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Abstract In this paper the reduced basis (RB) method is applied to solve
quadratic multiobjective optimal control problems governed by linear param-
etrized variational equations. These problems often arise in applications, where
the quality of the system behavior has to be measured by more than one
criterium. The weighted sum method is exploited for defining scalar-valued
linear-quadratic optimal control problems built by introducing additional op-
timization parameters. The optimal controls corresponding to specific choices
of the optimization parameters are efficiently computed by the RB method.
The accuracy is guaranteed by an a-posteriori error estimate. An effective
sensitivity analysis allows to further reduce the computational times for iden-
tifying a suitable and representative set of optimal controls.
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1 Introduction

In real applications, optimization problems are often described by introducing
several objective functions conflicting with each other. This leads to multiob-
jective or multicriterial optimization problems; see, e.g., [7,9,11,31]. Finding
the optimal control that represents a good compromise is the main issue in
these problems. For that reason the concept of Pareto optimal or efficient
points is developed. In contrast to scalar-valued optimization problems, the
computation of a set of Pareto optimal points is required. Consequently, many
scalar-valued constrained optimization problems have to be solved.

In the present paper, we study infinite dimensional multiobjective opti-
mization problems governed by k ≥ 2 quadratic objectives and by linear
parametrized variational constraints described by a weak formulation of a
linear parametrized elliptic partial differential equation (PDE). For the nu-
merical solution, we apply the weighted sum method [35], where parametrized
scalar-valued quadratic programming problems have to be solved for many
parameter values in order to define a sufficiently accurate approximation of
the set of Pareto optimal points. Note that we have two sorts of parameters
in our problem: parameters related to the variational constraints and param-
eters required by the scalarization of the multiobjective problem through the
weighted sum method. Our scalar-valued parametrized optimal control prob-
lems are infinite dimensional optimization problems (see [16,32] for PDE con-
strained problems). After a discretization by a high-fidelity (HF) discretiza-
tion technique like finite elements or finite volumes, the Pareto points can be
computed by solving many large scale parametrized optimization problems.
Therefore, we make use of a reduced basis (RB) approximation [26], which is
known to be very efficient for parametrized linear-quadratic optimal control
problems [8,12]. Let us also refer to [33] for POD based Galerkin schemes for
time-dependent linear-quadratic optimal control problems, the latter work is
extended to nonlinear problems in [22].

The contribution of the present work is a successful combination of the
greedy approach for parametrized linear-quadratic optimal control problems
[24] with the weighted sum method. In each iteration of the greedy method
appropriate Pareto points to the HF multiobjective optimization problem are
computed and used as basis functions in the reduced-order discretization. For
the construction of an accurate RB scheme, we apply the a-posteriori error
analysis presented in [24]. For each value of the parameters, the RB method
allows to drastically reduce the computational times required for the optimal
solution of the corresponding scalar-valued quadratic programming problem.
The complete set of Pareto points is defined by solving the problem for all
the parameter values. A sensitivity analysis for the objectives allows us to re-
duce the number of scalar-valued optimization solutions in the weighted sum
method. To sum up, our strategy allows to compute a sufficiently accurate
RB approximation of the set of Pareto optimal points for an arbitrarily cho-
sen parameter in the variation constraints. The present approach is already
utilized for more general problems including time-dependence and semilinear
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state equations in [21]. Further preliminary results combining reduced-order
modeling and multiobjective PDE-constrained optimization are recently de-
rived in [2,27], where different optimization methods are used.

The paper is organized as follows: in Section 2 we introduce the multiob-
jective optimal control problem and we recall the definition of efficient points
and Pareto optimal points. The first-order optimality conditions for the scalar-
valued parametrized minimization problems are formulated as a saddle point
problem in Section 3. Here we also introduce a HF approximation of the saddle
point problem. In Section 4 the RB discretization of the saddle point problem
is proposed. Moreover, we discuss the offline and online decomposition of the
RB method and, finally, the a-posteriori error estimate from [24] is formulated
for our problem. In Section 5 the sensitivity analysis is described. Numeri-
cal experiments are shown in Section 6. Finally we draw some conclusions in
Section 7.

2 The multiobjective optimization problem

In this section we introduce a constrained multiobjective optimal control prob-
lem. The equality constraint is given by a parametrized affine variational equa-
tion, which stands for a weak formulation of a parameter-dependent linear
elliptic partial differential equation. The parameter can refer to geometrical or
model features of the variational equation.

2.1 The state equation. Let V and H be real, separable Hilbert spaces and
suppose that V is dense in H with compact embedding. We denote by 〈· , ·〉H
and 〈· , ·〉V the inner products in H and V , respectively.

The set Dc ⊂ Rnc , nc ∈ N, stands for all considered geometrical and/or
model parameters. We suppose that for every parameter µc ∈ Dc the parameter-
dependent symmetric bilinear form a(· , · ;µc) : V × V → R satisfies

inf
ϕ∈V

a(ϕ,ϕ;µc)

‖ϕ‖2V
≥ η1 for all ϕ ∈ V,∣∣a(ϕ, φ;µc)

∣∣ ≤ η2 ‖ϕ‖V ‖φ‖V for all ϕ, φ ∈ V,
(1)

where η1 > 0 and η2 ≥ 0 are independent of µc. By identifying H with its
dual H ′ we have V ↪→ H = H ′ ↪→ V ′, each embedding being continuous and
dense. The parameter-dependent inhomogeneity f(µc) is supposed to belong
to V ′ for every µc ∈ Dc.

We assume that the set U of admissible controls is a real, separable Hilbert
space endowed with the inner product 〈· , ·〉U and the induced norm ‖ · ‖U =

〈· , ·〉1/2U . For a parameter µc ∈ Dc and for a control u ∈ U , the state y ∈ V
solves the following linear elliptic and coercive variational problem

a(y, ϕ;µc) = 〈f(µc) + Eu, ϕ〉V ′,V for all ϕ ∈ V, (2)
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where 〈· , ·〉V ′,V stands for the dual pairing between V and its dual space V ′

and E belongs to the Banach space L(U, V ′) of all bounded, linear operators
from U to V ′ equipped with the norm

‖E‖L(U,V ′) = sup
{
‖Eu‖V ′

∣∣u ∈ U and ‖u‖U = 1
}
.

The following result follows from the standard variational theory; see, e.g., [10,
Chapter 6].

Proposition 2.1 Suppose that (1) and E ∈ L(U, V ′) hold. Then, for every
µc ∈ Dc, u ∈ U and f(µc) ∈ V ′ there is a unique weak solution y = y(µc) ∈ V
satisfying (2) and

‖y‖V ≤ η
(
‖f(µc)‖V ′ + ‖u‖U

)
(3)

for the constant η = (1 + ‖E‖L(U,V ′))/η1 > 0.

Remark 2.2 (Control-to-state operator) Let µc ∈ Dc be chosen arbitrarily.
Due to Proposition 2.1 there exists a unique solution ŷ = ŷ(µc) ∈ V to

a(ŷ, ϕ;µc) = 〈f(µc), ϕ〉V ′,V for all ϕ ∈ V.

Furthermore, we define the parameter-dependent linear mapping S = S(µc) :
U → V as follows: y = S(µc)u, thanks again to Proposition 2.1, is the unique
solution to

a(y, ϕ;µc) = 〈Eu, ϕ〉V ′,V for all ϕ ∈ V.
Then, y = ŷ+Su solves (2). It follows from (3) that the operator S is bounded
for every µc ∈ Dc.

