$1 P 0$

Investigating Polyhedra by Oracles

Matthias Walter

Joint work with
Volker Kaibel (Otto-von-Guericke Universität Magdeburg)

International Conference on Mathematical Software,
Berlin 2016

Research

Polyhedral Method
Graph $G=(V, E)$
$T \subseteq E$ span. tree
Edge costs $c \in \mathbb{R}^{E}$

$$
\chi(T)_{e}:= \begin{cases}1 & \text { if } e \in T \\ 0 & \text { if } e \notin T\end{cases}
$$

1. Identify feasible objects with (integral) vectors in \mathbb{R}^{n} s.t. objective is linear.

Polyhedral Method

$$
\chi(T)_{e}:= \begin{cases}1 & \text { if } e \in T \\ 0 & \text { if } e \notin T\end{cases}
$$

$$
P_{\text {sp.tree }}(G):=\operatorname{conv}\{\chi(T) \mid T \text { span. tree }\}
$$

1. Identify feasible objects with (integral) vectors in \mathbb{R}^{n} s.t. objective is linear.
2. Object of interest: Convex hull of all these vectors, a polytope.

Graph $G=(V, E)$
$T \subseteq E$ span. tree
Edge costs $c \in \mathbb{R}^{E}$

$$
\chi(T)_{e}:= \begin{cases}1 & \text { if } e \in T \\ 0 & \text { if } e \notin T\end{cases}
$$

$$
P_{\text {sp.tree }}(G):=\operatorname{conv}\{\chi(T) \mid T \text { span. tree }\}
$$

3. Search for outer description: inequalities \& equations.

$$
\{x \mid A x \leq b\}=P_{\text {sp.tree }}(G)
$$

1. Identify feasible objects with (integral) vectors in \mathbb{R}^{n} s.t. objective is linear.
2. Object of interest: Convex hull of all these vectors, a polytope.

Graph $G=(V, E)$
$T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

$$
\chi(T)_{e}:= \begin{cases}1 & \text { if } e \in T \\ 0 & \text { if } e \notin T\end{cases}
$$

1. Identify feasible objects with (integral) vectors in \mathbb{R}^{n} s.t. objective is linear.

$$
P_{\text {sp.tree }}(G):=\operatorname{conv}\{\chi(T) \mid T \text { span. tree }\}
$$

2. Object of interest: Convex hull of all these vectors, a polytope.
3. Search for outer description: inequalities \& equations.
4. Solve optimization problems with LP solvers.

Polyhedral Method

Graph $G=(V, E)$
$T \subseteq E$ span. tree
Edge costs $c \in \mathbb{R}^{E}$

Graph $G=(V, E)$
$T \subseteq E$ tree, $V(T)$ its nodes
Edge costs $c \in \mathbb{R}^{E}$, node costs $d \in \mathbb{R}^{V}$

$$
\chi(T)_{e}:= \begin{cases}1 & \text { if } e \in T \\ 0 & \text { if } e \notin T\end{cases}
$$

$$
P_{\text {sp.tree }}(G):=\operatorname{conv}\{\chi(T) \mid T \text { span. tree }\}
$$

$$
\{x \mid A x \leq b\}=P_{\text {sp.tree }}(G)
$$

Graph $G=(V, E)$
$T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

$$
\chi(T)_{e}:= \begin{cases}1 & \text { if } e \in T \\ 0 & \text { if } e \notin T\end{cases}
$$

$$
P_{\text {sp.tree }}(G):=\operatorname{conv}\{\chi(T) \mid T \text { span. tree }\}
$$

Graph $G=(V, E)$
$T \subseteq E$ tree, $V(T)$ its nodes
Edge costs $c \in \mathbb{R}^{E}$, node costs $d \in \mathbb{R}^{V}$

1. Identify feasible objects with (integral) vectors in \mathbb{R}^{n} s.t. objective is linear.
2. Object of interest: Convex hull of all these vectors, a polytope.
3. Search for outer description: inequalities \& equations.
4. Solve optimization problems with LP solvers.

Graph $G=(V, E)$
$T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

$$
\chi(T)_{e}:= \begin{cases}1 & \text { if } e \in T \\ 0 & \text { if } e \notin T\end{cases}
$$

$$
P_{\text {sp.tree }}(G):=\operatorname{conv}\{\chi(T) \mid T \text { span. tree }\}
$$

Graph $G=(V, E)$
$T \subseteq E$ tree, $V(T)$ its nodes
Edge costs $c \in \mathbb{R}^{E}$, node costs $d \in \mathbb{R}^{V}$
2. Object of interest: Convex hull of all these vectors, a polytope.
3. Search for outer description: inequalities \& equations.
4. Solve optimization problems with LP solvers.

