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Abstract. We consider a nonlinear optimization problem governed by partial differential equa-
tions (PDE) with uncertain parameters. It is addressed by a robust worst case formulation. The
resulting optimization problem is of bi-level structure and is difficult to treat numerically. We propose
an approximate robust formulation that employs linear and quadratic approximations. To speed up
the computation, reduced order models based on proper orthogonal decomposition (POD) in com-
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the optimal placement of a permanent magnet in the rotor of a synchronous machine with moving
rotor. Numerical results are presented to validate the presented approach.
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1. Introduction. Optimization with partial differential equations (PDE) has
become an important research field in applied mathematics. It is driven by the engi-
neering disciplines and the desire to optimize physical phenomena without performing
real physical experiments. In most cases, these real world applications are subject
to uncertainties which enter the optimization through parameters, coefficients, or
boundary conditions of the PDE model. These quantities are usually measurements
or estimations based on expert opinions and hence carry some amount of error. The
effect of these uncertain parameters on optimization has long been a focus of the
mathematical programming community. In particular it was observed that even very
small perturbations in the parameters can lead to large changes in the optimal solu-
tion [6] and exhibit remarkable sensitivities. Thus, slightly modified optimal solutions
can become infeasible, seriously suboptimal, or both. Hence, a nominal solution of
an optimization problem with uncertain parameters might be absolutely irrelevant
from a practical point of view whenever uncertainty comes into play. Consequently,
it is a desirable goal to generate solutions that are insensitive against the influence of
uncertainty.

There are two main approaches to incorporate uncertainty in the framework of
mathematical optimization. Stochastic optimization and robust optimization. The
fundamental assumption in stochastic optimization is that the uncertainty can be de-
scribed probabilistically. Then the uncertainty can be incorporated into the problem
by means of probabilistic measures like the standard deviation or some risk mea-
sure [12, 56]. There are some works investigating these methods theoretically and
numerically in the context of PDE constrained optimization [37, 46, 61]. While [61]
uses stochastic collocation, the recent paper [37] considers risk-averse optimization
based on the conditional value-at-risk in combination with Monte Carlo sampling.
Our focus is on the robust optimization. In this case no probabilistic model of the
uncertainty is required. Instead, a deterministic approach is applied by assuming
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that the uncertainty is restricted to a bounded uncertainty set. Using the notion of
a robust counterpart the associated original uncertain optimization problem is refor-
mulated. The solution obtained in this way stays feasible for all realizations from the
uncertainty set and at the same time yields the best worst case value of the objec-
tive function. The resulting problem is of bi-level structure and challenging to solve.
There has been a lot of work on this topic and for an overview we refer to [8, 9, 10, 34].
The research focus in robust optimization however remains mainly within the frame-
work of convex optimization, where a lot of progress has been made. There only exist
isolated works for the case of more general nonlinear programs. The common idea
is to replace the robust counterpart by a tractable approximation using linearization
[20, 65]. First steps in the direction of higher order approximation with the focus on
PDE constrained optimization have been done in [57].

In this work we will develop a new approximation for the robust counterpart by
utilizing a quadratic model. To account for approximation deficiencies an adaptive
strategy is proposed to enhance the approximation quality. To minimize computa-
tional costs we combine quadratic and linear approximations whenever suited. This
gives a numerically feasible problem. The proposed strategy is novel and numerical
results are very promising. It provides a huge improvement over strategies utilizing
only linear approximations [20, 65]. The advantage of the proposed strategy is that
it is not limited to convex problems, which is a limitation of many other approaches
[8, 9, 10, 34]. It is a fact that not all optimization problems of practical interest
can be modeled appropriately as convex programs. This new approximated robust
optimization problem has the structure of an MPCC. We will utilize results from
[27, 35, 41] and develop an algorithm based on the sequential quadratic programming
(SQP) method.

When applying the robust optimization framework to optimization problems with
PDE constraints we face huge computational costs. Large linear systems arising from
the discretization of the PDE have to be solved numerically. We further need to com-
pute derivatives with respect to the uncertain parameter and optimization variables
which significantly increase the computational cost since further solutions to PDEs are
required. Finally, since we are looking at a nonlinear optimization problem which is
solved iteratively, these computations have to be repeated for different configurations.
Hence, it is desirable to employ methods that can speed up this process. In recent
years, the development of reduced order models (ROM) has been a successful field of
research. In the context of optimization, remarkable performance improvements were
achieved [2, 3, 23, 24, 29, 39, 44]. We will develop an adaptive method that combines
the idea of a greedy algorithm from the reduced basis method [19, 48] and the method
of proper orthogonal decomposition (POD) [16, 29].

The proposed methods are applied to a shape optimization problem, where the
geometry of a permanent magnet synchronous machine is optimized. The goal is to
optimize the volume and position of the permanent magnet while maintaining a given
performance level.

The paper is organized in the following way. In Section 2 we introduce the model
problem under investigation. We then introduce in Section 3 the robust optimization
framework together with the approximation strategies. In the model problem, we will
consider uncertainty in material parameters as well as in the optimization variables.
Also the numerical methods for solving the arising problems are outlined. Section 4
is devoted to model order reduction. Numerical results for the problem introduced in
Section 2 are presented in Section 5. Finally a conclusion is drawn in Section 6.
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Fig. 1. Geometry of the design problem presented by a 2D planar cross section. Full engine
to the left and detailed view on one pole on the right. The parts of the engine are the stator (outer
ring) and the rotor holding the permanent magnets (inner part). In the detailed view the permanent
magnet is indicated in gray and the magnetic field angle w in red.

2. The model problem. We consider a three-phase 6-pole permanent magnet
synchronous machine (PMSM). The geometry is shown in Figure 1. The windings in
the stator are double layered with two slots per pole per phase resulting in 36 slots
for the whole machine. Each pole contains one buried permanent magnet (gray).
The machine is operated at 50Hz. Using the relation between speed and frequency,
S = 120F/N , where F is the frequency in Hz (cycles per second), N is the number of
poles and S the rotational speed in revolutions per minute (RPM), we get an operation
of 1000 RPM. The goal is to optimize the geometry of the PMSM.

PMSMs are described with sufficient accuracy by the magnetostatic approxima-
tion of Maxwell’s equations, i.e., displacement and eddy currents are disregarded with
respect to the source current. One retrieves the elliptic partial differential equation
(PDE) in terms of the magnetic vector potential A

(1) ∇× (ν∇×A(ϑ))) = Jsrc −∇×Hpm in Ω

with homogeneous Dirichlet boundary condition A = 0 on the outer surface, where
ν(x) is the magnetic permeability, Jsrc is the source current density and Hpm is
the field of the permanent magnet. The rotor and the stator of a PMSM are made
out of iron. In this work we consider a linear magnetic permeability, which for the
considered machine is adequate. Further we account for the rotation which is an
important feature when studying rotating electrical machines, indicated by ϑ. The
machine is divided into two parts, the static part (stator) and the moving part (rotor).
The position of the moving part is given by the angle ϑ with respect to the static
part.

In our setting the 2D planar symmetry is taken into account with the symmetry
plane xy. By u(ϑ) we denote the only nonzero component of the vector potential
A(ϑ) = (0, 0, u(ϑ))> which corresponds to the z direction. Utilizing this formulation,
the magnetic induction is expressed by

B(ϑ) = ∇×A(ϑ) =

(
∂u(ϑ)

∂y
,−∂u(ϑ)

∂x
, 0

)>
.

Hence the model under consideration in this work is given by the linear elliptic equa-
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tion

(2a) −∇ · (ν∇u(ϑ)) = f(x) in Ω

together with Dirichlet boundaries on the outer surface

(2b) [u(ϑ)]
∣∣∣
ΓD

= 0.

The gray area in the rotor is the magnet and will be subject to our optimization
problem (Figure 1). The size of the permanent magnet can be described by the width
and height. Additionally we optimize the location of the permanent magnet in the
rotor. We introduce the parameter µ ∈ R3, where µ1 corresponds to the width,
µ2 to the height and µ3 to describe the central perpendicular distance between the
permanent magnet and the surface of the rotor.

Let Ω(µ) be the parameter dependent domain. We formulate (2) in the weak
form as

a(u(ϑ), v;µ) = f(v;µ), ∀v ∈ H1
0 (Ω(µ))

with

a(u(ϑ), v;µ) =

∫
Ω(µ)

ν∇u(ϑ) · ∇v dx and f(v;µ) =

∫
Ω(µ)

Fv dx.

The goal is to perform the computation on a reference domain Ω̂. For this we de-
compose the region around the permanent magnet into L non-overlapping triangular
domains Ω̂k. In each domain we consider an affine mapping of the form

Tk(x̂, µ) : Ω̂k → Ω(µ)
x̂ 7→ Ck(µ)x̂ + dk(µ)

for k = 1, . . . , L, where Ck(µ) ∈ R2×2 and dk(µ) ∈ R2. Integrating by substitution
we obtain

a(u, v;µ) =

∫
Ω(µ)

ν∇u(ϑ) · ∇vdx

=

L∑
k=1

2∑
i,j=1

[
Ck(µ)−1νkCk(µ)−>

]
ij
|detCk(µ)|︸ ︷︷ ︸

Θijk (µ)

∫
Ω̂k

∂û(ϑ)

∂x̂i

∂v̂

∂x̂j
dx̂︸ ︷︷ ︸

âijk (û(ϑ),v̂)

=

L∑
k=1

2∑
i,j=1

Θij
k (µ)aijk (û(ϑ), v̂).