2.2 The vector-valued cost functional. We set X = V ×U and introduce
the following vector-valued objective J : X → Rk

Ji(x) =
1

2
‖Ciy − wi‖2Wi

for i = 1, . . . , k − 1 and Jk(x) =
γ

2
‖u‖2U ,

where x = (y, u) ∈ X, W1, . . . ,Wk−1 are (real) Hilbert spaces, Ci ∈ L(V,Wi)
and wi ∈ Wi hold for 1 ≤ i ≤ k − 1. Furthermore, γ > 0 is a regularization
parameter.

Example 2.3 Let us give an application which is utilized in our numerical
experiments carried out in Section 6. Suppose that Ω is an open and bounded
domain in R2 with Lipschitz-continuous boundary Γ = ∂Ω. We set H =
L2(Ω), H2 = H × H and V = H1(Ω). For more details on Lebesgue and
Sobolev spaces we refer the reader to [10, Chapter 5], for instance. Let k = 3
and W1 = H, W2 = H ×H. The operator C1 is the canonical embedding from
V into H, the mapping C2 is given by C2y = ∇y ∈ W2 for y ∈ V and w2 = 0
holds. Then, for x = (y, u) ∈ X the first two components of the cost functional
are given by

J1(x) =
1

2

∫
Ω

∣∣y(x)− w1(x)
∣∣2 dx and J2(x) =

1

2

∫
Ω

∣∣∇y(x)
∣∣2
2

dx,

where | · |2 denotes the Euclidean norm in R2.
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Due to Remark 2.2 the state y = S(µc)u is uniquely determined by a con-
trol u ∈ U for any parameter µc ∈ Dc. This is an intrinsic property of optimal
control problems. Motivated by this fact we reduce the number of optimization
variables by eliminating the control-dependent state variable in the objective:
We define the parameter-dependent reduced cost functional Ĵ(· ;µc) : U → Rk
for any µc ∈ Dc by

Ĵ(u;µc) = J(ŷ(µc) + S(µc)u, u) =
1

2


‖Ĉ1(µc)u− ŵ1(µc)‖

2

W1

...

‖Ĉk−1(µc)u− ŵk−1(µc)‖
2

Wk−1

γ ‖u‖2U

 ,

where we set Ĉi(µc) = CiS(µc) ∈ L(U,Wi) and ŵi(µc) = wi − Ciŷ(µc), for
i = 1, . . . , k − 1.

2.3 The multiobjective optimal control problem. To define our mul-
tiobjective optimization problem the concepts of order relation and Pareto
optimality is needed; see, e.g., Chapter 3 in [15].

Definition 2.4 (Order relation) Let (Rk,≤) denote the order relation in
Rk defined by

z1 ≤ z2 ⇔ z2 − z1 ∈ Rk+ =
{
z ∈ Rk

∣∣ zi ≥ 0 for i = 1, . . . , k
}

for all z1, z2 ∈ Rk.

Definition 2.5 (Pareto optimal) Let Z = Ĵ(U ;µc) ⊂ Rk be the image set
of U under the cost functional Ĵ(· ;µc) for a given µc ∈ Dc.

1) We call a point z̄ ∈ Z globally efficient with respect to the order relation
≤, if there exists no z ∈ Z \ {z̄} with z ≤ z̄.

2) If z̄ is efficient and ū ∈ U satisfies z̄ = Ĵ(ū;µc), we call ū Pareto optimal.
3) Let ū ∈ U hold. If there exists a neighborhood N(ū) ⊂ U of ū so that

z̄ = Ĵ(ū;µc) is efficient for the (local) image set Ĵ(N(ū);µc) ⊂ Z, the
point ū is called locally Pareto optimal. Moreover, z̄ is said to be locally
efficient.

The parametrized multiobjective optimal control problem can be defined as
follows: Find Pareto optimal points for the vector-valued reduced cost func-
tional Ĵ(· ;µc) for any µc ∈ Dc.

2.4 First-order optimality conditions. The cost functional Ĵ(· ;µc) is con-
tinuously differentiable for every µc ∈ Dc. First-order necessary optimality
conditions for Pareto optimality are presented in the next theorem which is
proved in [9, Theorem 3.21 and Corollary 3.23]. The proof is based on the
result of Kuhn-Tucker [23].
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Theorem 2.6 Suppose that ū ∈ U is Pareto optimal. Then, there exists a
parameter vector µ̄o = (µ̄0,1, . . . , µ̄o,k) ∈ Rk satisfying the Karush-Kuhn-
Tucker conditions

0 ≤ µ̄o,i ≤ 1,

k∑
i=1

µ̄o,i = 1 and

k∑
i=1

µ̄o,iĴ
′
i(ū;µc) = 0. (4)

Since all k components of Ĵ(· ;µc) are convex on U , (4) is also a sufficient
condition for ū to be Pareto optimal.

Motivated by Theorem 2.6, let us choose 0 < µlb � 1 and define the set

Do =

{
µo = (µo,i) ∈ Rk+

∣∣∣ k∑
i=1

µo,i = 1, µo,k ≥ µlb
}
⊂ [0, 1]× . . .× [0, 1]︸ ︷︷ ︸

k-times

for the optimization parameters in (4). Let us mention that the condition
µo,k ≥ µlb will be necessary for the well-posedness of the scalar-valued opti-

mal problem (P̂µ) introduced below. Moreover, we combine the optimization
parameters with the parameters involved in the state equation (2) by setting
D = Do ×Dc ⊂ Rn with n = k + nc. For any µ = (µo,µc) ∈ D we define the
parameter-dependent, quadratic, scalar-valued cost functional as

Ĵ(u;µ) =

k∑
i=1

µo,iĴi(u;µc) = µ>o Ĵ(u;µc) for u ∈ U,

where the symbol ‘>’ stands for the transpose of a vector or matrix. Then, (4)
are the first-order suffiient optimality conditions for a local solution ū = ū(µ)
to the parameter-dependent quadratic optimization problem

min Ĵ(u;µ) subject to (s.t.) u ∈ U (P̂µ)

for the parameter µ = µ̄. In the weighted sum method – first introduced by
Zadeh [35] – Pareto optimal points are computed by solving (P̂µ) for various

µo ∈ Do; see [9, Chapter 3], for instance. To solve (P̂µ) we can apply methods
from quadratic programming; see, e.g., [25, Chapter 16].

Remark 2.6 1) We apply the weighted sum method in this paper to compute
Pareto optimal points for a given parameter µc ∈ Dc. The computation
of the Pareto optimal points requires the solution of many scalar-valued
optimization problems. Since we are interested in the Pareto optimal points
for any µc ∈ Dc, we have to solve a very large number of optimal control
problems. For this reason we propose a reduced-order approach using the
reduced-basis method.

2) The reduced basis approximation allows a very fast computation of an
approximate (i.e., suboptimal) solution to (P̂µ). Moreover, we can estimate
the error between the suboptimal and the (unknown) optimal solution to
(P̂µ). Therefore, we can ensure that our computed (suboptimal) Pareto
optimal points are sufficiently accurate.
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3) Note that µo,k = 1 −
∑k−1
i=1 µo,i holds, which is utilized in our numerical

experiments. Nevertheless, for sake of notation simplicity µo,1, . . . , µo,k will
be considered as independent parameters.

3 Optimality system for the scalar-valued quadratic problem

Let µ = (µo,µc) ∈ D be arbitrarily given. The solution of scalar-valued mini-
mization problem (P̂µ) can be characterized by its Karush-Kuhn-Tucker con-
ditions, which leads to a system of variational problems having the structure
of a saddle point problem and containing the state equation, the adjoint equa-
tion and the optimality condition. This saddle point structure is particularly
advantageous, since its solution can be efficiently solved by the RB method.

