

Investigating Polyhedra by Oracles

Matthias Walter

Joint work with Volker Kaibel (Otto-von-Guericke Universität Magdeburg)

International Conference on Mathematical Software, Berlin 2016

Graph G = (V, E) $T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

Intro IPO Framework Studies

Graph G = (V, E) $T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

Intro IPO Framework Studies

 Intro
 IPO Framework
 Studies

 • · · · · ·
 • · · · · ·
 • · · · · ·
 • · · · · ·

 $\chi(T)_e := \begin{cases} 1 & \text{if } e \in T \\ 0 & \text{if } e \notin T \end{cases}$

Graph G = (V, E) $T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

Т

Т

$$\chi(T)_e \coloneqq \begin{cases} 1 & \text{if } e \in \\ 0 & \text{if } e \notin \end{cases}$$

$$P_{\text{sp.tree}}(G) \coloneqq \text{conv}\{\chi(T) \mid T \text{ span. tree}\}$$

Intro	IPO Framework	Studies
•000	00000	000000000

- Identify feasible objects with (integral) vectors in ℝⁿ s.t. objective is linear.
- 2. Object of interest: Convex hull of all these vectors, a polytope.

Matthias Walter

Graph G = (V, E) $T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

Т

Т

$$\chi(T)_e \coloneqq \begin{cases} 1 & \text{if } e \in \\ 0 & \text{if } e \notin \end{cases}$$

$$P_{\text{sp.tree}}(G) \coloneqq \text{conv}\{\chi(T) \mid T \text{ span. tree}\}$$

Intro IPO Framework Studies •୦୦୦ ୦୦୦୦୦ ୦୦୦୦୦୦୦

- Identify feasible objects with (integral) vectors in ℝⁿ s.t. objective is linear.
- 2. Object of interest: Convex hull of all these vectors, a polytope.

3. Search for outer description: inequalities & equations.

Matthias Walter

Graph G = (V, E) $T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

Т

Т

$$\chi(T)_e \coloneqq \begin{cases} 1 & \text{if } e \in \\ 0 & \text{if } e \notin \end{cases}$$

$$P_{\text{sp.tree}}(G) \coloneqq \text{conv}\{\chi(T) \mid T \text{ span. tree}\}$$

- Identify feasible objects with (integral) vectors in ℝⁿ s.t. objective is linear.
- 2. Object of interest: Convex hull of all these vectors, a polytope.

- 3. Search for outer description: inequalities & equations.
- 4. Solve optimization problems with LP solvers.

Intro IPO Framework Studies

Graph G = (V, E) $T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

$$\chi(T)_e \coloneqq \begin{cases} 1 & \text{if } e \in T \\ 0 & \text{if } e \notin T \end{cases}$$

Graph
$$G = (V, E)$$

 $T \subseteq E$ tree, $V(T)$ its nodes
Edge costs $c \in \mathbb{R}^{E}$, node costs $d \in \mathbb{R}^{V}$

 $P_{\text{sp.tree}}(G) \coloneqq \text{conv}\{\chi(T) \mid T \text{ span. tree}\}$

Matthias Walter

Intro IPO Framework Studies

Graph G = (V, E) $T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

$$\chi(T)_e \coloneqq \begin{cases} 1 & \text{if } e \in T \\ 0 & \text{if } e \notin T \end{cases}$$

Graph G = (V, E) $T \subseteq E$ tree, V(T) its nodes Edge costs $c \in \mathbb{R}^{E}$, node costs $d \in \mathbb{R}^{V}$

 Identify feasible objects with (integral) vectors in ℝⁿ s.t. objective is linear.

$$P_{\text{sp.tree}}(G) \coloneqq \text{conv}\{\chi(T) \mid T \text{ span. tree}\}$$

2. Object of interest: Convex hull of all these vectors, a polytope.

- 3. Search for outer description: inequalities & equations.
- 4. Solve optimization problems with LP solvers.

