The Subdivision of Large Simplicial Cones in Normaliz

Richard Sieg

NORMALIZ

NORMALIZ

* Open source software (GPL)
* written in C++ (using Boost and GMP/MPIR)
* parallelized with OpenMP
* runs under Linux, MacOs and MS Windows
* C++ library libnormaliz
* GUI interface jNormaliz

Version 3.1 Just Released!
 http://www.math.uos.de/normaliz

NORMALIZ

* Open source software (GPL)
* written in C++ (using Boost and GMP/MPIR)
* parallelized with OpenMP
* runs under Linux, MacOs and MS Windows
* C++ library libnormaliz
* GUI interface jNormaliz

Rational Cones

$L \ldots$ a lattice (subgroup of \mathbb{Z}^{d})

Rational Cones

$L \ldots$ a lattice (subgroup of \mathbb{Z}^{d})
C... a (rational polyhedral) cone

$$
\begin{aligned}
C & =\operatorname{cone}\left(x_{1}, \ldots, x_{n}\right) \subset \mathbb{R}^{d} \\
& =\left\{a_{1} x_{1}+\cdots+a_{n} x_{n} \mid a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}\right\} \\
& =\left\{x \in \mathbb{R}^{n} \mid A x \geq 0\right\}
\end{aligned}
$$

with a generating system $x_{1}, \ldots, x_{n} \in \mathbb{Z}^{d}$.

Rational Cones

$L \ldots$ a lattice (subgroup of \mathbb{Z}^{d})
$C \ldots$ a (rational polyhedral) cone

$$
\begin{aligned}
C & =\operatorname{cone}\left(x_{1}, \ldots, x_{n}\right) \subset \mathbb{R}^{d} \\
& =\left\{a_{1} x_{1}+\cdots+a_{n} x_{n} \mid a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}\right\} \\
& =\left\{x \in \mathbb{R}^{n} \mid A x \geq 0\right\}
\end{aligned}
$$

with a generating system $x_{1}, \ldots, x_{n} \in \mathbb{Z}^{d}$.

C simplicial: x_{1}, \ldots, x_{n} linearly independent

Rational Cones

$L \ldots$ a lattice (subgroup of \mathbb{Z}^{d})
C... a (rational polyhedral) cone

$$
\begin{aligned}
C & =\operatorname{cone}\left(x_{1}, \ldots, x_{n}\right) \subset \mathbb{R}^{d} \\
& =\left\{a_{1} x_{1}+\cdots+a_{n} x_{n} \mid a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}\right\} \\
& =\left\{x \in \mathbb{R}^{n} \mid A x \geq 0\right\}
\end{aligned}
$$

with a generating system $x_{1}, \ldots, x_{n} \in \mathbb{Z}^{d}$.

C simplicial: x_{1}, \ldots, x_{n} linearly independent

THEOREM [Gordan's Lemma]

Let $C \subset \mathbb{R}^{d}$ be the cone generated by $x_{1}, \ldots, x_{n} \in \mathbb{Z}^{d}$. Then $C \cap L$ is an affine monoid M, i.e. a finitely generated submonoid of \mathbb{Z}^{d}.

The Tasks of Normaliz: Hilbert Basis

Assume C pointed: $x,-x \in C \Rightarrow x=0$.

The Tasks of Normaliz: Hilbert Basis

Assume C pointed: $x,-x \in C \Rightarrow x=0$.
$x \in M=C \cap L, x \neq 0$ is irreducible:

$$
x=y+z \Rightarrow y=0 \text { or } z=0 .
$$

The Tasks of Normaliz: Hilbert Basis

Assume C pointed: $x,-x \in C \Rightarrow x=0$.
$x \in M=C \cap L, x \neq 0$ is irreducible:

$$
x=y+z \Rightarrow y=0 \text { or } z=0 .
$$

The Tasks of Normaliz: Hilbert Basis

Assume C pointed: $x,-x \in C \Rightarrow x=0$.
$x \in M=C \cap L, x \neq 0$ is irreducible:

$$
x=y+z \Rightarrow y=0 \text { or } z=0 .
$$

THEOREM [Hilbert's Basis Theorem]
There are only finitely many irreducible elements in $C \cap L$ and they form the unique minimal system of generators, the Hilbert Basis.