3.1 Saddle point formulation for (P̂µ). First we mention that (P̂µ) is a
quadratic programming problem. We set Z = X×V . Let us define the bilinear
forms

A(x, x̃;µ) =

k−1∑
i=1

µo,i 〈Ciy, Ciỹ〉Wi
+ µo,kγ 〈u, ũ〉U ,

B(x, p̃;µ) = a(y, p̃;µc)− 〈Eu, p̃〉V ′,V
for all x = (y, u) ∈ X and (x̃, p̃) ∈ Z with x̃ = (ỹ, ũ).

Lemma 3.1 Suppose that (1), E ∈ L(U, V ′), γ > 0, µ ∈ D and Ci ∈ L(V,Wi)
for 1 ≤ i ≤ k − 1. Then:

1) The mapping X 3 x 7→ B(x, · ;µ) ∈ V ′ is continuous and surjective.
2) For the constant η > 0 introduced in (3) we have

‖ỹ‖V ≤ η ‖ũ‖U for all (ỹ, ũ) ∈ X0, (1)

where we define X0 = {x ∈ X | B(x, p̃;µ) = 0 for all p̃ ∈ V } ⊂ X.
3) The bilinear form A(· , · ;µ) is continuous on X ×X and coercive on X0.

In particular, we have

A(x̃, x̃;µ) ≥ α ‖x̃‖2X for all x̃ ∈ X0, (2)

where α = µlbγmin(1/η, 1)/2 is independent of µ.

Proof 1) The continuity follows directly from (1) and E ∈ L(U, V ′). To verify
that x 7→ B(x, · ;µ) is surjective we have to show that there exists an
element x = (y, u) ∈ X such that B(x, · ;µ) = F holds in V ′ for any
F ∈ V ′. From B(x, · ;µ) = F it follows that

a(y, p;µc)− 〈Eu, p〉V ′,V = 〈F, p〉V ′,V for all p ∈ V. (3)

Equation (3) coincides – after replacing F by f(µc) – with the state equa-
tion (2), which is uniquely solvable. Hence, for any u ∈ U there exists a
unique state y(u) ∈ V satisfying B(x, · ;µ) = F in V ′ with x = (y(u), u),
i.e., the mapping x 7→ B(x, · ;µ) is surjective from X to V ′.
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2) Let p ∈ V be chosen arbitrarily and (ỹ, ũ) ∈ X0. Then, a(ỹ, p;µc) =
〈E ũ, p〉V ′,V holds, which is the state equation for the choice f(µc) = 0.
Thus, (1) follows directly from (3).

3) The continuity of A(· , · ;µ) follows directly from Ci ∈ L(V,Wi), 1 ≤ i ≤
k − 1. Let (x, p) ∈ Z hold. By definition of the parameter set Do we have
µo,k ≥ µlb > 0. Moreover, γ is positive. Utilizing (1), it follows that

A(x̃, x̃;µ) =

k−1∑
i=1

µo,i ‖Ciỹ‖2Wi
+ µo,kγ ‖ũ‖2U ≥ µo,kγ ‖ũ‖

2
U ≥ µlbγ ‖ũ‖

2
U

≥ µlbγ

2

(
1

η
‖ỹ‖2V + ‖ũ‖2U

)
for all x̃ = (ỹ, ũ) ∈ X0,

which imply (2). �

Remark 3.2 From closed range theory [4, Chapter 2] and Lemma 3.1-1) we
infer that

β(µ) := inf
p∈V

sup
x∈X

B(x, p;µ)

‖x‖X‖p‖V
> 0 for all µ ∈ D. (4)

The condition (4) is called the Brezzi inf-sup-condition and β(µ) the Brezzi
inf-sup constant; see [5]. It follows from [24, Lemma 2.1] that β(µ) ≥ α is valid
for all µ ∈ D. Hence the Brezzi inf-sup constant is bounded from below by a
positive constant which is independent of the parameter µ.

Utilizing Lemma 3.1 the existence of a unique solution ū = ū(µ) for (P̂µ)
can be proved in a standard way for any µ ∈ D; see, e.g., [16,32]. We introduce
the µ-dependent Lagrangian functional for (P̂µ) as

L(x, p;µ) =

k∑
i=1

µo,iJi(x;µc) + a(y, p;µc)− 〈f(µc) + Eu, p〉V ′,V ,

where x = (y, u) ∈ X stands for the primal variable, p ∈ V is the Lagrange
multiplier (or adjoint variable) associated with the equality constraint (2) and
µ ∈ D holds. The optimal solution ū can be characterized by first-order suf-
ficient optimality conditions: ū satisfies together with the unique associated
optimal state ȳ = ȳ(µ) and optimal adjoint p̄ = p̄(µ) the coupled linear equa-
tion system

0 =
∂L
∂y

(x̄, p̄;µ)y = a(y, p̄;µc) +

k−1∑
i=1

µo,i 〈Ciȳ − wi, Ciy〉Wi
,

0 =
∂L
∂u

(x̄, p̄;µ)u = µo,kγ 〈ū, u〉U − 〈Eu, p̄〉V ′,V ,

0 =
∂L
∂p

(x̄, p̄;µ)p = a(ȳ, p;µc)− 〈f(µc) + E ū, p〉V ′,V ,
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for all directions (x, p) ∈ Z with x = (y, u). In order to write the first-order
optimality conditions in a more compact form, we define the two linear forms

F(x̃;µ) =

k−1∑
i=1

µo,i 〈wi, Ciỹ〉Wi
, G(p̃;µ) = 〈f(µc), p̃〉V ′,V ,

for any x = (y, u) ∈ X and (x̃, p̃) ∈ Z with x̃ = (ỹ, ũ). The first-order op-
timality conditions can be expressed as follows: find (x̄(µ), p̄(µ)) ∈ Z such
that

A(x̄(µ), x;µ) + B(x, p̄(µ),µ) = F(x;µ) for all x ∈ X,
B(x̄(µ), p;µ) = G(p;µ) for all p ∈ V.

(5)

Proposition 3.3 Let all hypotheses of Lemma 3.1 be satisfied. Then, (5) ad-
mits a unique solution (x̄(µ), p̄(µ)) ∈ Z with x̄(µ) = (ȳ(µ), ū(µ)) for any
parameter µ ∈ D.

Proof The claim follows from the Brezzi theorem [6, Chapter II.1.1] and Lemma 3.1.
�

Remark 3.4 Note that (5) involves optimization parameters µo ∈ Do as well
as geometrical or model parameters µc ∈ Dc.

3.2 High-fidelity (HF) Galerkin approximation. The parametrized prob-
lem (5) is an infinite-dimensional saddle point problem which has to be dis-
cretized for computing its numerical solution. Hence, we introduce a HF Galerkin
approximation of (5). Let us assume that {ϕi}N1

i=1 and {φi}N2
i=1 denote sets of

linearly independent basis functions in V and U , respectively, where N1 ∈ N
and N2 ∈ N are typically very large. We set N12 = N1 +N2. We introduce the
finite dimensional spaces:

V N = span
{
ϕ1, . . . , ϕN1

}
⊂ V, UN = span

{
φ1, . . . , φN2

}
⊂ U.