Graph $G=(V, E)$
$T \subseteq E$ span. tree
Edge costs $c \in \mathbb{R}^{E}$

$$
\chi(T)_{e}:= \begin{cases}1 & \text { if } e \in T \\ 0 & \text { if } e \notin T\end{cases}
$$

$$
P_{\text {sp.tree }}(G):=\operatorname{conv}\{\chi(T) \mid T \text { span. tree }\}
$$

Graph $G=(V, E)$
$T \subseteq E$ tree, $V(T)$ its nodes
Edge costs $c \in \mathbb{R}^{E}$, node costs $d \in \mathbb{R}^{V}$

$$
(\chi(T), \chi(V(T))) \in\{0,1\}^{E} \times\{0,1\}^{V}
$$

$$
P_{\text {tree }}(G):=\operatorname{conv}\{(\chi(T), \chi(V(T))) \mid T \text { tree }\}
$$

3. Search for outer description: inequalities \& equations.
4. Solve optimization problems with LP solvers.

Graph $G=(V, E)$
$T \subseteq E$ span. tree
Edge costs $c \in \mathbb{R}^{E}$

$$
\chi(T)_{e}:= \begin{cases}1 & \text { if } e \in T \\ 0 & \text { if } e \notin T\end{cases}
$$

$$
P_{\text {sp.tree }}(G):=\operatorname{conv}\{\chi(T) \mid T \text { span. tree }\}
$$

Graph $G=(V, E)$
$T \subseteq E$ tree, $V(T)$ its nodes
Edge costs $c \in \mathbb{R}^{E}$, node costs $d \in \mathbb{R}^{V}$

$$
(\chi(T), \chi(V(T))) \in\{0,1\}^{E} \times\{0,1\}^{V}
$$

$$
P_{\text {tree }}(G):=\operatorname{conv}\{(\chi(T), \chi(V(T))) \mid T \text { tree }\}
$$

$$
\begin{aligned}
\{(x, y) \mid A x & +B y \leq b\} \cap \mathbb{Z}^{E} \times \mathbb{Z}^{V} \\
& =P_{\text {tree }}(G) \cap \mathbb{Z}^{E} \times \mathbb{Z}^{V}
\end{aligned}
$$

4. Solve optimization problems with LP solvers.

Graph $G=(V, E)$
$T \subseteq E$ span. tree
Edge costs $c \in \mathbb{R}^{E}$

$$
\chi(T)_{e}:= \begin{cases}1 & \text { if } e \in T \\ 0 & \text { if } e \notin T\end{cases}
$$

$$
P_{\text {sp.tree }}(G):=\operatorname{conv}\{\chi(T) \mid T \text { span. tree }\}
$$

Graph $G=(V, E)$
$T \subseteq E$ tree, $V(T)$ its nodes
Edge costs $c \in \mathbb{R}^{E}$, node costs $d \in \mathbb{R}^{V}$

$$
(\chi(T), \chi(V(T))) \in\{0,1\}^{E} \times\{0,1\}^{V}
$$

$$
P_{\text {tree }}(G):=\operatorname{conv}\{(\chi(T), \chi(V(T))) \mid T \text { tree }\}
$$

$$
\begin{aligned}
\{(x, y) \mid A x & +B y \leq b\} \cap \mathbb{Z}^{E} \times \mathbb{Z}^{V} \\
& =P_{\text {tree }}(G) \cap \mathbb{Z}^{E} \times \mathbb{Z}^{V}
\end{aligned}
$$

4. Solve optimization problems with MILP solvers.

> Mixed-integer set: $\begin{gathered}A x+B y \leq d \\ x_{i} \in \mathbb{Z}, y_{j} \in \mathbb{R}\end{gathered}$

Recognized class of facets:
$a^{\top} x+b^{\top} y \leq \beta$ for all $(a, b, \beta): \ldots$

> Recognized class of facets:
> $a^{\top} x+b^{\top} y \leq \beta$ for all $(a, b, \beta): \ldots$

$$
\begin{aligned}
& \text { Recognized class of facets: } \\
& a^{\top} x+b^{\top} y \leq \beta \text { for all }(a, b, \beta): \ldots
\end{aligned}
$$

$$
\begin{gathered}
\text { Mixed-integer set: } \\
\begin{array}{c}
A x+B y \leq d \\
x_{i} \in \mathbb{Z}, y_{j} \in \mathbb{R}
\end{array}
\end{gathered}
$$

Recognized class of facets:
$a^{\top} x+b^{\top} y \leq \beta$ for all $(a, b, \beta): \ldots$

$$
\begin{gathered}
\text { Mixed-integer set: } \\
\begin{array}{c}
A x+B y \leq d \\
x_{i} \in \mathbb{Z}, y_{j} \in \mathbb{R}
\end{array}
\end{gathered}
$$

All equations:
$(* \ldots *) x=*$
\vdots
$(* \ldots *) x=*$

> Recognized class of facets:
> $a^{\top} x+b^{\top} y \leq \beta$ for all $(a, b, \beta): \ldots$

$$
\begin{gathered}
\text { Mixed-integer set: } \\
\begin{array}{c}
A x+B y \leq d \\
x_{i} \in \mathbb{Z}, y_{j} \in \mathbb{R}
\end{array}
\end{gathered}
$$

