

for controls u = (u0, uB , u1) ∈ Uad with (u0, u1) ∈ Ûad, u0 ∈ BVloc(R) and
uB ∈ PC1([0, T ]; t1, . . . , tnt). Then the following holds:

1. Consider θ ∈ (0, T ) with f ′(y(θ, 0+)) < 0, then there exists a genuine

backward characteristic ξ through (θ, 0) with ξ̇(θ) = f ′(y(θ, 0+)).
2. Let ξ be a genuine characteristic through (t̄, x̄) ∈ ΩT satisfying ξ(t) ∈ Ω

for t ∈ (θ, t̄] ⊂ [0, T ] and limt↘θ ξ(t) = 0. Denote by (ζ, v) the solution of
the characteristic equation (3.3a)-(3.3b) associated to ξ by Proposition
3.5 on every [t̃, t̄] ⊂ (θ, t̄]. Then with v(θ) := limt↘θ v(t) it holds

uB(θ+) ≤ v(θ) ≤ uB(θ−). (3.4)

3. Let ξ be a forward characteristic in [0, t̃] × Ω for every t̃ ∈ (0, θ) and
(ζ, v) be the associated solution of the characteristic equation. If now
limt↗θ ξ(t) = 0 then

f ′(v̄) ≤ 0 and f(v̄) ≥ f(uB(θ−)), (3.5)

where v̄ := limt↗θ v(t).

This connection between the genuine characteristics and the character-
istic equation is very useful, since by the following lemma, that is a conse-
quence of a result on ordinary differential equations (c.f. Proposition 3.4.5
and Lemma 3.4.6 in [36] or chapter 5.6 in [33]) this yields some important
information on the local differentiability properties of a solution y of the
I(B)VP.

Lemma 3.7. Let (A1’) and (A3) hold and denote for (θ, z, w, u1) ∈ [0, T ] ×
R2 × C1([0, T ]× Rm) by (ζ, v)(·, θ, z, w, u1) the solution of (3.3a)-(3.3b) for
inital data

(ζ, v)(θ) = (z, w).
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Let Mw,Mu > 0 be given and set

Bi :=[0, T ]× R2 × L2(0, T ;Ci(R)m), i = 0, 1,

B̄ :=
{

(θ, z, w, u1) ∈ B1 : |w| < Mw, ‖u1‖C1([0,T ]×Rm) < Mu

}
.

Then the mapping

(θ, z, w, u1) ∈ (B̄, ‖·‖Bi) 7−→ (ζ, v)(·, θ, z, w, u1) ∈ C([0, T ])2

is Lipschitz continuous for i = 0 and continuously Fréchet-differentiable for
i = 1 and on B̄ the right hand side is uniformly Lipschitz w.r.t. t.

Lemma 3.7 is a direct generalization of the first assertion of Lemma
3.4.6 in [36] to the case where the dependence on the time θ where the initial
datum is specified, is considered, too. The remaining statements of Lemma
3.4.6 can also be carried over to this generalized case.

3.2. General and structural properties of solutions to traffic light problems

In this section we analyze the structure of solutions to traffic light problems.
We consider uI ∈ BVloc(R) and u1 bounded in C1([0, T ] × R)m. Since a
solution of a TLP is a concatenation of solutions to IVPs and IBVPs on a
finite number of time slabs, the existence, uniqueness and stability properties
can easily be transferred to such solutions.

We add the following requirements to our setting.

(A4) g is non-positive on (−∞, 0), non-negative on (0,∞) and vanishes on
(−ε, ε) for some ε > 0. In addition g is chosen such that −1 ≤ y ≤ 0 is
guaranteed. Furthermore, let Uad ⊂ {(u0, u1) ∈ U∞ : −1 ≤ u0 ≤ 0}
and let Σad ⊂ Σ be a closed set in [0, T ], with Σ defined in (2.5).

Remark 3.8. The condition on g in (A4) holds clearly for the choice g ≡ 0.