Intro IPO Framework Studies

Graph G = (V, E) $T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

Graph G = (V, E) $T \subseteq E$ tree, V(T) its nodes Edge costs $c \in \mathbb{R}^{E}$, node costs $d \in \mathbb{R}^{V}$

 $(\chi(T),\chi(V(T))) \in \{0,1\}^{E} \times \{0,1\}^{V}$

 $P_{\text{sp.tree}}(G) \coloneqq \operatorname{conv}\{\chi(T) \mid T \text{ span. tree}\}$

2. Object of interest: Convex hull of all these vectors, a polytope.

- 3. Search for outer description: inequalities & equations.
- 4. Solve optimization problems with LP solvers.

Intro IPO Framework Studies

Graph G = (V, E) $T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

$$\chi(T)_e \coloneqq \begin{cases} 1 & \text{if } e \in 7\\ 0 & \text{if } e \notin 7 \end{cases}$$

Graph
$$G = (V, E)$$

 $T \subseteq E$ tree, $V(T)$ its nodes
Edge costs $c \in \mathbb{R}^{E}$, node costs $d \in \mathbb{R}^{V}$

$$(\chi(T),\chi(V(T))) \in \{0,1\}^{E} \times \{0,1\}^{V}$$

 $P_{\text{sp.tree}}(G) \coloneqq \text{conv}\{\chi(T) \mid T \text{ span. tree}\}$

 $P_{\text{tree}}(G) \coloneqq \text{conv}\{(\chi(T), \chi(V(T))) \mid T \text{ tree }\}$

- 3. Search for outer description: inequalities & equations.
- 4. Solve optimization problems with LP solvers.

IPO Framework Studies Intro 0000 00000

Graph G = (V, E) $T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

$$\chi(T)_e \coloneqq \begin{cases} 1 & \text{if } e \in 7 \\ 0 & \text{if } e \notin 7 \end{cases}$$

$$f_{e} := \begin{cases} 1 & \text{if } e \in T \\ 0 & \text{if } e \notin T \end{cases}$$

Graph G = (V, E) $T \subseteq E$ tree, V(T) its nodes Edge costs $c \in \mathbb{R}^{E}$, node costs $d \in \mathbb{R}^{V}$

$$(\chi(T),\chi(V(T))) \in \{0,1\}^{E} \times \{0,1\}^{V}$$

 $P_{\text{sp.tree}}(G) \coloneqq \text{conv}\{\chi(T) \mid T \text{ span. tree}\}$

 $P_{\text{tree}}(G) \coloneqq \text{conv}\{(\chi(T), \chi(V(T))) \mid T \text{ tree }\}$

$$\{(x, y) \mid Ax + By \le b\} \cap \mathbb{Z}^{E} \times \mathbb{Z}^{V}$$
$$= P_{\text{tree}}(G) \cap \mathbb{Z}^{E} \times \mathbb{Z}^{V}$$

4. Solve optimization problems with LP solvers.

IPO Framework Studies Intro 0000 00000

Graph G = (V, E) $T \subseteq E$ span. tree Edge costs $c \in \mathbb{R}^{E}$

$$\chi(T)_e \coloneqq \begin{cases} 1 & \text{if } e \in 7 \\ 0 & \text{if } e \notin 7 \end{cases}$$

$$f_{e} := \begin{cases} 1 & \text{if } e \in T \\ 0 & \text{if } e \notin T \end{cases}$$

Graph G = (V, E) $T \subseteq E$ tree, V(T) its nodes Edge costs $c \in \mathbb{R}^{E}$, node costs $d \in \mathbb{R}^{V}$

$$(\chi(T),\chi(V(T))) \in \{0,1\}^{E} \times \{0,1\}^{V}$$

 $P_{\text{sp.tree}}(G) \coloneqq \text{conv}\{\chi(T) \mid T \text{ span. tree}\}$

 $P_{\text{tree}}(G) \coloneqq \text{conv}\{(\chi(T), \chi(V(T))) \mid T \text{ tree }\}$

$$\{(x, y) \mid Ax + By \le b\} \cap \mathbb{Z}^{E} \times \mathbb{Z}^{V}$$
$$= P_{\text{tree}}(G) \cap \mathbb{Z}^{E} \times \mathbb{Z}^{V}$$

