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Intro IPO Framework Studies

Polyhedral Method

Graph G = (V ,E)

T ⊆ E span. tree
Edge costs c ∈ RE

χ(T)e ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 if e ∈ T

0 if e ∉ T

Psp.tree(G) ∶= conv{χ(T) ∣ T span. tree}

{x ∣ Ax ≤ b} = Psp.tree(G)

4. Solve optimization problems with
LP solvers.
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IPO Framework
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Intro IPO Framework Studies

Oracle Zoo

Base oracles:

▸ Instance & MIP solver ↝ oracle for (mixed-) integer hull.

▸ Instance & LP solver ↝ oracle for LP relaxation.

Auxiliary oracles:

▸ Caching of oracle answers.

▸ Heuristics: Feasibility of returned solutions may be sufficient for the
algorithms to make progress. ↝ speed-up!

Oracles for related polytopes:

▸ Restriction to face.

▸ Affine projection.

▸ Recession cone.
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Intro IPO Framework Studies

Capabilities

Facets:

▸ Given a point x̂ , compute a facet-defining inequality a⊺x ≤ β of P that is
violated by x̂ .

▸ Given an objective c ∈ Rn, compute facet-defining inequalities until
optimization of the LP results in an integer point.

Affine hull:

▸ Compute the dimension d of P.

▸ Find a system of n − d (independent) equations a⊺x = β valid for P.

▸ Find a set of d + 1 affinely independent points in P.

Smallest Face:

▸ Compute the smallest face that contains a point x̂ ∈ P.

▸ Is x̂ a vertex of P?

▸ Are the vertices u and v of P connected by an edge of P?
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Intro IPO Framework Studies

Details: Facets

▸ Let d ∶= dimP and let o ∈ relint(P).

▸ x̂ is to be separated by a facet ⟨a, x⟩ ≤ β.

▸ S ⊆ P contains P’s vertices and R ⊆ recc(P) contains all extreme rays.

▸ We solve the following LP, adding constraints for S and R lazily.

max ⟨x̂ , a⟩−β

s.t. ⟨s, a⟩−β ≤ 0 for all s ∈ S

⟨r , a⟩ ≤ 0 for all r ∈ R

⟨x̂ − o, a⟩ ≤ 1

a ∈ Rn, β ∈ R

Theorem (W., 2016)

Let (a∗, β∗) be an optimum that lies in a minimal face of the feasible set. If
⟨a∗,o⟩ < β∗, then ⟨a∗, x⟩ ≤ β∗ is valid and facet-defining for P. Otherwise,
⟨a∗, x⟩ = β∗ is valid for P.
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Intro IPO Framework Studies

Details: Affine Hull

Input:

▸ Oracle optimizing any rational objective over P.

Output:

▸ Dimension d of P

▸ (d + 1)-many affinely independent points in P

▸ (n − d)-many irredundant equations Cx = d valid for P

Ideas:

1 Maintain known equations Cx = d and points x1, x2, . . . , x` ∈ P.

2 Repeatedly find a “useful” direction c ∈ Rn, and compute
z+ ∶= maxx∈P ⟨c, x⟩ and z− ∶= minx∈P ⟨c, x⟩ (2 oracle calls).

3 If we are lucky and z+ = z− holds, then ⟨c, x⟩ = z+ is a valid equation.
To make progress, we want c to be linear independent of C ’s rows.

4 If we also choose c to be orthogonal to aff(x1, . . . , x`)
(that is, ⟨c, xi ⟩ = ⟨c, x1⟩ for all i = 2, . . . , `), the result z+ > z− yields a
point x`+1 affinely independent of x1, . . . , x`.
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2 Repeatedly find a “useful” direction c ∈ Rn, and compute
z+ ∶= maxx∈P ⟨c, x⟩ and z− ∶= minx∈P ⟨c, x⟩ (2 oracle calls).

3 If we are lucky and z+ = z− holds, then ⟨c, x⟩ = z+ is a valid equation.
To make progress, we want c to be linear independent of C ’s rows.

4 If we also choose c to be orthogonal to aff(x1, . . . , x`)
(that is, ⟨c, xi ⟩ = ⟨c, x1⟩ for all i = 2, . . . , `), the result z+ > z− yields a
point x`+1 affinely independent of x1, . . . , x`.
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Intro IPO Framework Studies

Computing the Affine Hull

Reminder:

▸ x1, . . . , x` ∈ P ⊆ Rn are affinely independent points found so far.