All equations:
$(* \ldots *) x=*$
\vdots
$(* \ldots *) x=*$

$$
\begin{gathered}
\begin{array}{c}
\text { Only some } \\
\text { useful facets: } \\
(* \ldots *) x \leq * \\
(* \ldots *) x \leq * \\
\vdots \\
(* \ldots *) x \leq * \\
(* \ldots *) x \leq *
\end{array}
\end{gathered}
$$

Recognized class of facets:
$a^{\top} x+b^{\top} y \leq \beta$ for all $(a, b, \beta): \ldots$

$$
\begin{gathered}
\text { Mixed-integer set: } \\
\begin{array}{c}
A x+B y \leq d \\
x_{i} \in \mathbb{Z}, y_{j} \in \mathbb{R}
\end{array}
\end{gathered}
$$

All equations:
$(* \ldots *) x=*$
\vdots
$(* \ldots *) x=*$
Only some
useful facets:
$(* \ldots *) x \leq *$
$(* \ldots *) x \leq *$
\vdots
$(* \ldots *) x \leq *$
$(* \ldots *) x \leq *$

(1) Introduction

- Polyhedral Method
- Facet Hunting
(2) IPO
- Oracles
- Capabilities
- Details: Facets
- Details: Affine Hull
(3) Studies
- Matching Polytopes with One Quadratic Term
- MIPLIB Dimensions
- Constraint Dimensions
- TSP Polytopes

The IPO Framework

Base oracles:

- Instance \& MIP solver \leadsto oracle for (mixed-) integer hull.
- Instance \& LP solver \leadsto oracle for LP relaxation.

Base oracles:

- Instance \& MIP solver \leadsto oracle for (mixed-) integer hull.
- Instance \& LP solver \leadsto oracle for LP relaxation.

Auxiliary oracles:

- Caching of oracle answers.
- Heuristics: Feasibility of returned solutions may be sufficient for the algorithms to make progress. \leadsto speed-up!

Base oracles:

- Instance \& MIP solver \leadsto oracle for (mixed-) integer hull.
- Instance \& LP solver \leadsto oracle for LP relaxation.

Auxiliary oracles:

- Caching of oracle answers.
- Heuristics: Feasibility of returned solutions may be sufficient for the algorithms to make progress. \leadsto speed-up!

Oracles for related polytopes:

- Restriction to face.
- Affine projection.
- Recession cone.

Capabilities

Facets:

- Given a point \hat{x}, compute a facet-defining inequality $a^{\top} x \leq \beta$ of P that is violated by \hat{x}.
- Given an objective $c \in \mathbb{R}^{n}$, compute facet-defining inequalities until optimization of the LP results in an integer point.

Facets:

- Given a point \hat{x}, compute a facet-defining inequality $a^{\top} x \leq \beta$ of P that is violated by \hat{x}.
- Given an objective $c \in \mathbb{R}^{n}$, compute facet-defining inequalities until optimization of the LP results in an integer point.

Affine hull:

- Compute the dimension d of P.
- Find a system of $n-d$ (independent) equations $a^{\top} x=\beta$ valid for P.
- Find a set of $d+1$ affinely independent points in P.

Facets:

- Given a point \hat{x}, compute a facet-defining inequality $a^{\top} x \leq \beta$ of P that is violated by \hat{x}.
- Given an objective $c \in \mathbb{R}^{n}$, compute facet-defining inequalities until optimization of the LP results in an integer point.

Affine hull:

- Compute the dimension d of P.
- Find a system of $n-d$ (independent) equations $a^{\top} x=\beta$ valid for P.
- Find a set of $d+1$ affinely independent points in P.

Smallest Face:

- Compute the smallest face that contains a point $\hat{x} \in P$.
- Is \hat{x} a vertex of P ?
- Are the vertices u and v of P connected by an edge of P ?
- Let $d:=\operatorname{dim} P$ and let $o \in \operatorname{relint}(P)$.
- \hat{x} is to be separated by a facet $\langle a, x\rangle \leq \beta$.
- $S \subseteq P$ contains P 's vertices and $R \subseteq \operatorname{recc}(P)$ contains all extreme rays.
- Let $d:=\operatorname{dim} P$ and let $o \in \operatorname{relint}(P)$.
- \hat{x} is to be separated by a facet $\langle a, x\rangle \leq \beta$.
- $S \subseteq P$ contains P 's vertices and $R \subseteq \operatorname{recc}(P)$ contains all extreme rays.
- We solve the following LP, adding constraints for S and R lazily.

$$
\begin{array}{lrl}
\max & \langle\hat{x}, a\rangle-\beta & \\
\text { s.t. } & \langle s, a\rangle-\beta \leq 0 & \text { for all } s \in S \\
& \langle r, a\rangle & \leq 0 \\
& \text { for all } r \in R \\
& \langle\hat{x}-o, a\rangle & \leq 1 \\
& a \in \mathbb{R}^{n}, \beta & \\
& \in \mathbb{R} &
\end{array}
$$

- Let $d:=\operatorname{dim} P$ and let $o \in \operatorname{relint}(P)$.
- \hat{x} is to be separated by a facet $\langle a, x\rangle \leq \beta$.
- $S \subseteq P$ contains P 's vertices and $R \subseteq \operatorname{recc}(P)$ contains all extreme rays.
- We solve the following LP, adding constraints for S and R lazily.