4. Solve optimization problems with MILP solvers.

Hunting Facets: Traditional Approach

Intro	IPO Framework	Studies
0000	00000	000000000

 $\begin{array}{l} \mathsf{Mixed-integer set:} \\ Ax + By \leq d \\ x_i \in \mathbb{Z}, y_j \in \mathbb{R} \end{array}$

Recognized class of facets:

$$a^{\mathsf{T}}x + b^{\mathsf{T}}y \leq \beta$$
 for all $(a, b, \beta) : \dots$

Hunting Facets: Traditional Approach

1	Intro	IPO Framework	Studies
	0000	00000	000000000

Recognized class of facets:

$$a^{\mathsf{T}}x + b^{\mathsf{T}}y \leq \beta$$
 for all $(a, b, \beta) : \dots$

Investigating Polyhedra by Oracles

Hunting Facets: Traditional Approach

Matthias Walter

2 / 19 **ICMS 2016**

IPO Framework Intro Studies

Investigating Polyhedra by Oracles

Hunting Facets: Traditional Approach

Matthias Walter

IPO Framework Intro Studies

> 2 / 19 **ICMS 2016**

Intro	IPO Framework	Studies	
0000	00000	000000000	

 $\begin{array}{l} \mathsf{Mixed-integer set:} \\ Ax + By \leq d \\ x_i \in \mathbb{Z}, y_j \in \mathbb{R} \end{array}$

Recognized class of facets:

$$a^{\mathsf{T}}x + b^{\mathsf{T}}y \leq \beta$$
 for all $(a, b, \beta) : \dots$

	Intro	IPO Framework	Studies
<	0000	00000	000000000

 $\begin{array}{l} \mathsf{Mixed-integer set:} \\ Ax + By \leq d \\ x_i \in \mathbb{Z}, y_j \in \mathbb{R} \end{array}$

Matthias Walter

Intro	IPO Framework	Studies
0000	00000	000000000

 $\begin{array}{l} \text{Mixed-integer set:} \\ Ax + By \leq d \\ x_i \in \mathbb{Z}, y_j \in \mathbb{R} \end{array}$

Mixed-integer set: $Ax + By \le d$ $x_i \in \mathbb{Z}, y_j \in \mathbb{R}$ Intro IPO Framework Studies

 Intro
 IPO Framework
 Studies

 OOOO
 OOOOOO
 OOOOOOOOO

Matthias Walter

Agenda

Introduction

- Polyhedral Method
- Facet Hunting

IPO

- Oracles
- Capabilities
- Details: Facets
- Details: Affine Hull

3 Studies

- Matching Polytopes with One Quadratic Term
- MIPLIB Dimensions
- Constraint Dimensions
- TSP Polytopes

Intro IPO Framework Studies

The IPO Framework

Matthias Walter

Oracle Zoo

Base oracles:

- ▶ Instance & MIP solver ~ oracle for (mixed-) integer hull.
- ▶ Instance & LP solver → oracle for LP relaxation.

Oracle Zoo

Base oracles:

- ▶ Instance & MIP solver ~ oracle for (mixed-) integer hull.
- ▶ Instance & LP solver → oracle for LP relaxation.

Auxiliary oracles:

- Caching of oracle answers.
- ▶ Heuristics: Feasibility of returned solutions may be sufficient for the algorithms to make progress. ~> speed-up!

Oracle Zoo

Base oracles:

- ▶ Instance & MIP solver → oracle for (mixed-) integer hull.
- ▶ Instance & LP solver → oracle for LP relaxation.

Auxiliary oracles:

- Caching of oracle answers.
- ▶ Heuristics: Feasibility of returned solutions may be sufficient for the algorithms to make progress. ~> speed-up!

Oracles for related polytopes:

- Restriction to face.
- Affine projection.
- Recession cone.

Capabilities

Facets:

- Given a point \hat{x} , compute a facet-defining inequality $a^{\mathsf{T}}x \leq \beta$ of P that is violated by \hat{x} .
- Given an objective $c \in \mathbb{R}^n$, compute facet-defining inequalities until optimization of the LP results in an integer point.

Capabilities

Facets:

- Given a point \hat{x} , compute a facet-defining inequality $a^{\mathsf{T}}x \leq \beta$ of P that is violated by \hat{x} .
- Given an objective $c \in \mathbb{R}^n$, compute facet-defining inequalities until optimization of the LP results in an integer point.