The high-fidelity Galerkin approximation of the optimality system (5) reads
as follows: find (x̄N (µ), p̄N (µ)) ∈ ZN such that

A(x̄N (µ), xN ;µ) + B(xN , p̄N (µ),µ) = F(xN ;µ) for all xN ∈ XN ,
B(x̄N (µ), pN ;µ) = G(pN ;µ) for all pN ∈ V N ,

(6)

where we have set ZN = XN×V N ,XN = V N×UN , x̄N (µ) = (ȳN (µ), ūN (µ))
and

ȳN (µ) =

N1∑
i=1

x̄Ni (µ)ϕi =

N1∑
i=1

ȳNi (µ)ϕi, p̄N (µ) =

N1∑
i=1

p̄Ni (µ)ϕi,

ūN (µ) =

N2∑
i=1

x̄NN1+i(µ)φi =

N2∑
i=1

ūNi (µ)φi.

The following results can be derived by the same arguments in the proof of
Lemma 3.1.
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Lemma 3.5 Suppose that (1), E ∈ L(U, V ′), γ > 0, µ ∈ D and Ci ∈ L(V,Wi)
for 1 ≤ i ≤ k − 1. Then it follows:

1) The mapping XN 3 xN 7→ B(xN , · ;µ) ∈ (V N )′ is continuous and surjec-
tive.

2) The bilinear form A(· , · ;µ) is continuous on XN × XN and coercive on
the subspace XN0 = {xN ∈ XN

∣∣B(xN , pN ;µ) = 0 for all pN ∈ V N }, i.e.,

A(x̃N , x̃N ;µ) ≥ α ‖x̃N ‖2X for all x̃N ∈ XN0 ,

where the coercivity constant α is the same as in (2).

Remark 3.6 As in Remark 3.2 it follows from closed range theory and Lemma 3.5-
1) that the Brezzi HF inf-sup condition hold:

βN (µ) := inf
pN∈V N

sup
xN∈XN

B(xN , pN ;µ)

‖xN ‖X‖pN ‖V
> 0 for all µ ∈ D.

Since the state yN and the adjoint pN belong to the same subspace V N we
derive analogously to the proof of Lemma 2.1 in [24] that βN (µ) ≥ α > 0,
where α = µlbγmin(1/η, 1)/2 is independent of Nand µ.

Proposition 3.6 Let all hypotheses of Lemma 3.5 hold. Then, (6) possesses
a unique solution (x̄N (µ), p̄N (µ)) for any parameter µ ∈ D.

Proof The existence of a unique solution to (6) is ensured by the Brezzi theo-
rem [6, Chapter II.1.1] and Lemma 3.5. �

The numerical solution of problem (6) leads to a linear algebraic system of
dimension N12 +N1 of the following structure:

N12∑
j=1

ANij (µ)x̄Nj (µ) +

N1∑
j=1

BNji (µ)p̄Nj (µ) = FNi (µ), i = 1, . . . ,N12,

N12∑
j=1

BNij (µ)x̄Nj (µ) = GNi (µ), i = 1, . . . ,N1,

(7)

where the matrices AN ∈ RN12×N12 , BN ∈ RN12×N1 and the vectors FN ∈
RN12 , GN ∈ RN1 are given by

ANij (µ) =


A
(
(ϕj , 0), (ϕi, 0);µ

)
, i, j = 1, . . . ,N1,

A
(
(0, φj−N1), (0, φi−N1);µ

)
, i, j = N1 + 1, . . . ,N12,

0 otherwise,

BNij (µ) =

{
B
(
(ϕj , 0), ϕi;µ

)
, i, j = 1, . . . ,N1,

B
(
(0, φj−N1

), ϕi;µ
)
, i = 1, . . . ,N1, j = N1 + 1, . . . ,N12,

FNi (µ) =

{
F
(
(ϕi, 0);µ

)
, i = 1, . . . ,N1,

F
(
(0, φi−N1);µ

)
, i = N1 + 1, . . . ,N12,

GNi (µ) = G(ϕi;µ), i = 1, . . . ,N1.
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Remark 3.6 (Motivation for the reduced-order approach) In order to compute a
sufficiently accurate approximation (x̄N , p̄N ) ∈ ZN of the solution (x̄, p̄) ∈ Z
to the infinite dimensional saddle point problem (5), we generally have to
choose large N1 and N2. Consequently, the solution of system (7) could require
long computational times. Moreover, to compute approximations of the Pareto
optimal points for various geometrical and/or model parameters we have to
solve (7) for many different parameters µ ∈ D. The following reduced-basis
approach is proposed for allowing very fast and accurate solutions of the saddle
point problem.

4 Reduced basis (RB) approximation

The basic idea of the RB method is to exploit the smooth parametric depen-
dence of the saddle point problem (6) and to define small and suitable basis
spaces where the problem is defined. The RB method consists in two main
stages. During the first one, so called offline phase, we define the reduced ba-
sis functions that are solution of the problem system for a properly chosen set
of parameter values. After the computationally expensive offline stage, during
the online phase, for any new value of the parameter µ ∈ D, the RB method
provides a very effective dataset for the computation of a accurate, reliable
and fast approximation of the problem solution.

4.1 The offline phase. In order to define the reduced basis spaces, we build
a set of parameter samples Sµ

N =
{
µ1, . . . ,µN

}
⊂ D and correspondingly

the pairs {(x̄N (µi), p̄N (µi))}Ni=1 ⊂ ZN which are solutions to (6) for param-
eters µi ∈ Sµ

N , i = 1, . . . , N . The choice of the parameter set SµN can be done
by using both the classical greedy algorithm, reviewed in [29], and the op-
timization greedy, recently proposed in [34], particularly useful for problems
involving a large number of parameters, i.e., a large number of cost functionals
or distributed parameter functions [20,18].

The RB approximation of (6) consists in a Galerkin projection onto low
dimensional subspaces spanned by the solution pairs {(x̄N (µi), p̄N (µi))}Ni=1.
In order to guarantee the approximation stability of the RB method for the
saddle point problem, we fulfill the inf-sup condition by defining the following
spaces:

V N = span
{
ȳN (µ1), . . . , ȳN (µN )

}
⊕ span

{
p̄N (µ1), . . . , p̄N (µN )

}
,

UN = span
{
ūN (µ1), . . . , ūN (µN )

}
.

Let {ψi}2Ni=1 and {ζi}Ni=1 denote orthonormal bases for V N and UN , respec-
tively. We set XN = V N × UN and ZN = XN × V N . The use of the
same subspace for the state and ajoint is cruical for stability of the reduced
basis method. The RB approximation of problem (6) reads: find the pair
(x̄N (µ), p̄N (µ)) ∈ ZN such that

A(x̄N (µ), xN ;µ) + B(xN , p̄N (µ);µ) = F(xN ;µ) for all xN ∈ XN ,

B(x̄N (µ), pN ;µ) = G(pN ;µ) for all pN ∈ V N .
(1)
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Proposition 4.1 Let all hypotheses of Lemma 3.5 hold. Then, there exists a
unique solution (x̄N (µ), p̄N (µ)) to (1).