The same can be done for the right hand side resulting in

f(v;µ) =

L∑
k=1

|detCk(µ)|︸ ︷︷ ︸
Θfk(µ)

∫
Ω̂k

fv̂dx̂ =

L∑
k=1

Θf
k(µ)f̂k(v̂).

This parametrized geometry description allows us to perform the computations on a
reference domain. In the numerical realization the mesh does not have to be deformed
and the components Θij

k , âij and Θf
k , f̂k can be precomputed. Further, the transfor-

mation of the PDE into a parametrized PDE eases the treatment in the optimization
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process since the transformation can be computed analytically and derivatives with
respect to µ can be computed exactly. For more details on the presented transforma-
tion we refer the reader to [52], where this approach is utilized to generate an affine
decomposition for the efficient realization of model order reduction. Let us note at
this place that the specific choice of the described parametrization does not influence
the following results. In our specific application this choice seemed the most reason-
able. There are other possibilities to parametrize the geometry. The advantage of the
chosen methodology is that the parameters have a physical meaning opposed to some
other popular choices like, e.g., the Free-form deformation [54]. An overview of other
popular choices is given in [53] and with the focus on optimization in [30, 40].

After introducing the model and the parametrization of the geometry let us pro-
ceed to the formulation of the optimization problem. For this we introduce a cost
function. The goal is to minimize the volume of the permanent magnet while main-
taining a prescribed performance. The permanent magnets contain rear-earth and
hence contribute significantly to the financial and ecological cost [11]. To obtain the
performance of the machine we have to solve the magnetostatic approximation of
Maxwell’s equation (2) for one full rotation to account for eventual non-symmetries.
Then the performance can be extracted by the power balance method by means of
the torque τ(u, µ). For this we compute the voltage of the stranded conductors

ustr(ϑ) = Rstristr(ϑ) +
d

dϑ
(X>stru(ϑ)),

where Rstr is the resistance, istr the current and Xstr the winding function of the
stranded conductor. The total electrical energy and losses are given by

Pelec =
1

2π

∫ 2π

0

u>str(ϑ)istr(ϑ)dϑ and Ploss =
1

2π

∫ 2π

0

Rstri
>
str(ϑ)istr(ϑ)dϑ.

The torque is then given by τ(u, µ) = N(Pelec − Ploss)/(4πF ). For more details we
refer the reader to [13, 58, 59].

Having stated the quantities of interest, we define the cost function to be mini-
mized by

(3a) ĝ0(µ, u) := µ1µ2

governed by the constraint

(3b) ĝ1(µ, u) := τd − τ(u, µ) ≤ 0

with ĝi : R3 × H1
0 (Ω) → R, i = 1, 2. The cost function represents the volume

of the permanent magnet which in the 2D case corresponds to the area while the
constraint ensures that a prescribed torque τd is met. Recall that u is the solution to
the magnetostatic Maxwell equation, hence we have a PDE constrained optimization
problem. Cost functions of this type are of interest in application [47] although further
quantities of interest (e.g., torque ripple) could be added.

3. Robust optimization framework. In this section we introduce a general
framework for solving a robust nonlinear optimization problem. For this we will first
review the nominal optimization problem. To take uncertainties into account we then
formulate the robust counterpart and develop approximation techniques.
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3.1. Nominal optimization problem. Let V and Z be a Banach spaces, we
consider the nominal optimization problem of the form

(4) min
µ∈Rnµ ,u∈V

ĝ0(µ, u,w) subject to (s.t.)

{
ĝi(µ, u,w) ≤ 0, i = 1, . . . , ng,
e(µ, u,w) = 0,

where ĝi : Rnµ × V × Rnw → R is the objective function for i = 0 and inequality
constraints for i = 1, . . . , ng and e : Rnµ × V × Rnw → Z an equality constraint
given by a parametrized PDE. Further, let ĝi and e be continuously differentiable
and let the Jacobian ∂

∂ue(µ, u,w) ∈ L(V,Z) be continuously invertible. Note that we
introduced an additional parameter w ∈ Rnw which is not part of the optimization
problem. In the nominal optimization this parameter is fixed and known. Later we
will assume uncertainty in this parameter which leads us to the robust optimization.
The optimization problem introduced in Section 2 fits exactly in this setting, where
the equality constraint is given by (2) and the objective by (3). Additionally we will
later introduce some inequality constraints accounting for design constraints.

Since the equality constraint is given by a PDE, we are in the PDE constrained
optimization [32, 63] context. Let e(µ, u,w) = 0 have a unique solution u = u(µ,w)
for every admissible w and µ. Then we can introduce the reduced objective and
inequality constraint functions

gi(µ,w) := ĝi(µ, u,w), for i = 0, . . . , ng.

Consequently, the reduced optimization problem associated with (4) reads

(5) min
µ∈Rnµ

g0(µ,w) s.t. gi(µ,w) ≤ 0, i = 1, . . . , ng.

Since e is continuously differentiable with invertible Jacobian ∂
∂ue(µ, u,w), the implicit

function theorem guarantees that also u is continuously differentiable. Hence the
reduced objective and reduced constraints gi(µ,w), i = 0, . . . , ng, are continuously
differentiable.

3.2. Robust optimization problem. Now let us introduce the robust opti-
mization problem. Here the previously introduced parameter w will come into play.
It is assumed that this parameter is not known exactly and is subject to uncertainty.
In our case the parameter w describes model parameters and primarily enters the
problem formulation through the equality constraint. The goal is to formulate the
robust version of (5). For this we assume some prior knowledge about the uncer-
tain parameter. We assume that the uncertain parameter remains in a predefined
neighbourhood of some nominal parameter ŵ ∈ Rnw . We define the uncertainty set

Uw,k = {w ∈ Rnw | ‖D−1
w (w − ŵ)‖k ≤ 1 }

= {w ∈ Rnw | w = ŵ + δw, ‖D−1
w δw‖k ≤ 1 } ,

where Dw ∈ Rnw×nw is an invertible matrix and 1 ≤ k ≤ ∞. In this work we only
consider the cases k ∈ { 2,∞} which are the two most prominent cases in application.

Remark 1. Choosing Dw = diag((w − w)/2), ŵ = (w + w)/2 and k = ∞ we get
as uncertainty set the box constraints

Uw,∞ = {w ∈ Rnw | w ≤ w ≤ w } .
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Having introduced the uncertainty set we can now formulate the robust counter-
part. The goal is to formulate an optimization problem that is robust with respect to
the uncertain parameter w. For this we choose the worst case formulation [8, 20, 65].
We define the worst case function as

ϕi(µ) = max
w∈Uw,k

gi(µ,w) for i = 0, . . . , ng.

The function ϕi : Uw,k 7→ R gives for every fixed parameter µ the worst case value of
the function gi under the condition that w lies in the uncertainty set. Utilizing the
worst case function we arrive at the robust counterpart, or worst case formulation, for
our optimization problem (5):

(6) min
µ∈Rnµ

ϕ0(µ) s.t. ϕi(µ) ≤ 0 for i = 1, . . . , ng.

A solution µ that satisfies (6) is referred to as robust optimal solution. This optimal
solution is robust against uncertainty since it is feasible for (5) no matter what the
value of w ∈ Uw,k is and optimal with respect to the objective function g0.

These types of problems are difficult to solve due to its bi-level structure. This
has been investigated in [4] for a variety of problems. In [7] for general nonlinear
problems it was proposed to replace the robust counterpart (6) by an approximation

(7) min
µ∈Rnµ

ϕ̂0(µ) s.t. ϕ̂i(µ) ≤ 0 for i = 1, . . . , ng,

where the approximated worst case function ϕ̂i can be computed more efficiently com-
pared to the original worst case function ϕi. The new problem is then referred to as
the approximated robust counterpart of (5). Alternatively, in [34] it was investigated
to solve the robust counterpart by sequential convex bi-level programming. The draw-
back of that approach is that there are strong assumptions made on gi which do not
allow the application to general problems.

In the following we investigate first and second order approximations of ϕi. While
the first order approximation has already been considered for the general nonlinear
case [20, 65], the quadratic approximation is new. The second order approximation
utilized in this work is a modification and generalization of the approach presented
in [57]. In this paper we will consider the case that the constraints and objective
function are twice differentiable. Otherwise, instead of first or second order Taylor
expansions one could use our approach in connection with quadratic models generated
from sampled data by similar techniques as in derivative free optimization, see for
example [49].