Affine hull:

- Compute the dimension *d* of *P*.
- Find a system of n d (independent) equations $a^{\mathsf{T}}x = \beta$ valid for P.
- Find a set of d + 1 affinely independent points in P.

Capabilities

Facets:

- Given a point \hat{x} , compute a facet-defining inequality $a^{\mathsf{T}}x \leq \beta$ of P that is violated by \hat{x} .
- Given an objective $c \in \mathbb{R}^n$, compute facet-defining inequalities until optimization of the LP results in an integer point.

Affine hull:

- Compute the dimension *d* of *P*.
- Find a system of n d (independent) equations $a^{\mathsf{T}} x = \beta$ valid for P.
- Find a set of d + 1 affinely independent points in P.

Smallest Face:

- Compute the smallest face that contains a point $\hat{x} \in P$.
- Is x̂ a vertex of P?
- Are the vertices u and v of P connected by an edge of P?

Details: Facets

- Let $d := \dim P$ and let $o \in \operatorname{relint}(P)$.
- \hat{x} is to be separated by a facet $\langle a, x \rangle \leq \beta$.
- $S \subseteq P$ contains P's vertices and $R \subseteq \text{recc}(P)$ contains all extreme rays.

Details: Facets

- Let $d := \dim P$ and let $o \in \operatorname{relint}(P)$.
- \hat{x} is to be separated by a facet $\langle a, x \rangle \leq \beta$.
- $S \subseteq P$ contains P's vertices and $R \subseteq \text{recc}(P)$ contains all extreme rays.
- We solve the following LP, adding constraints for S and R lazily.

$$\begin{array}{ll} \max & \langle \hat{x}, a \rangle - \beta \\ \text{s.t.} & \langle s, a \rangle - \beta \leq 0 & \text{for all } s \in S \\ & \langle r, a \rangle &\leq 0 & \text{for all } r \in R \\ & \langle \hat{x} - o, a \rangle &\leq 1 \\ & a \in \mathbb{R}^n, \ \beta \in \mathbb{R} \end{array}$$

Details: Facets

- Let $d := \dim P$ and let $o \in \operatorname{relint}(P)$.
- \hat{x} is to be separated by a facet $\langle a, x \rangle \leq \beta$.
- $S \subseteq P$ contains P's vertices and $R \subseteq recc(P)$ contains all extreme rays.
- We solve the following LP, adding constraints for S and R lazily.

$$\begin{array}{ll} \max & \langle \hat{x}, a \rangle - \beta \\ \text{s.t.} & \langle s, a \rangle - \beta \leq 0 & \text{for all } s \in S \\ & \langle r, a \rangle & \leq 0 & \text{for all } r \in R \\ & \langle \hat{x} - o, a \rangle & \leq 1 \\ & a \in \mathbb{R}^n, \ \beta \in \mathbb{R} \end{array}$$

Theorem (W., 2016)

Let (a^*, β^*) be an optimum that lies in a minimal face of the feasible set. If $(a^*, o) < \beta^*$, then $(a^*, x) \le \beta^*$ is valid and facet-defining for P. Otherwise, $(a^*, x) = \beta^*$ is valid for P.

Input:

• Oracle optimizing any rational objective over *P*.

Output:

- Dimension d of P
- (d+1)-many affinely independent points in P
- (n-d)-many irredundant equations Cx = d valid for P

Input:

• Oracle optimizing any rational objective over *P*.

Output:

- Dimension d of P
- (d+1)-many affinely independent points in P
- (n-d)-many irredundant equations Cx = d valid for P

Ideas:

() Maintain known equations Cx = d and points $x_1, x_2, \ldots, x_\ell \in P$.

Input:

• Oracle optimizing any rational objective over *P*.

Output:

- Dimension d of P
- (d+1)-many affinely independent points in P
- (n-d)-many irredundant equations Cx = d valid for P

Ideas:

- **(**) Maintain known equations Cx = d and points $x_1, x_2, \ldots, x_{\ell} \in P$.
- **2** Repeatedly find a "useful" direction $c \in \mathbb{R}^n$, and compute $z^+ := \max_{x \in P} \langle c, x \rangle$ and $z^- := \min_{x \in P} \langle c, x \rangle$ (2 oracle calls).