\max	$\langle\hat{x}, a\rangle-\beta$	
s.t.	$\langle s, a\rangle-\beta \leq 0$	
	$\langle r, a\rangle$	for all $s \in S$
		for all $r \in R$
	$\langle\hat{x}-o, a\rangle$	≤ 1
	$a \in \mathbb{R}^{n}, \beta$	$\in \mathbb{R}$

Theorem (W., 2016)

Let $\left(a^{*}, \beta^{*}\right)$ be an optimum that lies in a minimal face of the feasible set. If $\left\langle a^{*}, o\right\rangle<\beta^{*}$, then $\left\langle a^{*}, x\right\rangle \leq \beta^{*}$ is valid and facet-defining for P. Otherwise, $\left\langle a^{*}, x\right\rangle=\beta^{*}$ is valid for P.

Input:

- Oracle optimizing any rational objective over P.

Output:

- Dimension d of P
- $(d+1)$-many affinely independent points in P
- $(n-d)$-many irredundant equations $C x=d$ valid for P

Input:

- Oracle optimizing any rational objective over P.

Output:

- Dimension d of P
- $(d+1)$-many affinely independent points in P
- $(n-d)$-many irredundant equations $C x=d$ valid for P

Ideas:

(1) Maintain known equations $C x=d$ and points $x_{1}, x_{2}, \ldots, x_{\ell} \in P$.

Input:

- Oracle optimizing any rational objective over P.

Output:

- Dimension d of P
- $(d+1)$-many affinely independent points in P
- $(n-d)$-many irredundant equations $C x=d$ valid for P

Ideas:

(1) Maintain known equations $C x=d$ and points $x_{1}, x_{2}, \ldots, x_{\ell} \in P$.
(2) Repeatedly find a "useful" direction $c \in \mathbb{R}^{n}$, and compute $z^{+}:=\max _{x \in P}\langle c, x\rangle$ and $z^{-}:=\min _{x \in P}\langle c, x\rangle$ (2 oracle calls).

Input:

- Oracle optimizing any rational objective over P.

Output:

- Dimension d of P
- $(d+1)$-many affinely independent points in P
- $(n-d)$-many irredundant equations $C x=d$ valid for P

Ideas:

(1) Maintain known equations $C x=d$ and points $x_{1}, x_{2}, \ldots, x_{\ell} \in P$.
(2) Repeatedly find a "useful" direction $c \in \mathbb{R}^{n}$, and compute $z^{+}:=\max _{x \in P}\langle c, x\rangle$ and $z^{-}:=\min _{x \in P}\langle c, x\rangle$ (2 oracle calls).
(3) If we are lucky and $z^{+}=z^{-}$holds, then $\langle c, x\rangle=z^{+}$is a valid equation. To make progress, we want c to be linear independent of C 's rows.

Input:

- Oracle optimizing any rational objective over P.

Output:

- Dimension d of P
- $(d+1)$-many affinely independent points in P
- $(n-d)$-many irredundant equations $C x=d$ valid for P

Ideas:

(1) Maintain known equations $C x=d$ and points $x_{1}, x_{2}, \ldots, x_{\ell} \in P$.
(2) Repeatedly find a "useful" direction $c \in \mathbb{R}^{n}$, and compute $z^{+}:=\max _{x \in P}\langle c, x\rangle$ and $z^{-}:=\min _{x \in P}\langle c, x\rangle$ (2 oracle calls).
(3) If we are lucky and $z^{+}=z^{-}$holds, then $\langle c, x\rangle=z^{+}$is a valid equation. To make progress, we want c to be linear independent of C 's rows.
(9) If we also choose c to be orthogonal to $\operatorname{aff}\left(x_{1}, \ldots, x_{\ell}\right)$ (that is, $\left\langle c, x_{i}\right\rangle=\left\langle c, x_{1}\right\rangle$ for all $i=2, \ldots, \ell$), the result $z^{+}>z^{-}$yields a point $x_{\ell+1}$ affinely independent of x_{1}, \ldots, x_{ℓ}.

Computing the Affine Hull

Reminder:

- $x_{1}, \ldots, x_{\ell} \in P \subseteq \mathbb{R}^{n}$ are affinely independent points found so far.
- $C x=d$ are the equations found so far.