Corollary 3.9 (Existence and Uniqueness for traffic light problems). Let
(A1’), (A2’) and (A4) hold. Then for every u = (u0, u1) ∈ U∞ and σ ∈ Σad

there exists a unique entropy solution y = y(u, σ) ∈ L∞(ΩT ) of (2.1) on
Ω = (0,∞). After a possible modification on a set of measure zero it even
holds y ∈ C([0, T ];L1

loc(Ω)).
Moreover for every t ∈ [0, T ] and a < b we have the following stability

estimates:

1. For fixed u ∈ Uad there is LΣ > 0 such that for all σ̃, σ̂ ∈ Σad holds

‖y(t, ·;u, σ̃)− y(t, ·;u, σ̂)‖1,(a,b) ≤ LΣ ‖σ̃ − σ̂‖ .

2. For fixed σ ∈ Σad there is LU > 0 such that for all ũ, û ∈ Uad holds

‖y(t, ·; ũ, σ)− y(t, ·; û, σ)‖1,(a,b)

≤ LU
(
‖ũ0 − û0‖1,It + ‖ũ1 − û1‖1,[0,t]×It

)
,

where It := [a− tMf ′ , b+ tMf ′ ] ∩ Ω, Mf ′ := max|y|≤My
|f ′(y)|.
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One can easily verify that the structural features for solutions to IBVPs
provided by Propositions 3.5 and 3.6 also hold for genuine backward charac-
teristics ξ that correspond to the solution y = (y1, y2) of a TLP as long as
they do not touch the switching points (σ, 0).

We now discuss what happens to the solution y = (y1, y2) during a red
phase and at the beginning of the green phase. The following considerations
are illustrated in Figure 1.

First we consider the initial-boundary value problem for y1 during a red
phase [σir, σ

i
g]. Here especially the situation on the boundary is of interest. We

recall, that the boundary data uB,0 are chosen to be equal to −1 and that by
assumption (A4) −1 ≤ y = (y1, y2) ≤ 0 holds. Therefore the BLN-boundary
condition (2.4b) becomes

min
k∈[−1,y(·,0−)]

sgn(y(·, 0−) + 1)(f(y(·, 0−))− f(k)) = 0.

Since k may be chosen equal to y(·, 0−), the condition is equivalent to

sgn(y(t, 0−) + 1)(f(y(t, 0−))− f(k)) ≥ 0, ∀k ∈ [−1, y(t, 0−)].

Here the first factor is strictly positive whenever y(·, 0−) 6= −1 and for
k = −1, the second factor is negative if f(y(·, 0−)) 6= 0. Hence we can de-
duce that there are only two possibilities for the boundary trace, namely
y(t, 0−) ∈ {0,−1} for almost all t ∈ [σir, σ

i
g]. If y(θ, 0−) = 0 for some

θ ∈ (σir, σ
i
g), then the existence of a backward characteristic ξ satisfying

ξ̇(θ) = f ′(0) < 0 can be deduced from Proposition 3.6. Since by the sign
condition on the source term, all genuine characteristics on Ω1

r,i are concave
and since two genuine characteristics may not intersect each other, this im-
plies that y(t, 0−) = 0 must hold for all t ∈ (σir, θ]. Conversely speaking,

this means, that if y(θ̃, 0−) = −1 for some θ̃ ∈ (σir, σ
i
g), then y(t, 0−) = −1

holds for all t ∈ [θ̃, σig]. Consequently, if the initial data of the IBVP on Ω1
σig

are bounded away from 0 in a small neighborhood of the right boundary at
x = 0, y(·, 0−) = −1 holds during the whole time slab. We will assume this
property for the sequel. In this case a generalized characteristic η emanates
from (σir, 0) having strictly negative speed at least for a small time period
(σir, τ̃), see Figure 1. (More precisely, η is either a shock or a characteristic
traveling with speed f ′(−1).) After that period, it keeps traveling with non-
positive speed at least up to t = σig. The solution y1 is constantly equal to

−1 on the nonempty set {(t, x) ∈ [σir, σ
i
g] × [−ε, 0) : η(t) < x} with ε from

assumption (A4). The situation for y2 is completely analogous. If the initial
data of the IBVP on Ω2

r,i are bounded away from −1 in a small neighborhood
of the boundary at x = 0, y(·, 0+) = 0 holds during the whole time slab and
we conclude that y2 = 0 on a set {(t, x) ∈ [σir, σ

i
g]× (0, ε] : η̄(t) > x}. There-

fore, for every t ∈ (σir, σ
i
r) the solution y(t, ·) is known at least in a small

neighborhood of x = 0, compare the area filled with characteristics in Figure
1. We now examine the solution y on the subsequent green phase [σig, σ

i+1
r ].