▸ Cx = d are the equations found so far.

Hidden details:

▸ How to model linear independence? Orthogonality is a bad choice for
exact arithmetic!

▸ Better: Try basis vectors of aff (x1, . . . , x`)
⊥ and skip if it depends on C ’s

rows.

▸ Even better: Compute whole basis approximately to estimate sparsity and
then try (exactly computed) sparse candidates.

▸ What if P is unbounded? Have to consider unbounded rays as well!

▸ Näıve way: 2n + 1 oracle calls.

▸ With some more tricks: 2n oracle calls. ← great result!

Theorem (W., 2016)

Every algorithm which computes the affine hull of polyhedra P ⊆ Rn specified
only by an optimization oracle needs at least 2n oracle calls in the worst case.
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Computational Studies

Computational Studies
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Intro IPO Framework Studies

Study: Quadratic Matching Polytopes

Consider the quadratic matching polytope of order n with one quadratic term:

Pn ∶= conv {(χ(M), y) ∈ {0,1}∣En ∣+1 ∣ M matching in Kn, y = x1,2x3,4 }

Hupp, Klein & Liers, ’15 obtained a bunch of facets:

▸ x(δ(v)) ≤ 1 for all v ∈ Vn.

▸ xe ≥ 0 for all e ∈ En.

▸ y ≤ x1,2 and y ≤ x3,4. (Note that y ≥ x1,2 + x3,4 − 1 is no facet.)

▸ x(E[S]) + y ≤
∣S ∣−1
2

for certain odd S .

▸ x(E[S]) ≤ ∣S ∣−1
2

for certain odd S .

▸ x(E[S]) + x(E[S ∖ {1,2}]) + x3,4 − y ≤ ∣S ∣ − 2 for certain odd S .

▸ x(E[S]) + x2,a + x3,a + x4,a + y ≤
∣S ∣
2

for certain even S and nodes a.

▸ x1,2 + x1,a + x2,a + x(E[S]) + x3,4 + x3,b + x4,b − y ≤
∣S ∣
2
+ 1 for certain even S

and certain nodes a,b.
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Intro IPO Framework Studies

Study: Some are Missing!

Excerpt from their paper:
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Intro IPO Framework Studies

Study: An IP Model

param n := 6;

set V := { 1 to n };

set E := { <u,v> in V*V with u < v };

set F := { <1,2>,<3,4>,<1,5>,<2,5>,<3,6>,<4,6>,<1,3>,<2,4> };

var x[E] binary;

var y binary;

maximize weights:

10*x[1,2] + 10*x[3,4] + 2*x[1,5] + 2*x[2,5] + 2*x[3,6]

+ 2*x[4,6] + 4*x[1,3] + 4*x[2,4] -10*y

+ sum <u,v> in E-F: -1000*x[u,v];

subto degree: forall <w> in V:

(sum <u,v> in E with u == w or v == w: x[u,v]) <= 1;

subto product1: y <= x[1,2];

subto product2: y <= x[3,4];

subto product3: y >= x[1,2] + x[3,4] - 1;
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Intro IPO Framework Studies

Study: Running IPO

% ipo --dimension --facets product-matching-missing.zpl

Computing the affine hull:

Dimension: 29

Objective <instance> 10 x#1#2 + 4 x#1#3 ...

Facet: 2 x#1#2 + x#1#3 + x#1#4 + x#1#5 + x#2#3 + x#2#4 + x#2#5

+ x#3#4 - y <= 2

Certifying point: (y=1, x#5#6=1, x#3#4=1, x#1#2=1)

Certifying point: (y=1, x#5#8=1, x#3#4=1, x#1#2=1)

Certifying point: (y=1, x#6#7=1, x#3#4=1, x#1#2=1)

Certifying point: (x#2#5=1, x#1#3=1)

Certifying point: (x#3#4=1, x#2#5=1)

...

This facet does not belong to the previous types!
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Intro IPO Framework Studies

Study: MIPLIB 2 Dimensions

Oracles

▸ Oracle: SCIP-3.0.0-ex

▸ Heuristic: SCIP-3.1.1 with postprocessing

Postprocessing of solutions

Let I ⊆ [n] be the set of integral variables.