3.2.1. Linear approximation of the robust counterpart. Let us start by
recalling the approach of [20, 65] and rewrite it using the introduced notation. The
idea is to replace gi in the worst case function by a linearization, i.e., a first-order
Taylor expansion at the nominal parameter ŵ is performed. For this we utilize the
linear approximation

gli(µ, ŵ, δ
i
w) = gi(µ, ŵ) +∇wgi(µ, ŵ)>δiw for i = 0, . . . , ng,

where ∇wgi(µ,w) ∈ Rnw is the gradient of gi with respect to w. Then the approxi-
mated worst case function is given as

ϕ̂li(µ) = max
δiw∈Rnw

gli(µ, ŵ, δ
i
w) s.t. ‖D−1

w δiw‖k ≤ 1 for i = 0, . . . , ng.
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This convex optimization problem can now be solved analytically and the solution is
given by

ϕli(µ) = gi(µ, ŵ) + ‖D>w∇wgi(µ, ŵ)‖k∗ for i = 0, . . . , ng,

where ‖D>w · ‖k∗ is the dual norm of ‖D−1
w · ‖k, with k∗ = k/(k − 1) and we define

k∗ = ∞ for k = 1 and k∗ = 1 for k = ∞. This result follows directly from inserting
gli(µ, ŵ+δiw) and the definition of the dual norm. Note that this is a standard result for
Hölder norms. We can now write the linear approximation of the robust counterpart
as

(8)
min
µ∈Rnµ

g0(µ, ŵ) + ‖D>w∇wg0(µ, ŵ)‖k∗

s.t. gi(µ, ŵ) + ‖D>w∇wgi(µ, ŵ)‖k∗ ≤ 0, i = 1, . . . , ng.

Note that the objective function and the inequality constraints are non-differentiable if
the term inside the norm becomes zero. For the case k =∞ this can be circumvented
by introducing slack variables, i.e.,

min
µ∈Rnµ ,ζ0,...,ζng∈Rnw

g0(µ, ŵ) + E>ζ0

s.t. gi(µ, ŵ) + E>ζi ≤ 0, i = 1, . . . , ng,

− ζi ≤ D>w∇wgi(µ, ŵ) ≤ ζi, i = 0, . . . , ng.

with E = (1, . . . , 1)> ∈ Rnw . Similarly, one can reformulate the problem in a smooth
way using slack variables in the case k = 1. For 1 < k < ∞ there is no such
reformulation [20, 57]. Note that (8) is a nonlinear problem with nonlinear second-
order-cone constraints, which can be solved efficiently by interior-point methods [1]
or semismooth methods [36].

The computation of the derivatives can be carried out using two different ap-
proaches. By the sensitivity approach we get

(9a) ∇wgi(µ,w)> :=
∂

∂u
ĝi(µ, u,w)s+

∂

∂w
ĝi(µ, u,w),

where s ∈ L(Rnw , Y ) solves the first order sensitivity equation

(9b)
∂

∂u
e(µ, u,w)s+

∂

∂w
e(µ, u,w) = 0.

When using the adjoint approach we get

(10a) ∇wgi(µ,w)> :=

(
∂

∂w
e(µ, u,w)

)∗
p+

∂

∂w
ĝi(µ, u,w),

where p ∈ Z∗ solves the adjoint equation

(10b)

(
∂

∂u
e(µ, u,w)

)∗
p+

∂

∂u
ĝi(µ, u,w) = 0.

Here
(
∂
∂we(µ, u,w)

)∗ ∈ L(Z∗, (Rnw)∗), and
(
∂
∂ue(µ, u,w)

)∗ ∈ L(Z∗, Y ∗) denote the
adjoint operators. For a detailed discussion about the different approaches we refer
the reader to [20, 32]. In the numerical experiments we will utilize the sensitivity
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approach, since nw is assumed to be small. It can be seen that when nw is large the
adjoint approach is preferable.

This approximation suffers from poor accuracy in the case of nonlinear problems
since the linear approximation is used and ŵ is chosen fixed at the beginning. To
increase the approximation quality we have a look at a higher approximation order
for the robust counterpart.

3.2.2. Quadratic approximation of the robust counterpart. While the
first order approach is numerically very efficient it can suffer from bad approximation
and hence might describe the influence of the uncertain parameter w inaccurately.
This was already observed in [21]. Hence we seek a higher order approximation. A
similar approach was already investigated in [57], where the objective function and in-
equality constraints are approximated by quadratic Taylor expansions while the PDE
constraint is linearized. In the presented work we eliminate the PDE constraint in
(4) by introducing the reduced problem (5) which is the basis for further investiga-
tion. Hence, by applying the second order approximation to (5) we implicitly include
curvature information of the PDE constraint. Let us next outline the construction of
the robust counterpart. First we start by introducing the quadratic approximation

gqi (µ, ŵ, δ
i
w) = gi(µ,w) +∇wgi(µ, ŵ)>δiw +

1

2
(δiw)>∇wwgi(µ, ŵ)δiw

given by the second order Taylor expansion, where ∇wwgi denotes the Hessian matrix
with respect to w. We will only consider the case k = 2 when developing the quadratic
approximation. The worst case function then reads as

(11) ϕ̂qi (µ) = max
δiw∈Rnw

gqi (µ, ŵ, δ
i
w) s.t. ‖D−1

w δiw‖2 ≤ 1 for i = 0, . . . , ng.

Compared to the first order approximation, it is not possible to write down a closed
form expression for ŵqi (µ). However, the quadratic approximation of the worst case
function corresponds to a trust region problem. The solution to this problem is then
characterized by the following theorem [18, 45].

Theorem 2. Let the Hi be a symmetric matrix. Then the trust region problem
(11) possesses at least one global solution. Moreover, δiw is a global solution if and
only if there exists a Lagrange multiplier λiw ∈ R such that

(−Hi + λiwDw)δiw −∇wgi(µ, ŵ) = 0,

λiw(‖D−1
w δiw‖2 − 1) = 0,

‖D−1
w δiw‖2 ≤ 1,

λiw ≥ 0,

Hi − λiwDw � 0

holds for i = 0, . . . , ng, where Dw = D−>w D−1
w and A � 0 denotes that A is a negative

semidefinite matrix.

The proof to this theorem is standard and we refer the reader to [18]. The
optimality conditions define the Lagrange multiplier uniquely while the solution δiw
might not be unique. A detailed discussion can be found in [18]. In our application we
set Hi = ∇wwgi(µ, ŵ) since the Hessian is symmetric. For a non-symmetric Hessian
one can use without restriction its symmetric part in the quadratic model.
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We reformulate the problem by applying a square to the norm. In this way we
obtain differentiable constraints in our robust counterpart. The constraint then reads
as ‖D−1δiw‖22 ≤ 1. Using the results from the theorem we can now formulate the
robust counterpart by

(12)

min
µ∈Rnµ ,

δ0w,...,δ
ng
w ∈Rnw ,

λ0
w,...,λ

ng
w ∈R

g0(µ, ŵ) +∇wg0(µ, ŵ)>δ0
w +

1

2
(δ0
w)>∇wwg0(µ, ŵ)δ0

w

gi(µ, ŵ) +∇wgi(µ, ŵ)>δiw +
1

2
(δiw)>∇wwgi(µ, ŵ)δiw ≤ 0, i = 1, . . . , ng,

−∇wgi(µ, ŵ)−∇wwgi(µ, ŵ)δiw + λiwDwδiw = 0, i = 0, . . . , ng,

λiw(‖D−1
w δiw‖22 − 1) = 0, i = 0, . . . , ng,

‖D−1
w δiw‖22 − 1 ≤ 0, i = 0, . . . , ng,

−λiw ≤ 0, i = 0, . . . , ng,

∇wwgi(µ, ŵ)− λiwDw � 0, i = 0, . . . , ng.

The semidefinite constraint can be reformulated using the smallest eigenvalues. Since
the dimension nw of the uncertain parameters will be of moderate size (6 in our
particular instance), this is a feasible strategy. This approach was outlined in [57].
Note that (12) is a mathematical program with complementarity constraints (MPCC).
These types of problems can be solved efficiently by a sequential quadratic program-
ming (SQP) method under relatively mild assumptions [28, 41]. We will provide a
summary of the utilized strategy in a later section.

The second derivative in the quadratic approximation can be derived in two dif-
ferent ways, similar as for the first derivative in the linear approximation. Let us
shortly provide the necessary equations. For the sensitivity approach we get

∇wwgi(µ,w) :=
∂

∂u
ĝi(µ, u,w)s̄+ s∗

∂2

∂u2
ĝi(µ, u,w)s

+ s∗
∂2

∂u∂w
ĝi(µ, u,w) +

∂2

∂w∂u
ĝi(µ, u,w)s+

∂2

∂w2
ĝi(µ, u,w),

where s solves (9b) and s̄ is given by the second order sensitivity equation

(13)
∂

∂u
e(µ, u,w)s̄+ s∗

∂2

∂u2
e(µ, u,w)s

+ s∗
∂2

∂u∂w
e(µ, u,w) +

∂2

∂w∂u
e(µ, u,w)s+

∂2

∂w2
e(µ, u,w) = 0.