Here the situation at x = 0 is again of special interest. By the previous con-
siderations we know that there is a δ > 0 such that with u0 being the initial



12 Sebastian Pfaff, Stefan Ulbrich and Günter Leugering

R
ed

G
re

en
G

re
en

x

t

0−δ δ−δ̃ δ̃

−δ+Mf′τ δ−Mf′τ

σir

σig

σig+τ

θ

η

η̄

Figure 1. Characteristics in a neighborhood of a red phase.

data of the considered Cauchy problem on Ωg,i+1, u0(x) = 1
2 (sgn(x)− 1) for

all x ∈ (−δ, δ). Together with the finite propagation speed this implies that
locally y is the solution of a Riemann problem producing a rarefaction wave.

We subsume the previous considerations in the following lemma. The
assertions and occuring quantities are also illustrated in Figure 1.

Lemma 3.10. Let (A1’), (A2’) and (A4) hold and let uI ∈ BVloc(R), u1 ∈
C1([0, T ] × R)m. Consider for i = 1, . . . , nσ the i-th red phase of the traffic
light problem (2.6). Assume that the final state of the i-th green phase y(σir, ·)
is bounded away from 0 on (−ε̃, 0] and bounded away from -1 on [0, ε̃) for
some ε̃ > 0. Then the solution of (2.6) satisfies the following equations.

1. For every θ ∈ (σir, σ
i
g) there exists δ̃ > 0 such that there holds

y1(t, x) = −1, (t, x) ∈ (θ, σig)× (−δ̃, 0),

y2(t, x) = 0, (t, x) ∈ (θ, σig)× (0, δ̃).

2. There exists δ > 0 such that for all 0 < τ < δ
2Mf′

there holds

y(σig + τ, x) =


f ′−1

(
x
τ

)
, if x ∈ [f ′(−1)τ, f ′(0)τ ],

0, if x ∈ (f ′(0)τ, δ −Mf ′τ),

−1, if x ∈ (−δ +Mf ′τ, f ′(−1)τ),

with Mf ′ from Corollary 3.9.
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4. Shift-Differentiability

In this section we present the main results of this paper, namely the shift-
differentiable dependence of the control-to-state mapping for the considered
problems (2.1) and (2.6).

4.1. Motivation and preliminary work

One of the main difficulties that arise when one considers optimal control
problems concerning entropy solutions of hyperbolic conservation laws is,
that the control-to-state mapping u 7→ y(u) is generally not differentiable in a
sense, that is strong enough in order to simply deduce Fréchet-differentiability
of the reduced objective functional. This issue of non-differentiability is caused
by the presence of shocks in the entropic solution, even for smooth (e.g. C∞)
data. However we illustrate the situation by means of an example where the
data are discontinuous, namely a Riemann problem.

Example. Consider the parametrized Cauchy problem

yεt +
(

1
2 (yε)

2
)
x

= 0 on [0, T ]× R

yε(0, ·) = ε− sgn on R.

Then the entropy solution is almost everywhere given by

yε(t, x) =

{
ε+ 1, if x ≤ εt,
ε− 1, if x > εt.

Furthermore, consider the mapping S : R → L1([a, b]), ε 7→ yε(t̄, ·). Clearly
S is not differentiable in 0, since the obvious candidate for the derivative,
1 + 2t̄δ0, where δ0 denotes the Dirac measure at x = 0, does not belong to
L(R, L1([a, b])). In fact, differentiabilty does only hold in the weak topology
of the measure space M([a, b]).

In order to still achieve a differentiability result for the reduced objec-
tive, a non-standard variational calculus was introduced in [9] and [36, 37].
The so called shift-variations mimic the observed behavior of the solution
in the neighborhood of discontinuities. Shift-variations consist of an addi-
tive part (in L1) and a second part that allows for horizontal shifts of dis-
continuities. We recall the definitions of the notions of shift-variations and
shift-differentiability.