Computing the Affine Hull

Reminder:

- $x_{1}, \ldots, x_{\ell} \in P \subseteq \mathbb{R}^{n}$ are affinely independent points found so far.
- $C x=d$ are the equations found so far.

Hidden details:

- How to model linear independence? Orthogonality is a bad choice for exact arithmetic!

Computing the Affine Hull

Reminder:

- $x_{1}, \ldots, x_{\ell} \in P \subseteq \mathbb{R}^{n}$ are affinely independent points found so far.
- $C x=d$ are the equations found so far.

Hidden details:

- How to model linear independence? Orthogonality is a bad choice for exact arithmetic!
- Better: Try basis vectors of aff $\left(x_{1}, \ldots, x_{\ell}\right)^{\perp}$ and skip if it depends on C^{\prime} 's rows.

Computing the Affine Hull

Reminder:

- $x_{1}, \ldots, x_{\ell} \in P \subseteq \mathbb{R}^{n}$ are affinely independent points found so far.
- $C x=d$ are the equations found so far.

Hidden details:

- How to model linear independence? Orthogonality is a bad choice for exact arithmetic!
- Better: Try basis vectors of aff $\left(x_{1}, \ldots, x_{\ell}\right)^{\perp}$ and skip if it depends on C^{\prime} 's rows.
- Even better: Compute whole basis approximately to estimate sparsity and then try (exactly computed) sparse candidates.

Computing the Affine Hull

Reminder:

- $x_{1}, \ldots, x_{\ell} \in P \subseteq \mathbb{R}^{n}$ are affinely independent points found so far.
- $C x=d$ are the equations found so far.

Hidden details:

- How to model linear independence? Orthogonality is a bad choice for exact arithmetic!
- Better: Try basis vectors of aff $\left(x_{1}, \ldots, x_{\ell}\right)^{\perp}$ and skip if it depends on C's rows.
- Even better: Compute whole basis approximately to estimate sparsity and then try (exactly computed) sparse candidates.
- What if P is unbounded? Have to consider unbounded rays as well!

Computing the Affine Hull

Reminder:

- $x_{1}, \ldots, x_{\ell} \in P \subseteq \mathbb{R}^{n}$ are affinely independent points found so far.
- $C x=d$ are the equations found so far.

Hidden details:

- How to model linear independence? Orthogonality is a bad choice for exact arithmetic!
- Better: Try basis vectors of aff $\left(x_{1}, \ldots, x_{\ell}\right)^{\perp}$ and skip if it depends on C's rows.
- Even better: Compute whole basis approximately to estimate sparsity and then try (exactly computed) sparse candidates.
- What if P is unbounded? Have to consider unbounded rays as well!
- Naïve way: $2 n+1$ oracle calls.

Computing the Affine Hull

Reminder:

- $x_{1}, \ldots, x_{\ell} \in P \subseteq \mathbb{R}^{n}$ are affinely independent points found so far.
- $C x=d$ are the equations found so far.

Hidden details:

- How to model linear independence? Orthogonality is a bad choice for exact arithmetic!
- Better: Try basis vectors of aff $\left(x_{1}, \ldots, x_{\ell}\right)^{\perp}$ and skip if it depends on C^{\prime} 's rows.
- Even better: Compute whole basis approximately to estimate sparsity and then try (exactly computed) sparse candidates.
- What if P is unbounded? Have to consider unbounded rays as well!
- Naïve way: $2 n+1$ oracle calls.
- With some more tricks: $2 n$ oracle calls. \leftarrow great result!

Theorem (W., 2016)

Every algorithm which computes the affine hull of polyhedra $P \subseteq \mathbb{R}^{n}$ specified only by an optimization oracle needs at least $2 n$ oracle calls in the worst case.

Computational Studies

Consider the quadratic matching polytope of order n with one quadratic term:

$$
P_{n}:=\operatorname{conv}\left\{(\chi(M), y) \in\{0,1\}^{\left|E_{n}\right|+1} \mid M \text { matching in } K_{n}, y=x_{1,2} x_{3,4}\right\}
$$

Consider the quadratic matching polytope of order n with one quadratic term:

$$
P_{n}:=\operatorname{conv}\left\{(\chi(M), y) \in\{0,1\}^{\left|E_{n}\right|+1} \mid M \text { matching in } K_{n}, y=x_{1,2} x_{3,4}\right\}
$$

Hupp, Klein \& Liers, ' 15 obtained a bunch of facets:

- $x(\delta(v)) \leq 1$ for all $v \in V_{n}$.
- $x_{e} \geq 0$ for all $e \in E_{n}$.
- $y \leq x_{1,2}$ and $y \leq x_{3,4}$. (Note that $y \geq x_{1,2}+x_{3,4}-1$ is no facet.)