Input:

• Oracle optimizing any rational objective over *P*.

Output:

- Dimension d of P
- (d+1)-many affinely independent points in P
- (n-d)-many irredundant equations Cx = d valid for P

Ideas:

- **(**) Maintain known equations Cx = d and points $x_1, x_2, \ldots, x_{\ell} \in P$.
- **②** Repeatedly find a "useful" direction $c \in \mathbb{R}^n$, and compute $z^+ := \max_{x \in P} \langle c, x \rangle$ and $z^- := \min_{x \in P} \langle c, x \rangle$ (2 oracle calls).
- If we are lucky and z⁺ = z⁻ holds, then (c, x) = z⁺ is a valid equation. To make progress, we want c to be linear independent of C's rows.

Input:

• Oracle optimizing any rational objective over *P*.

Output:

- Dimension d of P
- (d+1)-many affinely independent points in P
- (n-d)-many irredundant equations Cx = d valid for P

Ideas:

- **(**) Maintain known equations Cx = d and points $x_1, x_2, \ldots, x_{\ell} \in P$.
- **②** Repeatedly find a "useful" direction $c \in \mathbb{R}^n$, and compute $z^+ := \max_{x \in P} \langle c, x \rangle$ and $z^- := \min_{x \in P} \langle c, x \rangle$ (2 oracle calls).
- If we are lucky and z⁺ = z⁻ holds, then (c, x) = z⁺ is a valid equation. To make progress, we want c to be linear independent of C's rows.
- If we also choose c to be orthogonal to aff(x₁,...,x_ℓ) (that is, (c, x_i) = (c, x₁) for all i = 2,...,ℓ), the result z⁺ > z⁻ yields a point x_{ℓ+1} affinely independent of x₁,..., x_ℓ.

Intro IPO Framework Studies

Reminder:

- $x_1, \ldots, x_\ell \in P \subseteq \mathbb{R}^n$ are affinely independent points found so far.
- Cx = d are the equations found so far.

Reminder:

- $x_1, \ldots, x_\ell \in P \subseteq \mathbb{R}^n$ are affinely independent points found so far.
- Cx = d are the equations found so far.

Hidden details:

How to model linear independence? Orthogonality is a bad choice for exact arithmetic!

Reminder:

- $x_1, \ldots, x_\ell \in P \subseteq \mathbb{R}^n$ are affinely independent points found so far.
- Cx = d are the equations found so far.

- How to model linear independence? Orthogonality is a bad choice for exact arithmetic!
- ▶ Better: Try basis vectors of aff $(x_1, ..., x_\ell)^{\perp}$ and skip if it depends on C's rows.

Reminder:

- $x_1, \ldots, x_\ell \in P \subseteq \mathbb{R}^n$ are affinely independent points found so far.
- Cx = d are the equations found so far.

- How to model linear independence? Orthogonality is a bad choice for exact arithmetic!
- Better: Try basis vectors of aff $(x_1, \ldots, x_\ell)^{\perp}$ and skip if it depends on C's rows.
- Even better: Compute whole basis approximately to estimate sparsity and then try (exactly computed) sparse candidates.

Reminder:

- $x_1, \ldots, x_\ell \in P \subseteq \mathbb{R}^n$ are affinely independent points found so far.
- Cx = d are the equations found so far.

- How to model linear independence? Orthogonality is a bad choice for exact arithmetic!
- Better: Try basis vectors of aff $(x_1, \ldots, x_\ell)^{\perp}$ and skip if it depends on C's rows.
- Even better: Compute whole basis approximately to estimate sparsity and then try (exactly computed) sparse candidates.
- What if *P* is unbounded? Have to consider unbounded rays as well!

Reminder:

- $x_1, \ldots, x_\ell \in P \subseteq \mathbb{R}^n$ are affinely independent points found so far.
- Cx = d are the equations found so far.