Definition 4.1 (Shift-variations, shift-differenbtiability). 1. Let a < b and
v ∈ BV ([a, b]). For a < x1 < x2 < · · · < xN < b we associate with

(δv, δx) the shift-variation S
(xi)
v (δv, δx) ∈ L1([a, b]) of v by

S(xi)
v (δv, δx)(x) := δv(x) ·

n∑
i=1

[v(xi)]sgn(δxi)1I(xi,xi+δxi)(x),

where [v(xi)] := v(xi−)− v(xi+) and I(α, β) := [min(α, β),max(α, β)].
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2. Let U be a real Banach space and D ⊂ U open. Consider a locally
bounded mapping D → L∞(R), u 7→ v(u). For ū ∈ U with v(ū) ∈
BV ([a, b]), we call v shift-differentiable at ū if there exist a < x1 < x2 <
· · · < xN < b and Dsv(ū) ∈ L(U,Lr([a, b]) × RN ) for some r ∈ (1,∞],
such that for δu ∈ U , (δv, δx) := Dsv(ū) · δu∥∥∥v(u+ δu)− v(u)− S(xi)

v (δv, δx)
∥∥∥

1,[a,b]
= o(‖δu‖U ).

The utility of this variational concept lies in the feature that it im-
plies the Fréchet-differentiability of tracking type functionals as in (1.1) (see
Lemma 3.2.3 in [36]) as long as yd and y(t̄, ·) do not share discontinuities on
[a, b]. The derivative is given by

duJ(y(u)) · δu = (ψy(y(t̄, ·;u), yd), δy)2,[a,b] +

N∑
i=1

ψ̄y(xi)[y(t̄, ·;u)]δxi,

with

ψ̄y(x) :=

∫ 1

0

ψy (y(t̄, x+;u)) + τ [y(t̄, x;u)], yd(x+) + τ [yd(x)]) dτ.

4.2. Shift-Differentiability of solutions to IBVPs and traffic light problems

We now state the main results. First we consider the differentiability of the
solution operator for the initial-boundary value problem. We restrict our-
selves to the case Ω = (0,∞), where the result for general intervals is similar.
A reinspection of the formulation of the boundary condition (2.4a) motivates
to only consider boundary data with uB ≥ f ′−1(0), since both the choices uB
and max(uB , f

′−1(0)) as boundary data will yield the same solution. There-
fore it is useful to define the space

UαB := {ϕ ∈ PC1([0, T ]; t1 . . . , tK) : f ′(ϕ) ≥ α} (4.1)

for given 0 < t1 < t2 < · · · < tK . Consider u = (u0, uB , u1) where uB ∈ UαB
for some small α > 0, u0 ∈ PC1(Ω;x1, . . . , xN ) for some 0 < x1 < x2 <
· · · < xN and u1 ∈ C([0, T ];C1(R)m). We want to investigate the shift-
differentiable dependence of δu 7→ y(t̄, ·;u + δu) on δu. In addition to usual
variations in the controls, we additionally consider some shift-variations of
the initial and the boundary data. This means that we consider explicit shifts
of discontinuities that create shocks, but no rarefactions. For this purpose we
define

S(xi) := {s ∈ RN : u0(xi−) < u0(xi+) ⇒ si = 0, i = 1, . . . , N},
S(tj) := {s ∈ RK : uB(tj−) > uB(tj+) ⇒ sj = 0, j = 1, . . . ,K}

and consider variations in

W := PC1(Ω;x1, . . . , xN )× S(xi)

× PC1([0, T ]; t1, . . . , tK)× S(tj) × C([0, T ];C1(R)m). (4.2)