Next we have a look at the more efficient adjoint approach. This approach does
not require the solution of the second order sensitivity equation (13). We define the
Lagrange function Li : Rnµ × V × Rnw × Z∗ → R

Li(µ, u,w, p) := ĝi(µ, u,w) + 〈p, e(µ, u,w)〉Z∗,Z ,

where 〈·, ·〉Z∗,Z denotes the dual pairing of Z∗ and Z. Then the second derivative of
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gi using the adjoint approach is given by

∇wwg(µ,w) := s∗
∂2

∂u2
Li(µ, u,w, p)s+ s∗

∂2

∂u∂w
Li(µ, u,w, p)

+
∂2

∂w∂u
Li(µ, u,w, p)s+

∂2

∂w2
Li(µ, u,w, p),

where s and p solve (9b) and (10b), respectively. Usually the computation of the
second partial derivatives of the Lagrangian is cheap and thus the adjoint approach
is already for a moderate number of parameters more efficient than using the second
order sensitivity equation (13). Details on the derivation can be found in [32]. In this
work we assume that the number of parameters is small and we use the sensitivity
based approach. Let us note that an adjoint approach is preferable since it does not
require the computation of second order sensitivities but only one adjoint equation
and first order sensitivities.

3.2.3. Moving expansion point. While the quadratic approximation can be a
significant improvement to the accuracy of the approximation of the robust counter-
part it might still suffer from bad approximation. This is mostly due to the choice of
the expansion point in the second order Taylor series. The default choice of using the
nominal value ŵ does not necessarily lead to a good quadratic approximation on the
entire region defined by the uncertainty set. To overcome this problem we propose
a strategy using a moving expansion point. The idea is to check the approximation
accuracy and if required move the expansion point. Let us outline the strategy in
more details.

We introduce the variables w̄i and δ̄i which are initialized with ŵ and 0, for
i = 0, . . . , nf , respectively. Then the quadratic approximation of gi(µ,w) with respect
to w can be written as

(14) gqi (µ, w̄i, δ
w
i ) = gi(µ, w̄i) +∇wgi(µ, w̄)>δi +

1

2
δ>i ∇wwgi(µ, w̄)δi,

where δi = δwi − δ̄i. In the initial case, i.e. w̄i = ŵ and δ̄i = 0 for i = 0, . . . , ng this is
equivalent to the previously introduced quadratic approximation. If the approxima-
tion point gets shifted,

(15) w̄i = ŵ + δwi and δ̄i = δwi , i = 0, . . . , ng

we obtain a quadratic approximation at the new expansion point w̄i. Note that for
each gi we can obtain a different expansion point. Further, the constraints on δwi do
not have to be adjusted since we perform the shift by δ̄i. This formulation makes it
easy to incorporate the proposed strategy into existing codes. The decision to update
the expansion point for the quadratic model is made by looking at the approximation
error. For this we compare the exact evaluation of gi with the quadratic approximation
gqi . If the difference is too large we perform the update. This strategy is embedded into
the optimization method and is performed before the computation of an update. This
guarantees that locally, at each iteration of the optimization algorithm, the quadratic
approximation is of good quality. The procedure is summarized in Algorithm 1.

Let us note that we choose to update the expansion point by w̄i = ŵ+ δwi . It can
be of advantage to add a scaling factor, i.e. w̄i = ŵ+αδwi with α ∈ (0, 1]. This factor
can be interpreted as a step size strategy and can for example be determined by an
Armijo-Backtracking strategy [45]. This can lead to a faster convergence although
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Algorithm 1 Moving expansion point algorithm

Require: ŵ, w̄i, δ̄i δ
w
i for i = 0, . . . , ng, and tolerance εmov

1: for i = 0 to ng do
2: Set δi = δwi − δ̄i
3: Evaluate gqi = gi(µ, w̄i) +∇wgi(µ, w̄i)>δi + 1

2δ
>
i ∇wwgi(µ, w̄i)δi

4: if |gi(µ, ŵi + δwi )− gqi | > εmov then
5: Update expansion point w̄i = ŵ + δwi and δ̄i = δwi
6: end if
7: end for
8: return w̄i and δ̄i for i = 0, . . . , ng

in our numerical examples the choice α = 1 worked well. We did not perform a
convergence analysis on the proposed strategy, but in the numerical experiments we
observe fast convergence. After a few iteration in the optimization algorithm the
expansion point does not get updated any more.

Remark 3. The moving expansion point strategy is not applied to the linear ap-
proximation of the robust counterpart. In case that the maximum is within the
uncertainty set and not on the boundary, an update of the expansion point will not
improve the approximation but will lead to oscillations.

3.2.4. Extension to the optimization variable. While we have so far only
considered uncertainty in the model parameter w we will briefly outline the robustifi-
cation of optimization variables in this section. With this we want to account for un-
certainty in the realization of the optimal solution. This can be due to manufacturing
tolerances during the production process of the work piece or due to errors introduced
by numerical simulations. The approach chosen is analogous to the previous sections.
Hence we will only shortly outline it and give the final results. To incorporate the
uncertainty into the optimization process we introduce an uncertain perturbation δµ
for the optimization variable. The uncertainty set for the perturbation is defined as

Uµ,k = { δµ ∈ Rnµ | ‖D−1
µ δµ‖k ≤ 1 }

with Dµ ∈ Rnµ×nµ . The worst case function then reads

(16) ϕi(µ) := max
δµ∈Uµ,k

gi(µ+ δµ, w).

Hence the robust counterpart associated to our optimization problem (5) can be writ-
ten as (6). To obtain a numerical feasible problem we apply an approximation of the
worst case function. In this case we only consider the linear approximation. This
choice can be justified by the fact that the linearization is carried out around the
parameter µ. This means that during the optimization procedure the linearization is
updated whenever µ changes. This is similar to the moving expansion point strategy
for the quadratic approximation. Hence, if the uncertainty set is of moderate size the
linear approximation will be of good quality. Utilizing the result (8) we can write the
linear approximation of the robust counterpart as

(17) min
µ∈Rnµ

g0(µ,w) + ‖D>µ∇µg0(µ,w)‖k∗ s.t. gi(µ,w) + ‖D>µ∇µgi(µ,w)‖k∗ ≤ 0.

A smooth reformulation in the case k = { 1,∞} can again be obtained by introducing
slack variables. For the case k = 2 the same arguments apply as previously outlined.
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As a last step we will now combine the results. The goal is to formulate a robust
optimization problem that accounts for both, uncertainties in model parameters and
optimization variables. We will right away opt for the quadratic approximation in the
model parameter and leave the other cases to the reader. For the uncertainty sets
we consider the setting w ∈ Uw,2 and µ ∈ Uµ,∞. Then the mixed linear quadratic
approximated robust counterpart reads:

(18)

min
µ,ζ0µ,...,ζ

ng
µ ∈Rnµ

δ0w,...,δ
ng
w ∈Rnw

λ0
w,...,λ

ng
w ∈R

g0(µ, ŵ) + E>ζ0µ +∇wf0(µ, ŵ)>δ0w +
1

2
(δ0w)>∇wwg0(µ, ŵ)δ0w

gi(µ, ŵ) + E>ζiµ +∇wgi(µ, ŵ)>δiw +
1

2
(δiw)>∇wwgi(µ, ŵ)δiw ≤ 0, i = 1, . . . , ng,

−ζiµ ≤ D>µ∇µgi(µ, ŵ) ≤ ζiµ, i = 0, . . . , ng,

−∇wgi(µ, ŵ)−∇wwgi(µ, ŵ)δiw + λiwDwδiw = 0, i = 0, . . . , ng,

λiw(‖D−1
w δiw‖22 − 1) = 0, i = 0, . . . , ng,

‖D−1
w δiw‖22 − 1 ≤ 0, i = 0, . . . , ng,

−λiw ≤ 0, i = 0, . . . , ng,

∇wwgi(µ, ŵ)− λiwDw � 0, i = 0, . . . , ng

with E = (1, . . . , 1)> ∈ Rnµ . The additional variables and indices for the moving av-
erage strategy for the quadratic approximation is omitted in order to avoid a notation
overload.

3.3. Numerical methods. The introduced problem (18) is a MPCC and is hard
to solve. In [17] it was shown that problems of this type violate the Mangasarian-
Fromovitz constraint qualification (MFCQ) at any feasible point. As a consequence
the multiplier set is unbounded, the active constraint normals are linearly dependent,
the central path fails to exist, and linearizations of the nonlinear program can be
inconsistent arbitrarily close to the solution. Fortunately, many advances have been
made with respect to the numerical treatment of this type of problems using the SQP
solvers with some slight modifications [26, 28, 35, 41] and the interior-point methods
[42, 51]. It turns out that a large class of MPCCs, written as nonlinear programs
can be solved reliably and efficiently [27]. We adapt the SQP solver presented in [26]
and replace the complementarity constraint in (18) by a nonlinear complementarity
problem (NCP) function. This gives rise to

(19)

min
µ,ζ0µ,...,ζ

ng
µ ∈Rnµ

δ0w,...,δ
ng
w ∈Rnw

λ0
w,...,λ

ng
w ∈R

ξ0,...,ξng∈R

g0(µ, ŵ) + E>ζ0µ +∇wg0(µ, ŵ)>δ0w +
1

2
(δ0w)>∇wwg0(µ, ŵ)δ0w

gi(µ, ŵ) + E>ζiµ +∇wgi(µ, ŵ)>δiw +
1

2
(δiw)>∇wwgi(µ, ŵ)δiw ≤ 0, i = 1, . . . , ng,

−ζiµ ≤ D>µ∇µgi(µ, ŵ) ≤ ζiµ, i = 0, . . . , ng,

−∇wgi(µ, ŵ)−∇wwgi(µ, ŵ)δiw + λiwDwδiw = 0, i = 0, . . . , ng,

‖D−1
w δiw‖22 − 1 + ξi = 0, i = 0, . . . , ng,

Φ(ξi, λiw) ≤ 0, i = 0, . . . , ng,

−ξi ≤ 0, i = 0, . . . , ng,

−λiw ≤ 0, i = 0, . . . , ng,

∇wwgi(µ, ŵ)− λiwDw � 0, i = 0, . . . , ng,
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where Φ(a, b) is the NCP function. Let us next introduce the NCP functions under
consideration in this work.