Study: Quadratic Matching Polytopes

Consider the quadratic matching polytope of order n with one quadratic term:

$$
P_{n}:=\operatorname{conv}\left\{(\chi(M), y) \in\{0,1\}^{\left|E_{n}\right|+1} \mid M \text { matching in } K_{n}, y=x_{1,2} x_{3,4}\right\}
$$

Hupp, Klein \& Liers, ' 15 obtained a bunch of facets:

- $x(\delta(v)) \leq 1$ for all $v \in V_{n}$.
- $x_{e} \geq 0$ for all $e \in E_{n}$.
- $y \leq x_{1,2}$ and $y \leq x_{3,4}$. (Note that $y \geq x_{1,2}+x_{3,4}-1$ is no facet.)
- $x(E[S])+y \leq \frac{|S|-1}{2}$ for certain odd S.
- $x(E[S]) \leq \frac{|S|-1}{2}$ for certain odd S.
- $x(E[S])+x(E[S \backslash\{1,2\}])+x_{3,4}-y \leq|S|-2$ for certain odd S.
- $x(E[S])+x_{2, a}+x_{3, a}+x_{4, a}+y \leq \frac{|S|}{2}$ for certain even S and nodes a.
- $x_{1,2}+x_{1, a}+x_{2, a}+x(E[S])+x_{3,4}+x_{3, b}+x_{4, b}-y \leq \frac{|S|}{2}+1$ for certain even S and certain nodes a, b.

Excerpt from their paper:

- $x_{\dot{u} \hat{v}}=x_{\check{w} \check{z}}=0.5, y=0.3$,
- $x_{\dot{u} \dot{\sim}}=x_{\check{v} \check{z}}=0.3$,
- $x_{\grave{u} a}=x_{\hat{v} a}=x_{\grave{w} b}=x_{\grave{z} b}=0.2$,
- $x_{e}=0$ otherwise.

This fractional solution satisfies all introduced valid and face the nonnegativity and the linearisation constraints, all blosso inequalities (4) and the hourglass inequalities (5).

Excerpt from their paper:

- $x_{\check{u} \hat{v}}=x_{\check{w} \check{z}}=0.5, y=0.3$,
- $x_{\dot{u} \dot{w}}=x_{\check{v} \check{z}}=0.3$,
- $x_{\dot{u} a}=x_{\grave{v} a}=x_{\grave{w} b}=x_{\tilde{z} b}=0.2$,
- $x_{e}=0$ otherwise.

This fractional solution satisfies all introduced valid and face the nonnegativity and the linearisation constraints, all blosso inequalities (4) and the hourglass inequalities (5).

```
param n := 6;
set V := { 1 to n };
set E := { <u,v> in V*V with u < v };
set F := { <1,2>,\langle3,4\rangle,\langle1,5\rangle,\langle2,5\rangle,\langle3,6\rangle,\langle4,6\rangle,\langle1,3\rangle,\langle2,4\rangle };
var x[E] binary;
var y binary;
maximize weights:
```

```
10*x[1,2] + 10*x[3,4] + 2*x[1,5] + 2*x[2,5] + 2*x[3,6]
```

10*x[1,2] + 10*x[3,4] + 2*x[1,5] + 2*x[2,5] + 2*x[3,6]
+ 2*x[4,6] + 4*x[1,3] + 4*x[2,4] -10*y
+ 2*x[4,6] + 4*x[1,3] + 4*x[2,4] -10*y
+ sum <u,v> in E-F: -1000*x[u,v];
+ sum <u,v> in E-F: -1000*x[u,v];
subto degree: forall <w> in V:
(sum <u,v> in E with u == w or v == w: x[u,v]) <= 1;
subto product1: y <= x[1,2];
subto product2: y <= x[3,4];
subto product3: y >= x[1,2] + x[3,4] - 1;

```
```

\% ipo --dimension --facets product-matching-missing.zpl
Computing the affine hull:
Dimension: 29
Objective <instance> 10 x\#1\#2 + 4 x\#1\#3 ...
Facet: 2 x\#1\#2 $+x \# 1 \# 3+x \# 1 \# 4+x \# 1 \# 5+x \# 2 \# 3+x \# 2 \# 4+x \# 2 \# 5$
$+\mathrm{x} \# 3 \# 4-\mathrm{y}<=2$
Certifying point: ($y=1, x \# 5 \# 6=1, x \# 3 \# 4=1, x \# 1 \# 2=1$)
Certifying point: ($y=1, x \# 5 \# 8=1, x \# 3 \# 4=1, x \# 1 \# 2=1$)
Certifying point: ($y=1, x \# 6 \# 7=1, x \# 3 \# 4=1, x \# 1 \# 2=1$)
Certifying point: ($x \# 2 \# 5=1, x \# 1 \# 3=1$)
Certifying point: (x\#3\#4=1, x\#2\#5=1)

```
```