1 For x ∈ Qn, obtain x from x by rounding xi for all i ∈ I .

2 Compute optimal choice for x[n]∖I using an exact LP solver, e.g., SoPlex.
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Intro IPO Framework Studies

Study: MIPLIB 2 Dimensions

For the 34 instances with n ≤ 1000 solved within 5 mins, we considered the
original P, and the presolved instances Q, and their resp. hulls PI and QI :

Instance n n′ dimP dimPI

air01 771 750 732 617
bell3b 133 133 133 115
bell5 104 104 104 97
bm23 27 27 27 27
cracpb1 572 484 484 478
dcmulti 548 470 470 467
diamond 2 2 2 -1
egout 141 68 68 41
enigma 100 79 79 3
flugpl 18 12 12 9
gen 870 720 720 540
lseu 89 89 89 89
misc01 83 68 60 44
misc02 59 47 41 37
misc03 160 136 121 116
misc05 136 108 100 98
misc07 260 228 207 204
p0033 33 33 33 27
p0040 40 40 30 30
p0201 201 201 145 139
p0548 548 548 545
pipex 48 32 32 31
rgn 180 160 160 160
sample2 67 44 44 32
vpm1 378 336 288 288

Instance n n′ dimQ dimQI

air01 760 363 363 361
bell3b 113 91 91 86
bell5 87 56 56 56
bm23 27 27 27 27
cracpb1 518 478 478 478
dcmulti 548 469 469 467
diamond 2 0 -1 −1
egout 118 41 41 41
enigma 100 79 79 3
flugpl 16 10 10 7
gen 699 509 411 411
lseu 89 85 85 85
misc01 82 56 56 44
misc02 58 37 37 33
misc03 159 115 115 110
misc05 128 100 100 98
misc07 259 201 201 198
p0033 29 26 26 20
p0040 40 20 20 20
p0201 201 163 127 127
p0548 527 362 362 357
pipex 48 32 32 31
rgn 175 160 160 160
sample2 55 32 32 32
vpm1 362 168 168 168

Full-dim. instances: mod008, mod013, p0282, p0291, sentoy, stein15, stein27, stein45, stein9
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Intro IPO Framework Studies

Study: Constraint Dimensions (Original)
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Study: Constraint Dimensions (Presolved)
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Intro IPO Framework Studies

Study: TSP Polytopes

Oracles

▸ Oracle: Concorde (famous TSP solver)

▸ Heuristic: Nearest neighbor plus 2-opt, searching once from each node.

Results for 10,000 random tests:

Nodes Adjacent Time/pair LP Heuristics Oracles Cache Tours Vertices

5 91.23 % 0.3 s 0.5 % 0.1 % 97.9 % 0.1 % 12 1.2 ⋅ 101

6 69.32 % 0.4 s 0.7 % 0.1 % 97.5 % 0.1 % 45 6.0 ⋅ 101

7 46.16 % 0.6 s 1.1 % 0.1 % 96.1 % 0.5 % 207 3.6 ⋅ 102

8 28.07 % 0.8 s 1.5 % 0.1 % 93.1 % 2.5 % 1,189 2.5 ⋅ 103

9 17.46 % 1.0 s 2.0 % 0.2 % 86.1 % 8.7 % 5,759 2.0 ⋅ 104

10 10.52 % 1.5 s 2.3 % 0.2 % 77.5 % 17.3 % 15,472 1.8 ⋅ 105

11 6.53 % 2.1 s 2.7 % 0.2 % 67.4 % 26.9 % 33,935 1.8 ⋅ 106

12 3.67 % 3.0 s 3.8 % 0.3 % 54.2 % 38.8 % 66,510 2.0 ⋅ 107

13 2.20 % 4.9 s 5.1 % 0.3 % 39.6 % 52.0 % 125,298 2.4 ⋅ 108

14 1.13 % 10.1 s 7.7 % 0.3 % 22.9 % 65.8 % 232,995 3.1 ⋅ 109

15 0.59 % 24.3 s 12.9 % 0.2 % 11.0 % 71.6 % 406,315 4.4 ⋅ 1010
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Intro IPO Framework Studies

Summary

Tool:

▸ Approach allows to handle much higher dimensions than usual convex hull
codes.

▸ But: not useful for checking whether formulation is complete.

▸ Exact LP solver and exactly represented points / rays are essential.

▸ For n > 100, exact MIP solver is also essential.

▸ For n > 500, linear algebra starts to be time-consuming.

Computational Study:

▸ Some MIPLIB 2.0 models seem to be not so well-posed.

▸ Larger problems / concrete models would be interesting to check.

polyhedra-oracles.bitbucket.org
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