An NCP function is defined as Φ : R2 → R such that Φ(a, b) = 0 if and only if
a, b ≥ 0, and ab ≤ 0. The NCP function utilized in this work is the extension of the
smoothed residual function introduced in [41]

(20) Φ(a, b) =
1

2

(
a+ b−

√
(a− b)2 +

ab

σ

)
.

For a fixed σ = 1/2 we get the well known Fischer-Burmeister function [25]. It can
easily be seen that for the chosen NCP function the condition a, b ≥ 0 and Φ(a, b) ≤ 0
is equivalent to the complementarity condition a, b ≥ 0 and ab = 0. The gradient is
given by

∇Φ(a, b) =
1

2


1−

a− b+ b
2σ√

a2 + b2 + ab
σ

1−
a− b+ a

2σ√
a2 + b2 + ab

σ

 .

Further, for a > 0 and b > 0 we have

∇Φ(a, 0) =

(
0

1− 1
4σ

)
and ∇Φ(0, b) =

(
1− 1

4σ
0

)
Note that by introducing the NCP function, problem (19) becomes non-smooth at
the origin. Fortunately, 0 is a generalized gradient of the NCP function at the origin.
Further, we relax the linearization of the NCP function as introduced in [41] given by

a ≥ 0, b ≥ 0, Φ(â, b̂) +∇Φ(â, b̂)>
(
a− â
b− b̂

)
≤ δ

(
min(1,Φ(â, b̂))

)κ
with 0 ≤ δ ≤ 1, and 0 < κ ≤ 1 chosen constant. Recommended choices for the
parameters are σ = 32, δ = 0.1 and κ = 1.

Having introduced the NCP function and its derivatives, we will have a short
look at some implementation details. We will consider an SQP method with line
search utilizing an `1-penalization function [45]. In the numerical experiments we will
only compute first order derivatives for the optimization procedure. The Hessian is
approximated using damped BFGS updates. If the quadratic program (QP) of the
SQP method at any point should become infeasible we enter a restoration phase. For
this we utilize a combination of the ideas presented in [26, 43]. We define the function

h(z) =
∑
i∈E
|ci(z)|+

∑
i∈I

max(0, ci),

where ci(z), i ∈ E are the equality constraints and ci(z), i ∈ I the inequality con-
straints. Then the strategy in the restoration phase is to solve the minimization
problem

min
z
h(z).

The optimization procedure is summarized in Algorithm 2. Furthermore, in the algo-
rithm the integration of the moving expansion point strategy is outlined. A stopping
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criterion based on relative optimality is used. Additionally, the approximation error of
the moving expansion point algorithm is included to the stopping criterion to ensure
that a good approximation is achieved.

Algorithm 2 Solving strategy (SQP Method)

Require: Initial value z = (µ0, δ0
w, . . . , δ

ng
w , λ0

w, . . . , λ
ng
w )

1: Set w̄i = ŵ and δ̄i = 0 for i = 0, . . . , ng
2: Initialize counter k = 0
3: while stopping criterion not satisfied do
4: Check approximation quality (Algorithm 1)
5: Compute update d solving QP
6: if QP is feasible then
7: Update variable zk+1 = zk + αd with suited α ∈ (0, 1]
8: else
9: zk+1 = arg minh(z) (Restoration Phase)

10: end if
11: Update counter k = k + 1
12: end while
13: return zk

Remark 4. The robust counterparts (6) and (7) are semi-infinite optimization
problems and our approach can be considered as a solution method for their MPCC
formulation. We note that there exist also solution approaches by using an equality
constraint based on smoothed NCP functions Φτ , τ > 0. This leads to an outer
approximation of the original problem and the original problem is obtained for τ ↘ 0,
see e.g. [60]. Since our method based on [41] turns out to be very efficient, we prefer
not to invoke smoothing of the NCP function.

4. Model order reduction. In this section we look at a method to accelerate
the computation during the optimization procedure. As can be seen in (18), for the
approximated robust counterpart several derivatives are required. Since the presented
problem originates from a PDE constrained optimization problem, additional PDE
solves are required for each derivative. This can be computationally expensive since
the discretization of PDEs leads to very large linear systems. Hence we require an effi-
cient strategy to overcome this problem. In the past, model order reduction methods
based on proper orthogonal decomposition (POD) [16, 33, 38], balanced truncation
[3, 31] and the reduced basis method [19, 44, 48, 52] have been developed to speed up
the computation in PDE constrained optimization problems. In this work we consider
a combination of POD and the reduced basis method. We will perform the model
order reduction with respect to the rotation parameter ϑ, but not with respect to the
geometry parameter µ. Let us start by introducing a discrete version of (2). In a next
step we will then apply the model order reduction to the discrete version of the PDE.

4.1. Finite element discretization. To obtain a discrete version of (2) we
utilize the finite element method (FEM). We choose the approximation

uN (ϑ;µ) =

N∑
i=1

ui(ϑ;µ)φi(x, ϑ),
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where φi(x, ϑ) are linear ansatz functions in 2D [14, 15]. Denoting the finite element
coefficients by the vector u ∈ RN and using the introduced parametrization we can
write the discrete version of (2) as a N dimensional linear system

(21) K(ϑ;µ)u = f(ϑ;µ),

where the stiffness matrix and right hand side are given by

(22) K(ϑ;µ) =

L∑
k=1

2∑
i,j=1

Θij
k (µ)Kij

k (ϑ) and f(ϑ;µ) =

L∑
k=1

Θf
k(µ)fk(ϑ),

respectively. Note that the Kij
k (ϑ) and fk(ϑ) are the local stiffness matrices and right

hand sides introduced by the affine decomposition.
To take the movement of the rotor into account we use the locked step method

[50, 55]. This method is widely used in literature to study electrical machines. For this,
the circular interface between the static and moving part is introduced. This interface
is subdivided by an equidistant mesh. The rotation of the rotor is then discretized by
fixed angles corresponding to a rotation by one mesh cell of the equidistant interface
mesh. The nodes on the interface of the stator and the rotor are then reconnected
leading to the mesh for the next computation. Let us define ∆ϑ as the angular step
between two positions of the moving part. Then the rotation angle ϑ is given by
ϑk = k∆ϑ, k ∈ N0. In the discrete setting this can be realized by partitioning u into
a static part, a rotating part and an interface. This idea is directly related to the
method of domain decomposition [62]. Then the system (21) can be rewritten as

(23)

Kss 0 KsI

0 Krr(µ) KrI(ϑ)
K>sI K>rI(ϑ) KII(ϑ)

usur
uI

 =

 fs
fr(µ)
fI(ϑ)

 ,
where Kss, Krr(µ), fs and fr(µ) are the stiffness matrices and right hand sides on
the static and moving part and do no longer depend on the angle ϑ. For the points
on the interface there are two cases. The interface of the static part is independent
of the angle ϑ and hence we get the corresponding stiffness matrix KsI . For the
rotor side we have to perform the shift, this is indicated with ϑ in the corresponding
stiffness matrix KrI . On the interface also a shift has to be performed hence also here
the corresponding stiffness matrix KII and right hand side fI are dependent on ϑ.
Let us note that it is not required to reassemble matrices. All of these shifts can be
performed by index shift and hence allow a very efficient implementation. The size of
the system does not change, i.e., we have N = Ns +Nr +NI . The dependency of the
matrix K on the parameter µ is limited to the rotating part, which is also indicated.
This is not a limitation but rather to avoid a notation overload.

4.2. Proper orthogonal decomposition. Let us recall the POD method so we
can then develop the extensions used in this work. We will assume that the solution
to the PDE is given in the discrete form, i.e., let u(ϑ;µ) ∈ RN be the solution
to the discretized version of our PDE. From a simulation we obtain the snapshots
RN 3 uk(µ) ≈ u(k∆ϑ;µ) for k ∈ K, where K is an index set with elements in N0 for
which (21) was solved. Then, a POD basis {ψi}`i=1 computed from these snapshots
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is given by the solution to

(24)


min

ψ1,...,ψ`∈RN

∑
k∈K

∣∣∣uk(µ)−
∑̀
i=1

〈uk(µ), ψi〉W ψi

∣∣∣2
W

s.t. 〈ψi, ψj〉W = δij for 1 ≤ i, j ≤ `,

where 〈· , ·〉W stands for the weighted inner product in RN with a positive definite,
symmetric matrix W ∈ RN×N . Let us introduce the matrix UK as the collection of
the snapshots uk(µ) with k ∈ K. Then we can write the operator R arising from the
optimization problem (24) as

Rψ =
∑
k∈K

〈uk(µ), ψ〉Wuk = UK
(
UK
)>

Wψ for ψ ∈ RN .