Under a nondegeneracy condition on the shocks (see Definition 3.6.1 in
[36]) we get the following result.
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Theorem 4.2 (Shift-Differentiability for IBVPs). Let (A1’) and (A3) hold
and let in addition g be affine linear w.r.t. y. Let Ω = (0,∞) and 0 < x1 <
x2 < · · · < xN , 0 < t1 < t2 < · · · < tK u0 ∈ PC1(Ω;x1, . . . , xN ), uB ∈ UαB
for some α > 0 and u1 ∈ C([0, T ];C1(R)m). For u = (u0, uB , u1) denote by
y = y(u) ∈ L∞(ΩT ) ∩ C([0, T ];L1

loc(Ω)) the entropy solution of the initial-
boundary value problem (2.1) on ΩT . Let 0 < a < b and t̄ ∈ (0, T ) such that
on [a, b] y(t̄, ·;u) has no shock generation points and only a finite number of
shocks at a < x̄1 < · · · < x̄N̄ < b, that all are neither degenerated nor shock
interaction points. Further assume that for almost all t ∈ [0, T ] the boundary
trace y(·, 0+;u) ∈ L∞(0, T ) satisfies uB(t) 6= y(t, 0+;u) ⇒ f(uB(t)) 6=
f(y(t, 0+;u)).

For W from (4.2) we consider the mapping

(δu0, δx, δuB , δt, δu1) ∈W 7−→

y
(
t̄, ·;u0 + S(xi)

u0
(δu0, δx), uB + S(tj)

uB (δuB , δt), u1 + δu1

)
∈ L1(a, b). (4.3)

If (xi), (tj) are real discontinuities of u0, uB, i.e. u0(xi−) 6= u0(xi+) and
uB(tj−) 6= uB(tj+), respectively, then the mapping (4.3) is continuously
shift-differentiable on a sufficiently small neighborhood BWρ (0) := {δu ∈
W : ‖δu‖W ≤ ρ}. The shift-derivative satisfies Ts(0) = Dsy(t̄, ·;u) ∈
L(W,PC([a, b]; x̄1, . . . , x̄N̄ )× RN̄ ).

Remark 4.3. If u0 or uB are continuous at some xi or tj , respectively, similarly
to the second assertion of Theorem 3.3.2 in [36], the shift-differentiability of
(4.3) in 0 is preserved. The shift-derivative satisfies Ts(0) ∈ L(W,PC([a, b]; x̄1,

. . . , x̄N̄ , x̃1, . . . , x̃Ñ ) × RN̄ ), where the set of discontinuities of y(u) is aug-
mented by continuity points x̃k that are starting points of genuine backward
characteristics that end in a (pseudo-) discontinuity xi or tj .

The proof can be obtained by a very careful extension of the proof of
Theorem 3.3.2 in [36]. This requires a proper analysis of the solution y in small
neighborhoods of different types of generalized backward characteristics. A
detailed proof will be presented in a forthcoming paper.

The following corollary is a simple consequence of the above theorem
and Lemma 3.2.3 in [36].

Corollary 4.4. Let the assumptions of Theorem 4.2 hold and consider J de-
fined as in (1.1). If yd is continuous in a small neighborhood of {x̄1, . . . , x̄N̄},
then the reduced objective functional δu ∈W 7→ J(y(u+ δu)) is continuously
Fréchet-differentiable on BWρ (0) for ρ > 0 small enough.

An adjoint-based formula for the gradient of the considered mapping
will be presented in Theorem 4.8.

For the traffic light problem we have a very similar result.

Theorem 4.5 (Shift-Differentiability for traffic light problems). Let (A1’)
and (A4) hold and let in addition g be affine linear w.r.t. y. Let x1 < x2 <
· · · < xN , σ = (σ0

g , σ
1
r , σ

1
g , . . . , σ

nσ
g , σnσ+1

r ) ∈ Σad, PC1(R;x1, . . . , xN ) and
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u1 ∈ C([0, T ];C1(R)m). For σ ∈ Σad denote by y = y(σ) ∈ L∞(ΩT ) ∩
C([0, T ];L1

loc(Ω)) the solution of the traffic light problem (2.6). Let a < b
and t̄ ∈ (σnσg , σnσ+1

r ) such that on [a, b] y(t̄, ·;σ) has no shock generation
points and only a finite number of shocks at a < x̄1 < · · · < x̄N̄ < b,
that all are neither degenerated nor shock interaction points. Furthermore
assume that for almost all t ∈ [σig, σ

i
r], i = 1, . . . , nσ the boundary traces

(y(·, 0−;σ), y(·, 0+;σ)) ∈ L∞(0, T )2 are equal to (−1, 0).
Finally let Σ0 := {ν ∈ R2(nσ+1) : ν1 = ν2(nσ+1) = 0} then the mapping