% ipo --dimension --facets product-matching-missing.zpl
Computing the affine hull:
Dimension: 29
Objective <instance> 10 x\#1\#2 + 4 x\#1\#3 ...
Facet: 2 x\#1\#2 + x\#1\#3 + x\#1\#4 + x\#1\#5 + x\#2\#3 + x\#2\#4 + x\#2\#5
+ x\#3\#4 - y <= 2
Certifying point: (y=1, x\#5\#6=1, x\#3\#4=1, x\#1\#2=1)
Certifying point: (y=1, x\#5\#8=1, x\#3\#4=1, x\#1\#2=1)
Certifying point: (y=1, x\#6\#7=1, x\#3\#4=1, x\#1\#2=1)
Certifying point: (x\#2\#5=1, x\#1\#3=1)
Certifying point: (x\#3\#4=1, x\#2\#5=1)

```

\section*{This facet does not belong to the previous types!}


\section*{Oracles}
- Oracle: SCIP-3.0.0-ex
- Heuristic: SCIP-3.1.1 with postprocessing


\section*{Oracles}
- Oracle: SCIP-3.0.0-ex
- Heuristic: SCIP-3.1.1 with postprocessing


\section*{Postprocessing of solutions}

Let \(I \subseteq[n]\) be the set of integral variables.
(1) For \(x \in \mathbb{Q}^{n}\), obtain \(\bar{x}\) from \(x\) by rounding \(x_{i}\) for all \(i \in I\).
(2) Compute optimal choice for \(x_{[n],}\) using an exact LP solver, e.g., SoPlex.

For the 34 instances with \(n \leq 1000\) solved within 5 mins, we considered the original \(P\), and the presolved instances \(Q\), and their resp. hulls \(P_{l}\) and \(Q_{l}\) :
\begin{tabular}{lrrrr}
\hline Instance & \(n\) & \(n^{\prime}\) & \(\operatorname{dim} P\) & \(\operatorname{dim} P_{I}\) \\
\hline air01 & 771 & 750 & 732 & 617 \\
bell3b & 133 & 133 & 133 & 115 \\
bell5 & 104 & 104 & 104 & 97 \\
bm23 & 27 & 27 & 27 & 27 \\
cracpb1 & 572 & 484 & 484 & 478 \\
\hline dcmulti & 548 & 470 & 470 & 467 \\
\hline diamond & 2 & 2 & 2 & -1 \\
\hline egout & 141 & 68 & 68 & 41 \\
enigma & 100 & 79 & 79 & 3 \\
\hline flugpl & 18 & 12 & 12 & 9 \\
gen & 870 & 720 & 720 & 540 \\
Iseu & 89 & 89 & 89 & 89 \\
\hline misc01 & 83 & 68 & 60 & 44 \\
misc02 & 59 & 47 & 41 & 37 \\
\hline misc03 & 160 & 136 & 121 & 116 \\
\hline misc05 & 136 & 108 & 100 & 98 \\
\hline misc07 & 260 & 228 & 207 & 204 \\
\hline p0033 & 33 & 33 & 33 & 27 \\
\hline p0040 & 40 & 40 & 30 & 30 \\
\hline p0201 & 201 & 201 & 145 & 139 \\
\hline p0548 & 548 & 548 & 545 & \\
\hline pipex & 48 & 32 & 32 & 31 \\
\hline rgn & 180 & 160 & 160 & 160 \\
\hline sample2 & 67 & 44 & 44 & 32 \\
vpm1 & 378 & 336 & 288 & 288 \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr}
\hline Instance & \(n\) & \(n^{\prime}\) & \(\operatorname{dim} Q\) & \(\operatorname{dim} Q_{l}\) \\
\hline air01 & 760 & 363 & 363 & 361 \\
bell3b & 113 & 91 & 91 & 86 \\
bell5 & 87 & 56 & 56 & 56 \\
bm23 & 27 & 27 & 27 & 27 \\
cracpb1 & 518 & 478 & 478 & 478 \\
\hline dcmulti & 548 & 469 & 469 & 467 \\
diamond & 2 & 0 & -1 & -1 \\
\hline egout & 118 & 41 & 41 & 41 \\
\hline enigma & 100 & 79 & 79 & 3 \\
\hline flugpl & 16 & 10 & 10 & 7 \\
\hline gen & 699 & 509 & 411 & 411 \\
\hline lseu & 89 & 85 & 85 & 85 \\
misc01 & 82 & 56 & 56 & 44 \\
\hline misc02 & 58 & 37 & 37 & 33 \\
misc03 & 159 & 115 & 115 & 110 \\
\hline misc05 & 128 & 100 & 100 & 98 \\
\hline misc07 & 259 & 201 & 201 & 198 \\
\hline p0033 & 29 & 26 & 26 & 20 \\
\hline p0040 & 40 & 20 & 20 & 20 \\
\hline p0201 & 201 & 163 & 127 & 127 \\
\hline p0548 & 527 & 362 & 362 & 357 \\
\hline pipex & 48 & 32 & 32 & 31 \\
\hline rgn & 175 & 160 & 160 & 160 \\
\hline sample2 & 55 & 32 & 32 & 32 \\
\hline vpm1 & 362 & 168 & 168 & 168 \\
\hline
\end{tabular}