The unique solution to (24) is then given by the eigenvectors corresponding to the
` largest eigenvalues of R, i.e., Rψi = λiψi with λi > 0 [29]. In many cases the
operator R is of large dimension and it might be better to set up and solve the
eigenvalue problem

U>KWUKvi = λivi, i = 1, . . . , `

and obtain the POD basis by ψi = 1/
√
λiUKvi. This approach is computationally

more efficient. Both approaches are related by the singular value decomposition of the
matrix W1/2UK. For completeness let us state the POD approximation error given
by

(25)
∑
k∈K

∣∣∣uk(µ)−
∑̀
i=1

〈uk(µ), ψi〉W ψi

∣∣∣2
W

=

d∑
i=`+1

λi,

where d is the rank of UK. We will collect the POD basis ψi in the matrix Ψ =
[ψ1, . . . , ψl] ∈ RN×`. This will ease notation later on.

Having introduced the general way of computing a POD basis let us now lay out
the details of the approach utilized in this work. To speed up the computation we
want to minimize the number of solves involving FEM and push the computations
onto the reduced order models. It is crucial however to have accurate reduced order
models in order to have accurate results. The approach we are presenting will not
require precomputation as for example in the reduced basis method. Let us start by
outlining how we apply the POD basis to (23) and in a second step give the details
on how to obtain the basis efficiently.

We generate a POD basis for each of the parts. One basis for the static part
and one basis for the moving part. We do not perform a reduction on the interface,
i.e., we work with the FEM ansatz space on the interface. This is motivated by the
observation that the decay of the eigenvalues is very slow, which would result in a large
POD basis. Since the FEM space for the interface is usually of moderate dimension
the gain of using POD would be negligible. We compute the POD basis as solution
to (24) utilizing the snapshots uks and ukr to obtain Ψs and Ψr, respectively. We then
make the ansatz

u`s =

`s∑
i=1

ψsi ūs,i = Ψsūs and u`r =

`r∑
i=1

ψri ūr,i = Ψrūr,
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where the POD coefficients are indicated with a bar. The reduced order model is then
generated by projecting (23) onto the subspace spanned by the POD basis and we
obtain the system(Ψs)>KssΨ

s 0 (Ψs)>KsI

0 (Ψr)>Krr(µ)Ψr (Ψr)>KrI(ϑ)
K>sIΨ

s K>rI(ϑ)Ψr KII(ϑ)

ūsūr
uI

 =

 (Ψs)>fs
(Ψr)>fr(µ)

fI(ϑ)

 .
In short the system will be written as

(26) K`(ϑ;µ)ū = f `(ϑ;µ)

with ū the vector with the POD coefficients. This system is of dimension `s+ `r +NI
and of much smaller dimension as the original system (23) which was of dimension N .
Note that we did not exploit the affine decomposition introduced in the parametriza-
tion for the geometry deformation. As previously mentioned, the choice for this
method was made because the transformation has physical meaning and is known
analytically and eases the computation of derivatives for the optimization. We do not
require it for the model order reduction.

Let us next have a look at how to determine the POD basis. The goal is to
reduce the computational cost with respect to the rotation. One full rotation requires
NI solves of the system (23), i.e., for all ϑk with k ∈ K := { 0, . . . , NI − 1 }. In the
symmetric case it is not required to solve a full rotation but only for angles that cover
one pole, for our particular example this means one sixth, i.e., NI/6 solutions are
needed. Note, we assume that NI is divisible by Np, where Np is the number of poles
of the machine. In the non-symmetric case this is not possible. The idea is to partition
K into disjoint sets, Ki := { i(NI/Np), . . . (i+ 1)(NI/Np)− 1 } with i = 0, . . . , Np−1.
Additionally we define a sequence of index sets Sj , j = 1, . . . , Ns with the property
Sj ⊂ Sj+1. A possible choice is for example

S1 = { 0, 10, . . . , NI/Np } ,S2 = { 0, 5, . . . , NI/Np } ,S3 = { 0, 1, . . . , NI/Np } .

Note that the sets can also be chosen arbitrarily as long as they fulfill the subset
property. This is required to be able to reuse the already computed snapshots and
hence minimize computational overhead. The strategy is then as follows. We start at
the first partition (K1) and evaluate (23) for ϑk and k ∈ K1(S1). From the obtained
solutions a POD basis is computed. Then an error estimator ∆u(ϑk), k = 1, . . . , NI , is
evaluated to determine in which partition the largest error is obtained. If the partition
changes we repeat the step for the new partition and enlarge the snapshot set by
adding the new solutions to the old ones. When the error is in the same partition,
we increase j, i.e., increase the number of computed snapshots in the partition. The
same is done if a partition is revisited during the process. The strategy is summarized
in Algorithm 3. This sampling of the partitions is similar to the greedy algorithm.
We decided to add more than one PDE solution at a time to the snapshot set to
minimize the overhead of evaluating the error estimator and generating the Roms too
many times since all the computations are done during the optimization process and
are not in a preprocessing. In our application the proposed strategy converges very
fast. In the nominal case, where the machine is symmetric usually only one partition
is visited and in some cases a refinement is applied. In the robust optimization, where
non-symmetries are introduced, additional partitions are visited. The dimension of
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the POD basis is chosen such that ∑`
i=1 λi∑d
i=1 λi

≤ εrel

holds. This is a popular choice, where a typical value is εrel = 0.9999. Note that the
denominator can be computed by trace(U>KWUK) and hence not all d eigenvalues
have to be computed.

Algorithm 3 Adaptive POD

Require: Np, K
Np
i=1, SNsj=1 and ε (tolerance)

1: Build history vector h = (1, . . . , 1)> ∈ NNp
2: Choose first section i = 1 and snapshot location index j = h(i)
3: Solve uk(µ) for k ∈ Ki(Sj)
4: Compute POD basis using (24)
5: Evaluate error estimator ∆u(ϑk) for k = 1, . . . , NI
6: if maxk ∆u(ϑk) > ε is in same partition then
7: Increase snapshot location index, i.e., h(i) = h(i) + 1 and j = h(i)
8: GOTO 3
9: else if maxk ∆u(ϑk) > ε is in different partition then

10: Move to partition i containing k and choose snapshot location index j = h(i)
11: GOTO 3
12: else
13: return POD basis and reduced solution u`

14: end if

We recompute a POD basis for each geometric configuration. Alternatively, a
strategy can be used that keeps the POD basis and adaptively updates in the course
of the optimization process [2, 39, 64].

Let us now shortly have a look at the error estimator. For this let us recall
some basic quantities required. For a Hilbert space X we define the coercivity and
continuity constant

α(ϑ, µ) = inf
v∈X\{ 0 }

a(v, v;ϑ, µ)

‖v‖2X
and γ(ϑ, µ) = sup

v∈X\{ 0 }
sup

u∈X\{ 0 }

a(u, v;ϑ, µ)

‖u‖X‖v‖X
,

respectively. Further, we define the residual r0(u`;ϑ, µ) = f(ϑ;µ)−K(ϑ;µ)u`. Then
the error introduced by the ROM in the variable u can be characterized by

(27) ‖u− u`‖X ≤ ∆u(ϑ) :=
‖r0(u`;ϑ, µ)‖X′

α(ϑ, µ)
,

where ‖ · ‖X′ is the dual norm. This is a standard result and can be found in [52].
Note that the error is measured with respect to the finite element solution. At this
point it is assumed that the finite element solution is accurate enough to approximate
the solution of the continuous problem.

Since we started from a reference geometry Ω̂, we assume at this point that the
coercivity constant α(ϑ, µ̂) is known. Further, we consider isotropic material, i.e.,
νiik = νjjk and νijk = νjik = 0 for i, j = 1, 2, i 6= j and k = 1, . . . , L. Then we can
compute the lower bound 0 < αLB(µ, ϑ) ≤ α(µ, ϑ) by using the introduced affine
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decomposition by the Min-Theta approach [48]:

αLB(ϑ, µ) := α(ϑ, µ̂) min
k=1,...,L
i=1,2

Θii
k (µ)

Θii
k (µ̂)

.

Note that the rotation as introduced in this work does not influence the coercivity
constant and can be omitted. Let us remark that the computation of the residual
norms can be performed very efficiently using the introduced affine decomposition
[24].

Since we are considering an optimization problem also the accuracy of the deriva-
tives is crucial. As previously outlined we consider an approach using the sensitivities.
Therefore, additional PDEs have to be solved which contribute to the computational
expenses in the optimization process. Hence, model order reduction is of great inter-
est. Let us assume that µ ∈ R, i.e., nµ = 1. This is to simplify the following equations
by avoiding mixed partial derivatives.