δσ ∈ Σ0 7−→ y (t̄, ·;σ + δσ) ∈ L1(a, b)

is continuously shift-differentiable on a sufficiently small neighborhood
BΣ
ρ (0) := {δσ ∈ Σ0 : ‖δσ‖ ≤ ρ}. The shift-derivative satisfies Ts(0) =

Dsy(t̄, ·;σ) ∈ L(Σ0, PC([a, b]; x̄1, ·, x̄N̄ )× RN̄ ).

It is important to emphasize that in comparison to the result for the
initial (-boundary) value problem, also green switching times, i.e. rarefaction
centers, may explicitly be shifted. This is because the solution in a neighbor-
hood of such points is thoroughly known for TLPs, see Lemma 3.10, whereas
the structure for general rarefaction waves may be more delicate.

As for the IBVP, one can deduce from Lemma 3.2.3 in [36] the total
differentiability for reduced objective functionals.

Corollary 4.6. Let the assumptions of Theorem 4.5 hold and consider J de-
fined as in (1.1). If yd is continuous in a small neighborhood of {x̄1, . . . , x̄N̄},
then the reduced functional δσ ∈ Σ0 7→ J(y(σ + δσ)) is continuously differ-
entiable on BΣ

ρ (0) for ρ > 0 small enough.

One also may consider the optimal control of the traffic light problem
for fixed switching times where the source term and the initial data is con-
trolled. Here one can obtain similar results as for the initial (-boundary) value
problem without any traffic lights.

4.3. Adjoint Equation

The sensitivity of the shock position, that is needed in order to obtain the
shift-differentiabilty result of Theorem 4.2, is based on an adjoint-argument.
As already discussed in [36] for the Cauchy problem, the classical adjoint
calculus is not applicable for problems concerning discontinuous solutions
of hyperbolic equations. Nevertheless one can define an adjoint state as a
solution of the following equation

pt + f ′(y)px = −gy(·, y, u1)p, on Ωt̄, (4.4a)

p(t̄, ·) = pt̄, on Ω. (4.4b)

The adjoint equation (4.4) is a linear transport equation with discontinuous
coefficients, since y may contain shocks. In [6] Bouchut and James showed
that for Ω = R, g ≡ 0 and Lipschitz continuous end data pt̄ equation (4.4)
does not admit a unique solution within the space of Lipschitz continuous
functions. Nevertheless they give a definition and a characterization of a
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reversible solution for (4.4), which satisfies a crucial duality relation. In [36,
38] this notion was extended to more general source terms g and discontinuous
end data. In this case the reversible solution p can be characterized as the
solution along generalized characteristics of the state y. For the IBVP on
Ω = (0,∞) we have to deal with the fact that this definition might lead to
an underdetermined problem, since not all characteristics on Ωt̄ intersect the
line {t̄} ×Ω, where the initial (or terminal) condition acts. One can show by
the theory of generalized characteristics that the set D of points that lie on
a genuine characteristic that does not reach the line {t̄} × Ω is a connected
set that lies in the lower left corner of the space-time cylinder Ωt̄.

Definition 4.7. Let pt̄ be a bounded function that is the pointwise every-
where limit of a sequence (wn) in C0,1(0,∞), with (wn) bounded in C(0,∞)∩
W 1,1

loc (0,∞). The adjoint state p associated to (4.4) for Ω = (0,∞) is charac-
terized by the following requirements:

1. For every generalized characteristic ξ of y through (t̄, x̄) ∈ ΩT

t 7→ pξ(t) = p(t, ξ(t))

is the solution of the ordinary differential equation

ṗξ(t) = −gy(t, ξ(t), y(t, ξ(t)), u1(t, ξ(t)))pξ(t), t ∈ (0, t̄] : ξ(t) > 0,

pξ(t̄) = pt̄(x̄).

2. For every (t, x) ∈ D there holds p(t, x) = 0, where

D := {(t, x) ∈ Ωt̄ : t ∈ [0, τ ], x ≤ ξ̃(t)}.