Proof As in Lemma 3.5-1) and Remark 3.6 we find that

βN (µ) := inf
pN∈V N

sup
xN∈XN

B(xN , pN ;µ)

‖xN‖X‖pN‖V
for all µ ∈ D

fulfills a Brezzi RB inf-sup condition

βN (µ) ≥ α > 0 for all µ ∈ D, (2)

where α = µlb min(1/η, 1)/2 has been introduced in (2). Since XN is a sub-
space of XN we infer as in Lemma 3.5-2) that

A(x̃N , x̃N ;µ) ≥ α ‖x̃N‖2X for all x̃N ∈ XN
0 , (3)

where XN
0 = {xN ∈ XN | B(xN , pN ;µ) = 0 for all pN ∈ V N}. From (2) and

(3) it follows that (1) admits a unique solution. �

We have already mentioned that in the offline phase the selection of Sµ
N

and the computation of the basis functions are carried out. In the offline phase,
we also compute the parameter independent parts of the coefficient matrices
and vectors, occurring in the algebraic formulation of (1). This allows us to
accelerate our computational effort in the online phase. For this purpose, an
affine decomposition of the linear and bilinear forms is required. In particular,
we note that A(· , · ;µ) and F(· ;µ) are affine by definition. Thus, we require
the affine parametric dependence of the µ-dependent expressions involved in
the state equation (2), i.e., the forms a(· , · ;µc) and f(µc) with µc ∈ Dc.
However, if they are not affine, it is possible to approximate them by affine
linear and bilinear forms through the empirical interpolation method [3]. So
that it is possible to decouple the forms for any parameter µ ∈ D as follows:

A(x, x̃;µ) =

`A∑
i=1

ΘiA(µ)Ai(x, x̃), F(x;µ) =

`F∑
i=1

ΘiF (µ)F i(x̃)

and to approximate

B(x, p;µ) ≈
`B∑
i=1

ΘiB(µ)Bi(x, p), G(p;µ) ≈
`G∑
i=1

ΘiG(µ)Gi(p),

for x = (y, u) ∈ X and (x̃, p̃) ∈ Z with x̃ = (ỹ, ũ). Thanks to these assump-
tions, the following low dimensional matrices can be computed only once and
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during the offline phase:

Ai1ij =


Ai1
(
(ψj , 0), (ψi, 0)

)
, i, j = 1, . . . , 2N,

Ai1
(
(0, ζj−2N ), (0, ζi−2N )

)
, i, j = 2N + 1, . . . , 3N,

0 otherwise,

Bi2ij =

{
Bi2
(
(ψj , 0), ψi

)
, i, j = 1, . . . , 2N,

Bi2
(
(0, ζj−2N ), ψi

)
, i = 1, . . . , 2N, j = 2N + 1, . . . , 3N,

F i3i =

{
F i3
(
(ψi, 0)

)
, i = 1, . . . , 2N,

F i3
(
(0, ζi−2N )

)
, i = 2N + 1, . . . , 3N,

Gi4i = Gi4(ψi), i = 1, . . . , 2N

for 1 ≤ i1 ≤ `A, 1 ≤ i2 ≤ `B, 1 ≤ i3 ≤ `F , and 1 ≤ i4 ≤ `G .

4.2 The online phase. In the online phase the parameter dependent part of
the system can be rapidly evaluated for each new parameter value. Finally, a
low dimensional linear system can be assembled and solved efficiently during
the online stage for any new value of µ ∈ D. Analogously to (7), the algebraic
formulation of (1) is the following:

3N∑
j=1

ANij (µ)x̄Nj (µ) +

2N∑
j=1

BNji (µ)p̄Nj (µ) = FNi (µ), i = 1, . . . , 3N,

3N∑
j=1

BNij (µ)x̄Nj (µ) = GNi (µ), i = 1, . . . , 2N,

(4)

where

AN (µ) =

`A∑
i=1

ΘiA(µ)Ai, FN (µ) =

`F∑
i=1

ΘiF (µ)F i,

BN (µ) =

`B∑
i=1

ΘiB(µ)Bi, GN (µ) =

`G∑
i=1

ΘiG(µ)Gi.

The solution vectors x̄ = (x̄Ni ) ∈ R3N and p̄N = (p̄Ni ) ∈ R2N to (4) define the
final RB solutions:

ȳN =

2N∑
i=1

x̄Ni ψi, ūN =

N∑
i=1

x̄Ni+2Nζi and p̄N =

2N∑
i=1

p̄Ni ψi.
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4.3 A-posteriori error estimates A rigorous error estimate is one of the
most important ingredients of the RB method. It allows to define a suitable, ef-
ficient and relatively fast selection of the parameter set Sµ

N in the offline phase
and it provides a certified level of accuracy of the approximate solution com-
pared with the high-fidelity solution in the online phase. Thanks to the saddle
point formulation of the problem, we exploit the error estimates proposed in
[30] for Stokes problem and more recently in [24] for elliptic linear-quadratic
optimal control problems. Thus, we have a rigorous and inexpensive estimate
for the error between the HF solution of (6) and the RB solution of (1):(
‖x̄N (µ)− x̄N (µ)‖2X + ‖p̄N (µ)− p̄N (µ)‖2V

)1/2 ≤ ∆N (µ) for any µ ∈ D.

Moreover, we have a rigorous and inexpensive estimate for the error on the
cost functional evaluated by using the HF solution and the RB solution:∣∣Ĵ(ūN (µ);µ)− Ĵ(ūN (µ);µ)

∣∣ ≤ ∆J
N (µ) for any µ ∈ D.

In (7) we will quantify the estimators ∆N (µ) and ∆J
N (µ). Note that the offline-

online computational decomposition can be adopted also for the computation
of the error estimates in order to be able to efficiently compute it online to-
gether with the RB solution of the problem.

During the offline stage, performed once, the parameter independent parts
of the error estimates can be computed, while during the inexpensive online
evaluation, performed for any desired µ, the parameter dependent parts can
be rapidly evaluated. The fast evaluation of the error estimates permits to
predict the RB error with respect to the HF solution without computing the
latter and it is crucial during the greedy algorithm to speed up the efficient
selection of the snapshots. For more details we refer to [26, Chapter 3.3] and
the recent works [14,28].

In order to formulate the a-posteriori error estimates, we write (7) as a
single equation; compare with [24, Section 4]. For any parameter µ ∈ D let us
define the linear parameter-dependent bilinear form

K(z, z̃;µ) = A(x, x̃;µ) + B(x̃, p;µ) + B(x, p̃;µ) ∀z = (x, p), z̃ = (x̃, p̃) ∈ Z
(5)

and the parameter-dependent linear functional

R(z;µ) = F(x;µ) + G(p;µ) ∀z = (x, p) ∈ Z.

Then, (5) is equivalent with

K(z̄N (µ), zN ;µ) = R(zN ;µ) ∀zN = (xN , pN ) ∈ ZN , (6)

where z̄N (µ) = (x̄N (µ), p̄N (µ)) ∈ ZN .

Proposition 4.2 Let all hypotheses of Lemma 3.5 hold. Then, (6) has a
unique solution z̄N (µ) for any parameter µ ∈ D.
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Proof We introduce the Babuška HF inf-sup constant β̂N (µ) [1] associated
with (6) by

β̂N (µ) = inf
z̃N∈ZN

sup
zN∈ZN

K(zN , z̃N ;µ)

‖zN ‖Z‖z̃N ‖Z
.

Since A(· , · ;µ) and B(· , · ;µ) satisfy the hypotheses of the Brezzi theorem,

the compound form K(· , · ;µ) is bounded and β̂N (µ) > 0 holds for all µ ∈ D.
Therefore, (6) has a uique solution. �

We assume that we can bound the Babuška HF inf-sup constant from
below by a µ-dependent positive constant β̂Nlb (µ). Moreover, let β̂0 be a µ-

and N -independent lower bound for β̂lb(µ) (for stability reasons) so that we
have

β̂N (µ) ≥ β̂Nlb (µ) ≥ β̂0 > 0 for all µ ∈ D.