- How to model linear independence? Orthogonality is a bad choice for exact arithmetic!
- Better: Try basis vectors of aff $(x_1, \ldots, x_\ell)^{\perp}$ and skip if it depends on C's rows.
- Even better: Compute whole basis approximately to estimate sparsity and then try (exactly computed) sparse candidates.
- What if *P* is unbounded? Have to consider unbounded rays as well!
- Naïve way: 2n + 1 oracle calls.

Reminder:

- $x_1, \ldots, x_\ell \in P \subseteq \mathbb{R}^n$ are affinely independent points found so far.
- Cx = d are the equations found so far.

Hidden details:

- How to model linear independence? Orthogonality is a bad choice for exact arithmetic!
- Better: Try basis vectors of aff $(x_1, \ldots, x_\ell)^{\perp}$ and skip if it depends on C's rows.
- Even better: Compute whole basis approximately to estimate sparsity and then try (exactly computed) sparse candidates.
- What if *P* is unbounded? Have to consider unbounded rays as well!
- Naïve way: 2n + 1 oracle calls.
- With some more tricks: 2n oracle calls. \leftarrow great result!

Theorem (W., 2016)

Every algorithm which computes the affine hull of polyhedra $P \subseteq \mathbb{R}^n$ specified only by an optimization oracle needs at least 2n oracle calls in the worst case.

Computational Studies

Matthias Walter

Study: Quadratic Matching Polytopes

Intro	IPO Framework	Studies
0000	00000	00000000 0000

Consider the quadratic matching polytope of order n with one quadratic term:

 $P_n := \operatorname{conv} \left\{ (\chi(M), y) \in \{0, 1\}^{|\mathcal{E}_n|+1} \mid M \text{ matching in } K_n, \ y = x_{1,2} x_{3,4} \right\}$

Study: Quadratic Matching Polytopes

Intro	IPO Framework	Studies
0000	00000	00000000 0000

Consider the quadratic matching polytope of order n with one quadratic term:

$$P_n := \operatorname{conv} \left\{ (\chi(M), y) \in \{0, 1\}^{|E_n|+1} \mid M \text{ matching in } K_n, \ y = x_{1,2} x_{3,4} \right\}$$

HUPP, KLEIN & LIERS, '15 obtained a bunch of facets:

•
$$x(\delta(v)) \leq 1$$
 for all $v \in V_n$.

- $x_e \ge 0$ for all $e \in E_n$.
- $y \le x_{1,2}$ and $y \le x_{3,4}$. (Note that $y \ge x_{1,2} + x_{3,4} 1$ is no facet.)

Study: Quadratic Matching Polytopes

Intro	IPO Framework	Studies
0000	00000	00000000 0000

Consider the quadratic matching polytope of order n with one quadratic term:

$$P_n := \operatorname{conv} \left\{ (\chi(M), y) \in \{0, 1\}^{|E_n|+1} \mid M \text{ matching in } K_n, \ y = x_{1,2} x_{3,4} \right\}$$

HUPP, KLEIN & LIERS, '15 obtained a bunch of facets:

•
$$x(\delta(v)) \leq 1$$
 for all $v \in V_n$.

- $x_e \ge 0$ for all $e \in E_n$.
- ▶ $y \le x_{1,2}$ and $y \le x_{3,4}$. (Note that $y \ge x_{1,2} + x_{3,4} 1$ is no facet.)

•
$$x(E[S]) + y \leq \frac{|S|-1}{2}$$
 for certain odd S.

•
$$x(E[S]) \leq \frac{|S|-1}{2}$$
 for certain odd S.

- $x(E[S]) + x(E[S \setminus \{1,2\}]) + x_{3,4} y \le |S| 2$ for certain odd S.
- $x(E[S]) + x_{2,a} + x_{3,a} + x_{4,a} + y \le \frac{|S|}{2}$ for certain even S and nodes a.
- ► $x_{1,2} + x_{1,a} + x_{2,a} + x(E[S]) + x_{3,4} + x_{3,b} + x_{4,b} y \le \frac{|S|}{2} + 1$ for certain even S and certain nodes a, b.

Intro	IPO Framework	Studies
0000	00000	00000000

Study: Some are Missing!