Here ξ̃ denotes the maximal backward characteristic through (τ, 0),
where τ := esssup{t ∈ [0, t̄] : f ′(y(t, 0+)) < 0}.

Using the above definition of an adjoint state, we are now able to for-
mulate a representation of the gradient of the reduced objective function.

Theorem 4.8. Let the assumptions of Corollary 4.4 hold and let the terminal
data in (4.4) be given by

pt̄(t, x) := γ(x)

∫ 1

0

ψy(y(t̄, x+) + τ [y(t̄, x)], x) dτ.

Then there exists an adjoint state p according to Definition 4.7, satisfying

p ∈ B((0, t̄)× (0,∞)) ∩BVloc([0, t̄]× [0,∞)),

where B((0, t̄) × (0,∞)) denotes the space of measurable bounded functions
(defined pointwise everywhere).
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The derivative of the reduced functional δu ∈W 7→ Ĵ(δu) = J(y(u+δu))
for ρ > 0 small enough is given by

Ĵ ′(0) · δu = (p, gu1
(·, y, u1)δu1)2,(0,t̄)×R+

+ (p(0, ·), δu0)2,R+ + (p(·, 0), f ′(uB)δuB)2,(0,t̄)

+

N∑
i=1

p(0, xi)[u0(xi)]δxi +

K∑
j=1

p(tj , 0)[f(uB(tj))]δtj .

5. Conclusion and Outlook

We have presented a generalized differentiability result for an initial-boundary
value problem for a nonlinear hyperbolic conservation law on an interval
by using the theory of generalized characteristics. This property implies the
Fréchet-differentiability of the reduced objective functional, for which we also
presented an adjoint-based gradient representation. The result is an impor-
tant step to make such problems accessible to gradient based optimization
algorithms. Furthermore we have discussed the dependence of the state on
the switching times of a traffic light on a single road. Also in this case we
were able to show shift-differentiability by similar arguments. The considered
problem for the traffic light can also be seen as a network problem involving
one node and two edges and can be in a straight-forward manor extended to
the case of multiple incoming and outgoing roads that are connected by a
similar modular node condition that time dependently connects some pairs
of incoming and outgoing roads and closes others. If one chooses the sequence
of modes in such a way, that no road is open for two or more consecutive time
phases, the same arguments as for the traffic light problem can be used. Ques-
tions for future research will be whether one may drop the latest assumption.
Moreover we will have to investigate the case when the boundary data of the
red light condition (2.6f), (2.6g) is not assumed by the boundary trace, which
means that the traffic light turns red, when either the incoming road is empty
near the traffic light or the outgoing road has already reached its maximum
capacity. This becomes more important, if one considers multiple traffic lights
in a row. Another interesting modification of the traffic problem is the case
where the flux functions on the two sides of the junction are not necessarily
the same. Moreover, it will be of interest how the shift-differentiability con-
cept applies to networks of three edges, that are connected by more common
node conditions, as those from [10] and [13].

Finally, our results form the basis for the convergence analysis of numer-
ical approximations of the considered optimal control problems. So far, there
exist several results in the context of initial value problems with initial con-
trol and sometimes also with control in the source term. The convergence of
optimal solutions of dicretized optimal control problems was considered e.g.
in [11, 35]. The convergence of sensitivities, adjoints and reduced gradients
was analyzed in [19, 20, 36, 37, 38], see also [11] for an alternating descent
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method. We are currently investigating the extension of these results to the
case of the initial-boundary value problem with boundary control and to the
traffic light problem. Here, we follow the approach in [12] for the discrete ap-
proximation of the boundary condition, where the convergence to the unique
entropy solution of the initial-boundary value problem according to [4] is
shown. A particular issue will be the appropriate discrete approximation of
shift variations for boundary controls. We plan to consider the variation of the
times step sizes between switching times as well as disretization techniques
with fixed time steps.
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[26] S. N. Kružkov. Quasilinear parabolic equations and systems with two indepen-
dent variables. Trudy Sem. Petrovsk., (5):217–272, 1979.

[27] A. Y. le Roux. Étude du problème mixte pour une équation quasi-linéaire du
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