Remark 4.3 (Estimation of β̂lb(µ)) An effective computation of a lower bound

β̂Nlb (µ) for the constant β̂N (µ) plays an important role for a rigorous error
estimation. It can be computed by the Natural Norm Successive Constraint
Method, that represent an improvement of the SCM, see [17]. However, since
this approximation of the lower bound can be very time consuming, we adopt
an alternative strategy recently proposed and compared with the previous one
in [24]. It consists in defining a surrogate βNs (µ) obtained by computing the

expensive β̂N (µ) for a small set of parameter values equally distributed in
D and by using these computations to define, by interpolation, the surrogate
β̂Ns (µ) for all µ ∈ D. Despite this surrogate interpolation can not be seen as
a rigorous lower bound, it represents a sharp approximation and, at a much
lower computational cost, it provides a suitable and efficient error estimate.

Suppose that we have determined an RB solution (x̄N (µ), p̄N (µ)) to (1).
Let us define the residuals rNdu(· ;µ) ∈ (XN )′ and rNpr (· ;µ) ∈ (V N )′ by

rNdu(x
N ;µ) = F(xN ;µ)−A(x̄N (µ), xN ;µ)− B(xN , p̄N (µ);µ) ∀xN ∈ XN ,

rNpr (p
N ;µ) = G(pN ;µ)− B(x̄N (µ), pN ;µ) ∀pN ∈ V N .

Then, we obtain the following a-posteriori error estimates (see, e.g., [19])

∆N (µ) =
1

β̂Nlb (µ)

(
‖rNdu(· ;µ)‖2(XN )′ + ‖rNpr (· ;µ)‖2

(V N )′

)1/2
,

∆J
N (µ) =

1

2β̂Nlb (µ)

(
‖rNdu(· ;µ)‖2(XN )′ + ‖rNpr (· ;µ)‖2

(V N )′

) (7)

for µ ∈ D, where

‖rNdu(· ;µ)‖(XN )′ = sup
x∈XN

rNdu(x;µ)

‖x‖X
, ‖rNpr (· ;µ)‖

(V N )′
= sup
p∈V N

rNpr (p;µ)

‖p‖V
.
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Remark 4.4 (Evaluation of dual norms) The computation of the dual norms
of the residuals is based on the Riesz representation of the residuals and on
the affine decomposition of the parametric operators. See, e.g., [29] for the
offline-online efficient procedure adopted for the computational decomposition
of the residuals norms.

5 Computation of Pareto optimal points by sensitivity analysis

We recall that the parameter µ = (µo,µc) ∈ D is given by two compo-
nents: µo, which can be chosen in the weighted sum defining the objective,
and µc that stands for physical and/or geometrical parameters involved in
the state equation. In this section we present a criterium that can be used
for the weighted sum method, in order to reduce significantly the number of
computations required for identifying a relevant set of Pareto solutions that
is sufficient to interpolate the complete set. To reduce the number of opti-
mization parameter variations µo ∈ Do, we apply a sensitivity analysis for the
reduced cost functional with respect to the optimization parameter µo. For
that purpose we utilize the notation Ĵµo for the partial derivative of the cost

Ĵ with respest to the parameter µo.
Suppose that we have computed the RB solution z̄N = z̄N (µ0) to (1) for

an initial parameter µ0 = (µ0
o,µ

0
c). By ȳN = ȳN (µ0) we denote the associated

optimal state and by p̄N = p̄N (µ0) the associated Lagrange multiplier. We are
interested in choosing only the optimization parameters µo ∈ Do leading to
significant changes in the cost functional that can provide a relevant optimal
solution of the problem. For that reason we introduce the Taylor expansion of
the reduced objective with respect to changes in µo:

Ĵ(u;µ+) = Ĵ(ūN ;µ0) + Ĵµo(ū
N ;µ0)(µ+

o − µ0
o) + O

(
|µ+
o − µ0

o|2
)
, (1)

where µ+ = (µ+
o ,µ

0
c), i.e., µ+ and µ0 only differ in the first k components.

Hence, we have to compute Ĵ(ūN ;µ0) as well as the partial derivative of Ĵµo
in order to get the requested information. Utilizing µo,k = 1 −

∑k−1
i=1 µo,i we

have

Ĵ(ū;N µ0) =
1

2

( k−1∑
i=1

µ0
o,i ‖CiȳN − wi‖

2

Wi
+ µ0

o,kγ ‖ūN‖
2

U

)

=
1

2

( k−1∑
i=1

µ0
o,i ‖CiȳN − wi‖

2

Wi
+
(

1−
k−1∑
i=1

µ0
o,i

)
γ ‖ū‖2U

)
.

Now we compute the derivatives of the cost functional with respect to µo,j for
j = 1, . . . , k − 1:

Ĵµo,j (ū
N ;µ0) =

1

2
‖Cj ȳN − wj‖

2

Wj
+

k−1∑
i=1

µ0
o,i 〈CiȳN − wi, CiȳNµo,j 〉Wi

− γ

2
‖ūN‖2U + µ0

o,kγ 〈ūN , ūNµo,j 〉U ,
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where the k−1 sensitivities z̄Nµo,j = (x̄Nµo,j , p̄
N
µo,j ) ∈ Z

N with x̄Nµo,j = (ȳNµo,j , ū
N
µo,j )

are computed as follows, see, e.g., [13]. Utilizing the parametrized bilinear form
K(· ; · ;µ) introduced in (5), the first-order optimality conditions (1) can be ex-
pressed as

K(z̄N ; zN ; µ̄) = R(zN ; µ̄) for all zN ∈ ZN . (2)

We differentiate (2) with respect to the optimization parameter µo,j for j =
1, . . . , k − 1:

K(z̄Nµo,j , z
N ;µ0) = Rµo,j (zN ;µ0)−Kµo,j (z̄N , zN ;µ0) ∀zN ∈ ZN , (3)

where

Kµo,j (z̄N , zN ;µ0) = 〈Cj ȳN , CjyN 〉Wj
− γ 〈ūN , uN 〉U ,

Rµo,j (zN ;µ0) = 〈wj , CjyN 〉Wj

for j = 1, . . . , k − 1 and for zN = (xN , pN ) ∈ ZN with xN = (yN , uN ).
Now, we can rapidly compute the sensitivities z̄Nµo,j , 1 ≤ j ≤ k − 1, from the
linear system (3), where the coefficient matrix has been already defined for
the computation of z̄N .

The advantageous feature of the explained sensitivity theory is its effi-
cient online-offline computational decoupling coming from the RB precom-
puted structures. Note that the partial derivative of the bilinear and linear
forms are readily computable thanks to the affine parameter decomposition
(assuming the parameter-dependent functions are easily differentiable). Thus,
at a very small computational effort, we are able to define a suitable parameter
set that is useful for computing specific optimal solutions relevant for identifing
the entire Pareto optimal set.

Starting by considering the parametric saddle point formulation of the
problem where the parameter vector is defined by the parameters used in
the weighted sum of the cost functionals and the ones involved in the state
equation, in the following listed steps we describe the entire strategy we adopt
for defining the suitable Pareto points approximation.

1) The offline phase for the RB approximation is carried out as described in
Section 4.1;

2) The online phase is used to compute a Pareto optimal point corresponding
to an initial optimization parameter µ0 ∈ D as explained in Section 4.2;

3) Thanks to the sensitivity analysis (see above) we rapidly compute a pre-
diction of the cost functional value corresponding to a suitably large set of
parameter values. Among this set, we select the ones that span the entire
cost functional value range. This apprach provides a suitable discrete pa-
rameter set Ξs ⊂ Do, that leads to different and not close variations of the
(reduced) cost functional;

4) The set of Pareto optimal solutions is computed by using the online step
of the RB method corresponding to the parameter set Ξs determined in
step 3).
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Fig. 1 Run 1: Domain Ω separated into the two subdomains Ω1, Ω2 (left) and lower
estimate for the Babuska (FE) inf-sup constant βN (µ) (right).