Proposition 5. Let the coefficient functions Θij
k (µ) and Θf

k(µ) be n times differ-
entiable with respect to µ. Then u is differentiable with respect to µ and the derivative
un is given by the sensitivity equation

(28) K(ϑ;µ)un = fn(ϑ;µ)−
n∑
k=1

(
n

k

)
Kk(ϑ;µ)un−k,

where the super-indices denote derivatives and
(
n
k

)
= n!

k!(n−k)1 the binomial coefficient.

The derivatives of K and f are given through the derivatives of Θij
k (µ) and Θf

k(µ),
see (22).

This result follows directly from applying the general Leibniz rule for the n-th deriva-
tive of a product to (21). Note that for n = 0 we obtain our discretized PDE (21).
We define the residuals for the sensitivities by

rn(u`;ϑ, µ) = fn(ϑ;µ)−K(ϑ;µ)un −
n∑
k=1

(
n

k

)
Kk(ϑ;µ)un−k.

Then an upper bound for the error ‖un(ϑ, µ)−u`,n(ϑ, µ)‖X is given by the following
theorem:

Theorem 6. Let un be a solution to (28). Further, let u`,n be the corresponding
solution obtained by the reduced order model. Then an upper bound ∆un(ϑ) for the
error ‖un(ϑ, µ)− u`,n(ϑ, µ)‖X is given by

(29) ∆un(ϑ) :=
‖rn(u`;ϑ, µ)‖X′

α(ϑ, µ)
+

n∑
k=1

(
n

k

)
γk(ϑ, µ)

α(ϑ, µ)
∆un−k,

where γk(ϑ, µ) are continuity constants of ∂k

∂µk
a(w, v;ϑ, µ).

The proof is analogous to the proof of the first order sensitivity presented in
[22] and is left to the reader. The key modification is to use the definition for the
n-th sensitivity (28). Let us remark at this point that for k = 0 we get the error
estimator for the variable u given by (27). Equation (29) is a generalization of the
results presented in [22, 23, 24], where first and second order sensitivities for higher
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dimensional parameters were stated. The continuity constant γk can be computed
with the same approach as the coercivity constant.

We have only shown the computation of the sensitivity and the error estimator
for the variable µ. The steps for the uncertain variable w are analogous. In our case
the influence of the uncertain variable can be written as

f(ϑ;µ,w) =

L∑
k=1

hk(w)Θf
k(µ)f̂k(ϑ;µ),

where hk(w) are nonlinear differentiable functions depending on the uncertain param-
eter. The sensitivity equations and error estimators are analogous to (28) - (29) and
are left to the reader.

In the application we generate a POD basis for each equation independently [24].
This means running Algorithm 3 for each sensitivity equation. It is also possible to
combine the snapshots and compute one basis for all equations [2]. We opted for the
separated approach since we can directly replace the FEM solve by Algorithm 3 in
the implementation. This simplifies the modification of existing codes significantly.
If an adjoint approach is used to compute the derivatives it can be beneficial to use
combined POD bases for the corresponding state and adjoints to guarantee stability
[44]. This can be achieved by minor modifications of the proposed algorithm.

5. Numerical results. In this section we present numerical results utilizing the
introduced methods. To start, we will describe the underlying problem in more detail.
We start by restating the optimization problem introduced in Section 2 in the discrete
form. The nominal optimization problem then reads as

min
µ∈R3

g0(µ) := µ1µ2 s.t. g1,...,7(µ) :=



3µ1 − 2µ3 − 50
µ2 + µ3 − 15

1− µ1

1− µ2

5− µ3

µ3 − 14
τd − τ(u, µ)


≤ 0,

where the desired torque τd is computed by the initial configuration, i.e., τd = τ(u, µ0)
which in our case is set to τd = 4.06217 with µ0 = (19, 7, 7)>. The constraints g1 to
g6 are simple design constraints to ensure that we obtain a feasible location of the
permanent magnet. We utilize the reduced formulation of the cost and constraints as
given in (5), hence we do not have to state the equality constraint. Nevertheless, for
the evaluation of the torque τ(u, µ) in g7, for each configuration µ the linear system
(23) has to be solved.

Before we go to the discretization details let us have a look at the robust opti-
mization. We will not rewrite the approximated robust counterpart at this point but
refer to (18), or (19) where the NCP function is utilized. As the uncertain model
parameters wi, i = 1, . . . , 6, we consider the magnetic field angle of the permanent
magnet, see Figure 1. In the ideal case they are aligned perfectly, i.e., the field angle is
90◦. This perfect alignment is assumed in the nominal optimization. In practice this
can not be met and deviations are to be expected. This can be due to manufacturing
imperfection. We introduce the uncertainty set

Uw,2 = {w ∈ R6 | w = ŵ + δw, ‖D−1
w δw‖2 ≤ 1 }
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Fig. 2. First and second order approximation of the torque with respect to the optimization
variable µ3 (left) and model parameter w (right).

with ŵ = [90◦, 90◦, 90◦, 90◦, 90◦, 90◦]> and Dw = diag([5◦, 5◦, 5◦, 5◦, 5◦, 5◦]>). The
model parameter w enters (23) by the right hand side f in a nonlinear manner through
trigonometric functions. For updating the expansion point a tolerance of εmov =
10−3 is used in Algorithm 1. Next, let us define the uncertainty in the optimization
variable. Here, we try to account for production inaccuracies. The uncertainty set
under consideration is

Uµ,∞ = { δµ ∈ R3 | ‖D−1
µ δµ‖∞ ≤ 1 }

with Dµ = diag([0.3, 0.3, 0.3]>). As already previously outlined we will consider a
mixed approach in the approximated robust counterpart, i.e., linear approximation in
the optimization variable µ and quadratic approximation in the model parameter w.
To illustrate and justify our particular choice we look at the first and second order
approximation of g7, where µ and w enter nonlinearly. It is sufficient to look at the
torque τ(u, µ) which is the main component. In Figure 2 the approximation quality
is shown. It can be seen that for the approximation in the variable µ (left figure)
the linear approximation is very accurate, especially when looking at the interval
of interest indicated by the dashed lines. The reason is that the approximation is
updated for every µ in the interval, where the approximation is considered is small.
We only show the behaviour for µ3 since it is the most prominent. For the model
parameter w we get a different picture (right figure). Since it is hard to display the
six dimensional case, for this demonstration we assume that w is a scalar parameter.
Due to the symmetric nature of problem, the linearization at the nominal parameter
ŵ provides a very bad approximation. The robust optimization utilizing a linear
approximation would lead to the same results as the nominal optimization. On the
other hand the quadratic approximation provides a very good approximation. Further,
by shifting the expansion point, one will obtain an even better approximation during
the optimization.

The introduced parametrization is realized in a box around the permanent mag-
net, see Figure 3 (left) red dashed lines. In blue lines the decomposition into the
triangular subdomains is indicated. For each pole we obtain 14 triangular domains.
The constraints g2,...,6 in the optimization problem guarantee that we stay within the
red dashed box and hence always have a feasible problem.

Let us next turn to the discretization. For the finite element discretization we use
the standard linear ansatz functions. We use a mesh with 42061 nodes. After removing
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Fig. 3. (left) Geometry of the PMSM (one pole) with details of the affine decomposition. The
red dashed lines indicate the region where the affine decomposition is performed and the blue lines
indicate the affine decomposition into the triangular subdomains. (right) Decay of the normalized
eigenvalues for the stator, rotor and interface .

points associated to the Dirichlet boundary and adding them to the right hand side we
end up with a system of N = 41880 unknowns. These are then partitioned into stator
and rotor with Ns = 30320 and Nr = 10660 degrees of freedom, respectively. The
interface is discretized by NI = 900 equidistant points. Hence for a full rotation, the
linear system (23) of dimension 41880 has to be solved 900 times giving us an overall
number of unknowns of 37692000. After introducing the finite element discretization
let us give some details on the model order reduction. The decay of the eigenvalues
for the stator, rotor and interface is shown in Figure 3 (right). In particular it can
be seen that the decay of the eigenvalues associated with the interface is very slow
which motivated the proposed strategy. Using Algorithm 3 we generate POD bases
for the stator and rotor independently. In Figure 4 the first three POD basis vectors
are shown for the stator and rotor. Also here it can be observed that the third basis
vector for the rotor contributes very little information since it is mostly zero (green)
with some contributions on the boundary to the interface. As a tolerance for the error
estimator we use ε = 10−2. Since we use an adaptive strategy we can not give the exact
number for the dimension of the ROM. It was observed that the ROM for the stator
is of dimension `s ≤ 20 and for the rotor `r ≤ 10. Hence the maximum dimension of
the ROM is `s+`r+NI = 930 for each position of the rotation. Overall we get 837000
unknowns in the ROM. It can be seen that this is a significant reduction compared
to the original setting. This reduction not only reduces computational cost but also
the storage cost. The implementation was carried out in MATLAB and performed on a
desktop PC in single thread mode.