Excerpt from their paper:

- $x_{\mathring{u}} = x_{\mathring{w}} = 0.5, y = 0.3,$
- $x_{\mathring{u}\mathring{w}} = x_{\mathring{v}\mathring{z}} = 0.3,$
- $x_{ua} = x_{va} = x_{wb} = x_{zb} = 0.2,$
- $x_e = 0$ otherwise.

This fractional solution satisfies all introduced valid and face the nonnegativity and the linearisation constraints, all blosso inequalities (4) and the hourglass inequalities (5).

Matthias Walter

Intro	IPO Framework	Studies
0000	00000	00000000

Study: Some are Missing!

Excerpt from their paper:

- $x_{\mathring{u}} = x_{\mathring{w}} = 0.5, y = 0.3,$
- $x_{\mathring{u}\mathring{w}} = x_{\mathring{v}\mathring{z}} = 0.3,$
- $x_{ua} = x_{va} = x_{wb} = x_{zb} = 0.2,$
- $x_e = 0$ otherwise.

This fractional solution satisfies all introduced valid and face the nonnegativity and the linearisation constraints, all blosso inequalities (4) and the hourglass inequalities (5).


```
param n := 6;
set V := { 1 to n }:
set E := { \langle u, v \rangle in V*V with u < v }:
set F := { <1,2>,<3,4>,<1,5>,<2,5>,<3,6>,<4,6>,<1,3>,<2,4> };
var x[E] binary;
var y binary;
maximize weights:
  10*x[1,2] + 10*x[3,4] + 2*x[1,5] + 2*x[2,5] + 2*x[3,6]
  + 2 \times [4,6] + 4 \times [1,3] + 4 \times [2,4] - 10 \times v
  + sum <u.v> in E-F: -1000*x[u.v]:
subto degree: forall <w> in V:
    (sum \langle u, v \rangle in E with u == w or v == w: x[u,v]) \leq 1;
subto product1: y \le x[1,2];
subto product2: y \le x[3,4];
subto product3: y \ge x[1,2] + x[3,4] - 1;
```


Study: Running IPO

```
Certifying point: (x#2#5=1, x#1#3=1)
```

```
Certifying point: (x#3#4=1, x#2#5=1)
```

. . .

Study: Running IPO

```
% ipo --dimension --facets product-matching-missing.zpl
Computing the affine hull:
 Dimension: 29
Objective <instance> 10 x#1#2 + 4 x#1#3 ...
 Facet: 2 \times \#1\#2 + \times \#1\#3 + \times \#1\#4 + \times \#1\#5 + \times \#2\#3 + \times \#2\#4 + \times \#2\#5
         + x#3#4 - v <= 2
  Certifying point: (y=1, x#5#6=1, x#3#4=1, x#1#2=1)
  Certifying point: (y=1, x#5#8=1, x#3#4=1, x#1#2=1)
  Certifying point: (y=1, x#6#7=1, x#3#4=1, x#1#2=1)
  Certifying point: (x#2#5=1, x#1#3=1)
  Certifying point: (x#3#4=1, x#2#5=1)
. . .
```

This facet does not belong to the previous types!

Study: MIPLIB 2 Dimensions

Oracles

- Oracle: SCIP-3.0.0-ex
- Heuristic: SCIP-3.1.1 with postprocessing

Study: MIPLIB 2 Dimensions

Oracles

- Oracle: SCIP-3.0.0-ex
- Heuristic: SCIP-3.1.1 with postprocessing

Postprocessing of solutions

Let $I \subseteq [n]$ be the set of integral variables.

- **(**) For $x \in \mathbb{Q}^n$, obtain \overline{x} from x by rounding x_i for all $i \in I$.
- **2** Compute optimal choice for $x_{[n] \setminus I}$ using an exact LP solver, e.g., SoPlex.