Remark 5.1 Step 3) allows us to drastically reduce the number of online RB
computations needed to recover a suitable distribution of the Pareto optimal
points. Let us summarize the main computations required by the sensitivity
analysis: (i) the computation of the cost value Ĵ(ū;N µ0) by utilizing the RB
solution z̄N and (ii) the solution of the reduced-order system (3) to determine
the sensitivities z̄Nµo .

6 Numerical examples

In this section we present numerical examples illustrating the efficiency of
our proposed strategy. Different control input spaces and different geometric
parameters are considered. We start with a non parametric PDE constraint
focusing on the optimal control solutions defined by varying the parameters
representing the weights involved in the cost functional. In the second exam-
ple, we introduce a geometrical parameter leading to a parameter in the PDE
constraint. Moreover, as last numerical test, we reduce the control space di-
mension in order to be able to show the feasible set of cost functional values
(by varying arbitrarily the control) and the effectiveness (together with the
sensitivity analysis) of the RB method for defining the Pareto optimal solu-
tions. The numerical computations are performed in Matlab. For the HF
Galerkin approximation we utilized a finite element (FE) scheme with piece-
wise P1 elements.

Run 1 (µo ∈ R3 and µc ≡ 0) In our first test we choose k = 3 optimiza-
tion parameters, but no parameters in the state equation, i.e., µo ∈ R3 and
µc ≡ 0. We consider the domain Ω∈ R2 given by a rectangle separated into
two disjunct subdomains Ω1= (0, 1)× (0, 1) and Ω2= (1, 4)× (0, 1) and rep-
resented in the left plot of Figure 1. Let U = L2(Ω) be the space of admissible
controls. We introduce the multiobjective optimization problem in which the
vector-valued cost functional is defined as follows:

J1(y) =
1

2
‖y − w1‖2L2(Ω), J2(y) =

1

2
‖∇y‖2L2(Ω)2 , J3(u) =

1

2
‖u‖2L2(Ω),
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Fig. 2 Run 1: Optimal FE state ȳN (top left), optimal FE control ūN (top right), FE partial
derivative ȳNx1 (bottom left) and FE partial derivative ȳNx2 (bottom right) for µ1

o = (0.9, 0).

where w1 = 1 in Ω1 and w1 = 0.6 in Ω2. The state y ∈ V = H1
0 (Ω) solves the

Poisson problem:

−∆y = u in Ω, y = 1 on Γ = ∂Ω. (1)

In order to apply the weighed sum method for the computation of the Pareto
optimal points, we consider the weighted sum of the cost vector:

J(x(µo);µo) = µo,1J1(y(µo)) + µo,2J2(y(µo)) + (1− µo,1 − µo,2)J3(u(µo))

for x(µo) = (y(µo), u(µo)) ∈ X and µo = (µo,1, µo,2, µo,3) ∈ Do. Thus, for
any µ ∈ Do the parametrized optimal control problem reads

min J(x(µo);µo) s.t. x(µo) = (y(µo), u(µo)) ∈ X solves (1).

The numerical approximation of the RB functions (state, control and adjoint
variables) is based on the FE discretization. The dimension of the FE space
V N is N1 = 11441 obtained by using a mesh of 22528 elements. For the control
space we choose UN = V N , so that we get N2 = N1 and N12 = 22882. Since
the condition µo,3 = 1−µo,1−µo,2 holds, we consider only the two parameters
in our numerical implementation. The two parameters are defined in the set
µo,1 ∈ [0, 1] and µo,2 ∈ [0, 1−µo,1]. In order to illustrate the dependence of the
optimal solution on the choice of the weighting parameters we consider three
different parameter values leading to different cost functionals and therefore
to different optimal solutions. In Figure 2 we study a dominating first cost
functional (µ1

o = (0.9, 0)), in Figure 3 a dominating second cost functional
(µ2

o = (0.11, 0.83)) and in Figure 4 we consider an equally distributed domi-
nance between the three cost functionals (µ3

o = (0.3, 0.3)). Due to the smooth
parameter dependence of the Babuska FE inf-sup constant, we use a linear
interpolant surrogate of µo 7→ βN (µo) in our a-posteriori error computations.
In the right plot of Figure 1 we show the surrogate βNs (µo) obtained by using
values of the parameter µo = (µo,1, µo,2) equally distributed in Do. The errors
and the a-posteriori error estimates, computed as described in Section 4.3, are
presented in Figure 5. In the left plot we consider a set of 100 randomly se-
lected parameters values Ξtest, we compute the average and the maximum of
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Fig. 3 Run 1: Optimal FE state ȳN (top left), optimal FE control ūN (top right), FE
partial derivative ȳNx1 (bottom left) and FE partial derivative ȳNx2 (bottom right) for µ2

o =
(0.11, 0.83).

Fig. 4 Run 1: Optimal state ȳN (top left), optimal control ūN (top right), partial derivative
ȳNx1 (bottom left) and partial derivative ȳNx2 (bottom right) for µ3

o = (0.3, 0.3).

Fig. 5 Run 1: Average errors, maximum errors and error estimates regarding the solution of
the problem (left) and the cost functional (right) between the FE and RB approximations.

the errors between the FE approximation of the solution and the RB solution,
i.e.,(
‖x̄N (µo)− x̄N (µo)‖

2

X + ‖p̄N (µo)− p̄N (µo)‖
2

V

)1/2
for µo ∈ Ξtest ⊂ Do,

and we compare them with the a-posteriori error estimate ∆N (µo). In the right
plot of Figure 5 we do the same comparison for the error estimate ∆J

N (µo) as
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Fig. 6 Run 1: Online evaluation time (in seconds) by varying the number N of basis
functions and including the evaluation of the a-posteriori error estimate (left) and speed-
up between the FE computational time required for a single parameter value and the RB
computational time required for a single parameter value by varying the number N of basis
functions and including the evaluation of the a-posteriori error estimate (right).

well as the associated difference between the FE and the RB cost, i.e.,∣∣J(x̄N (µo);µo)− J(x̄N (µo);µo)
∣∣ for µo ∈ Ξtest ⊂ Do.

Now let us comment on the computational effort. The offline phase lasts about
21 minutes. The online evaluation time by using N = 15 basis functions (in
total: 2N for the state, N for the control and 2N for the adjoint) and including
the evaluation of the a-posteriori error estimate is 0.016 seconds; while the
evaluation of the FE solution requires about 1.26 seconds, by obtaining a
speed-up equal to 88. We show in Figure 6 the RB computational time and
the speedup with respect to a FE computational time by varying the number
of basis functions. Even if for this specific problem the FE computation is
not particularly expensive, in order to define a suitable Pareto optimal point
set, we have to find the optimal solution of the parametric problem several
times (for many different parameter values) and the RB method permits, for
instance, to find 88 Pareto points at the time of only one possible FE one.