Full-dim. instances: mod008, mod013, p0282, p0291, sentoy, stein15, stein27, stein45, stein9

Study: Constraint Dimensions (Original)


Study: Constraint Dimensions (Presolved)


\section*{Oracles}
- Oracle: Concorde (famous TSP solver)
- Heuristic: Nearest neighbor plus 2-opt, searching once from each node.

\section*{Oracles}
- Oracle: Concorde (famous TSP solver)
- Heuristic: Nearest neighbor plus 2-opt, searching once from each node.

Results for 10, 000 random tests:
\begin{tabular}{rrrrrrrrr}
\hline Nodes & Adjacent & Time/pair & LP & Heuristics & Oracles & Cache & Tours & Vertices \\
\hline 5 & \(91.23 \%\) & \(0.3 s\) & \(0.5 \%\) & \(0.1 \%\) & \(97.9 \%\) & \(0.1 \%\) & 12 & \(1.2 \cdot 10^{1}\) \\
6 & \(69.32 \%\) & \(0.4 s\) & \(0.7 \%\) & \(0.1 \%\) & \(97.5 \%\) & \(0.1 \%\) & 45 & \(6.0 \cdot 10^{1}\) \\
7 & \(46.16 \%\) & \(0.6 s\) & \(1.1 \%\) & \(0.1 \%\) & \(96.1 \%\) & \(0.5 \%\) & 207 & \(3.6 \cdot 10^{2}\) \\
8 & \(28.07 \%\) & 0.8 s & \(1.5 \%\) & \(0.1 \%\) & \(93.1 \%\) & \(2.5 \%\) & 1,189 & \(2.5 \cdot 10^{3}\) \\
9 & \(17.46 \%\) & \(1.0 s\) & \(2.0 \%\) & \(0.2 \%\) & \(86.1 \%\) & \(8.7 \%\) & 5,759 & \(2.0 \cdot 10^{4}\) \\
10 & \(10.52 \%\) & 1.5 s & \(2.3 \%\) & \(0.2 \%\) & \(77.5 \%\) & \(17.3 \%\) & 15,472 & \(1.8 \cdot 10^{5}\) \\
11 & \(6.53 \%\) & 2.1 s & \(2.7 \%\) & \(0.2 \%\) & \(67.4 \%\) & \(26.9 \%\) & 33,935 & \(1.8 \cdot 10^{6}\) \\
12 & \(3.67 \%\) & \(3.0 s\) & \(3.8 \%\) & \(0.3 \%\) & \(54.2 \%\) & \(38.8 \%\) & 66,510 & \(2.0 \cdot 10^{7}\) \\
13 & \(2.20 \%\) & 4.9 s & \(5.1 \%\) & \(0.3 \%\) & \(39.6 \%\) & \(52.0 \%\) & 125,298 & \(2.4 \cdot 10^{8}\) \\
14 & \(1.13 \%\) & 10.1 s & \(7.7 \%\) & \(0.3 \%\) & \(22.9 \%\) & \(65.8 \%\) & 232,995 & \(3.1 \cdot 10^{9}\) \\
15 & \(0.59 \%\) & \(24.3 s\) & \(12.9 \%\) & \(0.2 \%\) & \(11.0 \%\) & \(71.6 \%\) & 406,315 & \(4.4 \cdot 10^{10}\) \\
\hline
\end{tabular}

\section*{Tool:}
- Approach allows to handle much higher dimensions than usual convex hull codes.
- But: not useful for checking whether formulation is complete.
- Exact LP solver and exactly represented points / rays are essential.
- For \(n>100\), exact MIP solver is also essential.
- For \(n>500\), linear algebra starts to be time-consuming.

\section*{Tool:}
- Approach allows to handle much higher dimensions than usual convex hull codes.
- But: not useful for checking whether formulation is complete.
- Exact LP solver and exactly represented points / rays are essential.
- For \(n>100\), exact MIP solver is also essential.
- For \(n>500\), linear algebra starts to be time-consuming.

\section*{Computational Study:}
- Some MIPLIB 2.0 models seem to be not so well-posed.
- Larger problems / concrete models would be interesting to check.

\section*{Tool:}
- Approach allows to handle much higher dimensions than usual convex hull codes.
- But: not useful for checking whether formulation is complete.
- Exact LP solver and exactly represented points / rays are essential.
- For \(n>100\), exact MIP solver is also essential.
- For \(n>500\), linear algebra starts to be time-consuming.

\section*{Computational Study:}
- Some MIPLIB 2.0 models seem to be not so well-posed.
- Larger problems / concrete models would be interesting to check.

\section*{polyhedra-oracles.bitbucket.org}```