Study: MIPLIB 2 Dimensions

For the 34 instances with $n \le 1000$ solved within 5 mins, we considered the original *P*, and the presolved instances *Q*, and their resp. hulls *P*₁ and *Q*₁:

Instance	п	n'	dim P	$\dim P_l$
air01	771	750	732	617
bell3b	133	133	133	115
bell5	104	104	104	97
bm23	27	27	27	27
cracpb1	572	484	484	478
dcmulti	548	470	470	467
diamond	2	2	2	-1
egout	141	68	68	41
enigma	100	79	79	3
flugpl	18	12	12	9
gen	870	720	720	540
lseu	89	89	89	89
misc01	83	68	60	44
misc02	59	47	41	37
misc03	160	136	121	116
misc05	136	108	100	98
misc07	260	228	207	204
p0033	33	33	33	27
p0040	40	40	30	30
p0201	201	201	145	139
p0548	548	548	545	
pipex	48	32	32	31
rgn	180	160	160	160
sample2	67	44	44	32
vpm1	378	336	288	288

Full-dim. instances: mod008, mod013, p0282, p0291, sentoy, stein15, stein27, stein45, stein9

Study: Constraint Dimensions (Original)

Intro IPO Framework Studies

Study: Constraint Dimensions (Presolved)

Study: TSP Polytopes

Oracles

- Oracle: Concorde (famous TSP solver)
- Heuristic: Nearest neighbor plus 2-opt, searching once from each node.

Study: TSP Polytopes

Oracles

- Oracle: Concorde (famous TSP solver)
- Heuristic: Nearest neighbor plus 2-opt, searching once from each node.

Nodes	Adjacent	Time/pair	LP	Heuristics	Oracles	Cache	Tours	Vertices
5	91.23%	0.3 <i>s</i>	0.5%	0.1%	97.9%	0.1%	12	$1.2\cdot10^1$
6	69.32 %	0.4 <i>s</i>	0.7 %	0.1%	97.5%	0.1%	45	$6.0 \cdot 10^1$
7	46.16%	0.6 <i>s</i>	1.1%	0.1%	96.1%	0.5%	207	$3.6 \cdot 10^2$
8	28.07 %	0.8 <i>s</i>	1.5%	0.1%	93.1 %	2.5 %	1,189	$2.5 \cdot 10^{3}$
9	17.46%	1.0 <i>s</i>	2.0%	0.2%	86.1%	8.7 %	5,759	$2.0\cdot10^4$
10	10.52%	1.5 <i>s</i>	2.3%	0.2%	77.5%	17.3%	15,472	$1.8 \cdot 10^{5}$
11	6.53%	2.1 <i>s</i>	2.7 %	0.2%	67.4%	26.9%	33,935	$1.8\cdot10^{6}$
12	3.67 %	3.0 <i>s</i>	3.8%	0.3%	54.2%	38.8 %	66,510	$2.0 \cdot 10^{7}$
13	2.20 %	4.9 <i>s</i>	5.1%	0.3%	39.6%	52.0%	125,298	$2.4 \cdot 10^{8}$
14	1.13%	10.1 <i>s</i>	7.7%	0.3%	22.9%	65.8%	232,995	$3.1 \cdot 10^{9}$
15	0.59%	24.3 <i>s</i>	12.9%	0.2%	11.0%	71.6%	406,315	$4.4\cdot10^{10}$

Results for 10,000 random tests:

Summary

Tool:

- Approach allows to handle much higher dimensions than usual convex hull codes.
- But: not useful for checking whether formulation is complete.
- Exact LP solver and exactly represented points / rays are essential.
- For n > 100, exact MIP solver is also essential.
- For n > 500, linear algebra starts to be time-consuming.

Summary

Tool:

- Approach allows to handle much higher dimensions than usual convex hull codes.
- But: not useful for checking whether formulation is complete.
- Exact LP solver and exactly represented points / rays are essential.
- For n > 100, exact MIP solver is also essential.
- For n > 500, linear algebra starts to be time-consuming.

Computational Study:

- Some MIPLIB 2.0 models seem to be not so well-posed.
- Larger problems / concrete models would be interesting to check.

Summary

Tool:

- Approach allows to handle much higher dimensions than usual convex hull codes.
- But: not useful for checking whether formulation is complete.
- Exact LP solver and exactly represented points / rays are essential.
- For n > 100, exact MIP solver is also essential.
- For n > 500, linear algebra starts to be time-consuming.

Computational Study:

- Some MIPLIB 2.0 models seem to be not so well-posed.
- Larger problems / concrete models would be interesting to check.

polyhedra-oracles.bitbucket.org