Remark 6.1 (Justification of the RB approach) Let us note that the RB online
CPU time is independent on the discretization mesh used, the size of the linear
system depends only on the number of basis functions used in the scheme,
so in general for finer FE scheme or larger computational domain, we could
achieve even a larger speed-up. The offline RB computations requires long
times (specially compared with the a single FE solution), nevertheless this
step is performed only once and allows to provide fast numerical solutions
for every parameters values. In a more general framework, the number of
parameters can be much larger and the number of FE basis functions to cover
all the parameters domain, as well as the offline computations required, could
be much more expensive than the RB offline time. In the following test runs we
consider a simpler PDE in order to show that the computational gain can be
even more effective if we exploit also the proposed sensitivity analysis, which
allows to further reduce the number of computations.
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Run 2 (Control problem with geometrical parameter) Let us extend
Run 1 by introducing a geometrical parameter µ3 ∈ [1, 3.5] that defines the
length of the spatial domain Ωµ3

still given by a rectangle separated in two
subdomains Ω1 and Ω2 and represented in the left plot of Figure 7. We con-

Fig. 7 Run 2: Domain representation of Ωµ3 (left) and the set of the possible values of the

cost functionals Ĵ1(u;µ3), Ĵ2(u;µ3), Ĵ3(u;µ3) by varying the control function u = (u1, u2)
and the subset of the efficient points (right).

sider the two-dimensional control space U = R2. Let us recall that the cost
functional vector is defined as follows:

J1(y) =
1

2
‖y − w1‖2L2(Ωµ3 )

, J2(y) =
1

2
‖∇y‖2L2(Ωµ3 )

, J3(u) =
1

2
‖u‖2R2 ,

where w1 = 1 in Ω1 and w1 = 0.6 in Ω2. Note that the parameter µ belongs
to the subset D ⊂ R3 with µo = (µ1, µ2) and µc = µ3. The state function
y ∈ V = H1

0 (Ωµ3
) solves the following Laplace problem:

−∆y = u1b1 + u2b2 in Ωµ3
, y = 1 on ΓD = ∂Ωµ3

, (2)

where u = (u1, u2) ∈ R2 is the control function and b1, b2 ∈ L∞(Ω) are the
characteristic functions of Ω1, Ω2 respectively. As in Run 1, we apply the
weighted sum method to generate the Pareto optimal set. We introduce

J(x(µ);µ) = µ1J1(y(µ)) + µ2J2(y(µ)) + (1− µ1 − µ2)J3(u(µ)),

and the parametrized optimal control problem:

min J(x(µ);µ) s.t. x(µ) = (y(µ), u(µ)) ∈ X solves (2). (3)

In Figures 8 and 9 we show the RB solutions to (3) for µ1 = (0.2, 0.7, 3) and
µ2 = (0.2, 0.7, 1) respectively, the plots include the optimal FE state function,
the optimal FE control function, the FE adjoint function and the sum of
the two components of the gradient of the state function. In the left plot of
Figure 10 we show the error between the RB and FE solution of the optimal
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Fig. 8 Run 2: Optimal FE state ȳN , optimal FE control ūN , associated FE adjoint p̄N

and the sum ȳNx1 + ȳNx2 for µ1 = (0.2, 0.7, 3).

Fig. 9 Run 2: Optimal FE state ȳN , optimal FE control ūN , associated FE adjoint p̄N

and the sum ȳNx1 + ȳNx2 for µ2 = (0.2, 0.7, 1).

Fig. 10 Run 2: Error (maximum, minimum and average) between the optimal RB and FE
solution over a set of 500 random samples by varying the number of basis functions (left)
and the optimal controls ūN = (u1, u2) by varying the parameter values (right).

control problem over a set of 500 random samples by varying the number
of basis functions. Now we set µc = µ3 = 3 and we focus our attention on
the variation of the multiobjective parameters of the problem. In the right
plot of Figure 10 we show the values of the coefficients u1, u2 corresponding
to the optimal control of the problem (3) by varying the parameters values



24 L. Iapichino et al.

Fig. 11 Run 2: Set S of the possible values of the components Ĵ1(ū;µ3) and Ĵ2(ū;µ3) by
varying the function u and the subset of the efficient Pareto points.

µ1 and µ2. We consider a subset of the possible control functions such that
−30 ≤ ui ≤ 10. In the left plot of Figure 11 the set

S =
{

(Ĵ1(u;µ3), Ĵ2(u;µ3))
∣∣u = (u1, u2) with − 30 ≤ ui ≤ 10, i = 1, 2

}
is presented. Then, we solve with the RB method the multiobjective optimal
control problem by choosing randomly a large set of optimization parameters
µo = (µo,1, µo,2). In this way we obtain the Pareto optimal points and the
corresponding efficient points of (3), i.e., the cost components J1 and J2 eval-
uated at the optimal solutions. In the right plot of Figure 11 we plot the set
S and the set of efficient points. We note that for J2 ≥ 245, the algorithm
appears not working correctly, because for some Pareto points, both J1 and
J2 have not minimum values. For that reason, we show in the right plot of
Figure 7 a similar plot, this time including the third cost functional and the
corresponding efficient points. We observe that all the Pareto optimal points
defined by the proposed RB strategy are correctly computed, since all the
three cost functionals are considered in the multiobjective problem.

Run 3 (Sensitivity analysis) In this test we apply the sensitivity analysis
introduced in Section 5 to the multiobjective control problem of Run 2. Our
purpose is to show how the sensitivity analysis improves significantly the effi-
ciency of our RB approach. Thanks to the inexpensive prediction of the cost
functional value by varying the optimization parameter µo, we are able to
span the whole set of Pareto optimal points by computing the optimal solu-
tion to a very small set of parameter values. In Figure 12 the interpolation of
the Pareto optimal solutions obtained by varying randomly the value of the
parameter µo is presented. We note that even with 100 parameter values we
are not able to cover the range of efficient points (see right plot of Figure 11 for
a comparison). In Figure 13 we show the interpolation of the Pareto optimal
solutions in correspondence of a smaller set of parameter values computed by
the sensitivity analysis. Note that by using only 20 values of the parameter
µo, efficiently selected with the sensitivity analysis, and consequently with
only 20 RB solutions of the problem we are able to define the whole range of
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Fig. 12 Run 3: Piecewise linear interpolation of M Pareto optimal points computed ran-
domly.

Fig. 13 Run 3: Piecewise linear interpolation of M Pareto optimal points with the help of
the sensitivity analysis.

Pareto optimal solutions and a suitable prediction of the efficient points distri-
bution. Regarding the computational times, for this test case, the FE method
requires about 1.1 seconds to compute a single Pareto solution. The complete
online computation of 20 Pareto solutions, together with the error estimates
and with the use of the sensitivity analysis, requires only about 0.3 seconds.
Note that a sensitivity analysis for the FE problem requires to solve (3) in the
high-dimensional FE spaces. In conclusion, we point out that the RB solutions
of the multiobjective problems are much faster than the FE ones, but thanks
to an inexpensive sensitivity analysis we are able to further drastically reduce
the number of the RB computations needed to define a suitable set of Pareto
optimal solution of the problem.
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7 Conclusions

We consider multiobjective optimal problems governed by linear variational
equations, which depend on geometrical and/or model parameter vector µc.
The goal is to propose a numerical strategy which allows to quickly determine
a sufficiently accurate approximation of the set of Pareto optimal points for
an arbitrarily chosen µc. To compute Pareto optimal points we apply the
weighted sum method which requires to solve a very large number of scalar-
valued optimal control problems, where the cost functional is built through
an additional optimization parameter µo. These problems can be solved very
efficiently by the proposed RB strategy. By applying a sensitivity analysis we
are also able to reduce significantly the number of different values µo that have
to be chosen in the weighted sum method to identifying the Pareto optimal
solutions. To sum up, the use of the RB method – together with an useful
and inexpensive sensitive analysis – allows to solve multiobjective problems,
at a very low computational times compared with other classical numerical
techniques (e.g. finite elements). Moreover, a rigorous error bound analysis
permits to ensure a certain level of accuracy of the solution.
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