To compare the effectiveness of the introduced methods we will perform the nu-
merical test utilizing the FEM and ROM. Then the results can be directly compared
and the efficiency of the proposed strategy can be interpreted. The SQP algorithm is
stopped when optimality is reached with a relative tolerance of 10−6. In Table 1 and
Table 2 we state the results obtained by FEM and ROM, respectively. We provide
the quantities volume V , the optimal parameter µ, the torque τ and the torque in the
worst case τwc for the initial configuration ‘Init.’, the nominal optimization ‘Nom.’,
the robust optimization ‘Rob.’ and the robust optimization using the moving expan-
sion point strategy ‘Rob. mov.’. Looking at the obtained results it can be seen that
the nominal optimization manages to reduce the volume of the permanent magnet
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Fig. 4. First three POD basis vectors for the stator (top) and rotor (bottom).

Table 1
Numerical results for the nominal and robust optimization using the FEM.

V µ τ τwc

Init. 133.00 (19.0000, 7.0000, 7.0000) 4.062170 3.864719
Nom. 62.84 (21.0735, 2.9820, 6.6102) 4.062170 3.804459
Rob. 101.14 (20.7582, 4.8722, 6.9023) 4.279193 4.057369

Rob. mov. 102.29 (20.7538, 4.9287, 6.8807) 4.286731 4.064957

significantly, by more than 50%, which is very desirable. On the other hand we can
also see that in the case of inaccuracy in manufacturing or material the performance
drops well below the desired torque τd given by the initial configuration. Even worse,
the solution obtained by the nominal optimization is outperformed by the initial con-
figuration. This is a very undesirable result. The robust optimization on the other
hand return a result that is robust with respect to the uncertainty. The price to pay
in this case is that the volume of the permanent magnet is not reduced as much as
in the nominal optimization. Still a reduction of more than 20% is achieved. It can
be seen that the robust optimization utilizing the moving expansion point strategy
provides a better approximation and hence performs better and the worst case value
is within the prescribed tolerance. Comparing the results obtained by FEM and ROM
it can be seen that the difference is very small. Considering that a tolerance of 10−2

is used in the basis generation of the ROM, the obtained results are very satisfying.
It is a natural question whether there exists an instance for a fixed parameter

w ∈ Uw,2 that realizes the objective function value of the robust counterpart. For the
case of uncertain linear programs with constraint-wise uncertainty it was shown in [5]
that under a boundedness assumption on the feasible sets there exists a worst case
instance that yields the optimal value of the robust counterpart. For the nonlinear
nonconvex case such a result can be expected only in particular cases.

To illustrate that in our case the optimal value of the robust counterpart is in fact
attained by an instance, we proceed as follows. For the optimal solution obtained by
the robust optimization with adaptive expansion point (see Rob. mov. in Table 1)
we compute the worst case wWC corresponding to inequality constraint g7 (the only
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Table 2
Numerical results for the nominal and robust optimization using the ROM.

V µ τ τwc

Init. 133.00 (19.0000, 7.0000, 7.0000) 4.062170 3.940564
Nom. 62.86 (21.0730, 2.9829, 6.6105) 4.062271 3.804873
Rob. 101.09 (20.7580, 4.8699, 6.9042) 4.278691 4.056902

Rob. mov. 102.26 (20.7532, 4.9275, 6.8823) 4.286302 4.064836

constraint that depends on w).
Then we fix the uncertain parameter w to wWC and perform a robust optimization

for the design µ. Table 3 shows the result. We see that the optimal design µ is
very close to the robust solution in Table 1. As a consequence, also the torque τ
corresponding to the optimal solution µ and the nominal parameter ŵ as well as the
worst case value τwc are very close to the values in Table 1.

Table 3
Solution of the robust optimization problem with respect to µ for fixed parameter w = wwc.

V µ τ τwc

Rob., w = wwc 101.58 (20.7532, 4.8947, 6.8798) 4.283122 4.061077

Let us now have a look at the computational time required for the optimization.
The performance is summarized in Table 4, where CPU time in seconds (wall clock)
and number of iterations ‘iter.’ are given. The computation time includes everything
except the mesh generation and the computation of the affine decomposition. It can be
seen that there is a huge increase in computational time for the robust optimization.
This is mainly due to the fact that a considerable number of PDEs have to be solved.
In the nominal case we require one PDE solve for the magnetic vector potential u
and three additional PDE solves for the sensitivities with respect to the variable
µ for the gradient computation. In the robust case on the other hand, we require
additional 54 sensitivities, i.e., PDE solves. This is due to the formulation we chose.
If a formulation utilizing the adjoint method [20, 57] is used a reduction can be
expected. Further, the computational cost can be reduced by exploiting parallel
structures in modern hardware which are neglected in this work. Comparing the

Table 4
Performance comparison of FEM and ROM in the optimization.

FEM ROM
iter. CPU time iter. CPU time Factor

Nom. 14 41928 13 2508 16.72
Rob. 9 300820 7 15385 19.55

Rob. mov. 9 304875 7 14885 20.48

performance of the FEM and ROM we can observe a significant speed up. For both the
nominal and robust optimization a factor of more than 15 is achieved. When putting
this in relation with the number of iterations we see a significant speed up. The
optimization using then ROM is then done within one iteration of the optimization
using FEM. Further, the robust optimization using ROM is significantly faster than
the nominal optimization using FEM. These are very satisfying results and underline
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that the proposed strategy allows for a very efficient realization of robust optimization
problems with PDE constraints.

6. Conclusion. In this work we have developed a robust optimization frame-
work utilizing quadratic approximation of the worst case function. We combined the
new approach with existing techniques utilizing linear approximations. In order to
apply the strategies to PDE constrained optimization problems efficiently, we intro-
duced a modified POD strategy which utilizes a greedy type approach to generate
reduced order models. An adaptive strategy which utilizes a-posteriori error esti-
mators is proposed. The techniques are then applied to an optimal control problem
governed by a parametrized elliptic PDE with application to PMSM. It turns out that
the approximation techniques for the robust optimization combined with the intro-
duced model order reduction present a very attractive framework to solve this type
of problems.
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[40] T. Lehnhäuser and M. Schfer, A numerical approach for shape optimization of fluid flow
domains, Computer Methods in Applied Mechanics and Engineering, 194 (2005), pp. 5221–
5241.

[41] S. Leyffer, Complementarity constraints as nonlinear equations: Theory and numerical ex-
perience, in Optimization with Multivalued Mappings: Theory, Applications, and Algo-
rithms, S. Dempe and V. Kalashnikov, eds., vol. 2 of Springer Series in Optimization and
Its Applications, Springer, 2006, pp. 169–208.

[42] S. Leyffer, G. Løpez-Calva, and J. Nocedal, Interior methods for mathematical programs
with complementarity constraints, SIAM Journal on Optimization, 17 (2006), pp. 52–77.

[43] M. Liu, X. Li, and D. Pu, A feasible flter SQP algorithm with global and local convergence,
Journal of Applied Mathematics and Computing, 40 (2012), pp. 261–275.



28 O. LASS, AND S. ULBRICH

[44] F. Negri, G. Rozza, A. Manzoni, and A. Quateroni, Reduced basis method for parametrized
elliptic optimal control problems, SIAM Journal on Scientific Computing, 35 (2013),
p. A2316A2340.

[45] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operation Research
and Financial Engineering, Springer, 2ed ed., 2006.

[46] B. Øksendal, Optimal control of stochastic partial differential equations, Stochastic Analysis
and Applications, 23 (2005), pp. 165–179.

[47] U. Pahner, A general design tool for terical optimization of electromagnetic energy transduc-
ers, PhD thesis, KU Leuven, 1998.

[48] A. T. Patera and G. Rozza, Reduced Basis Approximation and A Posteriori Error Esti-
mator for Parameterrametrized Partial Differential Equations, MIT Pappalardo Graduate
Monographs in Mechanical Engineering, MIT, 2006.

[49] M. J. D. Powell, The BOBYQA algorithm for bound constrained optimization without deriva-
tives, technical report NA2009/06, Department of Applied Mathematics and Theoretical
Physics, Cambridge, England, 2009.

[50] T. W. Preston, A. B. J. Reece, and P. S. Sangha, Inuction motor analysis by time-stepping
techniques, IEEE Transactions on Magnetics, 24 (1988), pp. 471–474.

[51] A. U. Raghunathan and L. T. Biegler, An interior point method for mathematical programs
with complementarity constraints (mpccs), SIAM Journal on Optimization, 15 (2005),
pp. 720–750.

[52] G. Rozza, D. B. P. Huynh, and A. T. Patera, Reduced basis approximation and a posteriori
error estimation for affinely parametrized elliptic coercive partial differential equations,
Archives of Computational Methods in Engineering, 15 (2008), pp. 229–275.

[53] J. A. Samareh, A survey of shape parametrization techniques, Tech. Report NASA/CP-1999-
2009136, NASA, 1999.

[54] T. W. Sederberg and S. R. Parry, Free-form deformation of solid geometric models, Com-
puter Graphics, 20 (1986), pp. 151–160.

[55] X. Shi, Y. Le Menach, J. P. Ducreux, and F. Piriou, Comparison of slip surface and moving
band techniques for modelling movement in 3D with FEM, The international journal for
computation and mathematics in electrical and electronic engineering, 25 (2006), pp. 17–30.

[56] A. Shpiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming: Mod-
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