Normaliz Algorithm

In the Normaliz algorithm:

* Preparatory coordinate transformation, s.t. the cone is full dimensional and $L=\mathbb{Z}^{d}$.
cross section

Normaliz Algorithm

In the Normaliz algorithm:

* Preparatory coordinate transformation, s.t. the cone is full dimensional and $L=\mathbb{Z}^{d}$.
* Compute a triangulation of the cone, that is a face-to-face decomposition into simplicial cones. Simplicial cones are generated by linearly independent vectors.
cross section

Normaliz Algorithm

In the Normaliz algorithm:

* Preparatory coordinate transformation, s.t. the cone is full dimensional and $L=\mathbb{Z}^{d}$.
* Compute a triangulation of the cone, that is a face-to-face decomposition into simplicial cones. Simplicial cones are generated by linearly independent vectors.
* Evaluate the simplicial cones in the triangulation independently from each other.
cross section

Normaliz Algorithm

In the Normaliz algorithm:

* Preparatory coordinate transformation, s.t. the cone is full dimensional and $L=\mathbb{Z}^{d}$.
* Compute a triangulation of the cone, that is a face-to-face decomposition into simplicial cones. Simplicial cones are generated by linearly independent vectors.
* Evaluate the simplicial cones in the triangulation independently from each other.
* Collect the data from the simplicial cones and process it globally.
cross section

Normaliz Algorithm

In the Normaliz algorithm:

* Preparatory coordinate transformation, s.t. the cone is full dimensional and $L=\mathbb{Z}^{d}$.
* Compute a triangulation of the cone, that is a face-to-face decomposition into simplicial cones. Simplicial cones are generated by linearly independent vectors.
* Evaluate the simplicial cones in the triangulation independently from each other.
* Collect the data from the simplicial cones and process it globally.
* Inverse coordinate transformation.
cross section

Normaliz Algorithm

In the Normaliz algorithm:

* Preparatory coordinate transformation, s.t. the cone is full dimensional and $L=\mathbb{Z}^{d}$.
* Compute a triangulation of the cone, that is a face-to-face decomposition into simplicial cones. Simplicial cones are generated by linearly independent vectors.
* Evaluate the simplicial cones in the triangulation independently from each other.
* Collect the data from the simplicial cones and process it globally.
* Inverse coordinate transformation.
cross section

Simplicial Cones

$S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex. Then

$$
E=\underbrace{\left\{q_{1} x_{1}+\cdots+q_{d} x_{d} \mid 0 \leq q_{i}<1\right\}}_{\pi} \cap \mathbb{Z}^{d}
$$

together with x_{1}, \ldots, x_{d} generate the monoid $S \cap \mathbb{Z}^{d}$.

Simplicial Cones

$S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex. Then

$$
E=\underbrace{\left\{q_{1} x_{1}+\cdots+q_{d} x_{d} \mid 0 \leq q_{i}<1\right\}}_{\pi} \cap \mathbb{Z}^{d}
$$

together with x_{1}, \ldots, x_{d} generate the monoid $S \cap \mathbb{Z}^{d}$.

Every residue class in $\mathbb{Z}^{d} / U, U=\mathbb{Z} x_{1}+\cdots+\mathbb{Z} x_{d}$, has exactly one representative in E.

Simplicial Cones

$S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex. Then

$$
E=\underbrace{\left\{q_{1} x_{1}+\cdots+q_{d} x_{d} \mid 0 \leq q_{i}<1\right\}}_{\pi} \cap \mathbb{Z}^{d}
$$

together with x_{1}, \ldots, x_{d} generate the monoid $S \cap \mathbb{Z}^{d}$.

Every residue class in $\mathbb{Z}^{d} / U, U=\mathbb{Z} x_{1}+\cdots+\mathbb{Z} x_{d}$, has exactly one representative in E.
Normaliz generates the points in E. They are candidates for the Hilbert Basis and their number is given by the volume of the simplex

$$
|E|=\operatorname{vol}(S)=\operatorname{det}\left(x_{1}, \ldots, x_{d}\right)
$$

The points in E are then reduced to a Hilbert Basis of $S \cap \mathbb{Z}^{d}$.

Simplicial Cones

$S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex. Then

$$
E=\underbrace{\left\{q_{1} x_{1}+\cdots+q_{d} x_{d} \mid 0 \leq q_{i}<1\right\}}_{\pi} \cap \mathbb{Z}^{d}
$$

together with x_{1}, \ldots, x_{d} generate the monoid $S \cap \mathbb{Z}^{d}$.

Every residue class in $\mathbb{Z}^{d} / U, U=\mathbb{Z} x_{1}+\cdots+\mathbb{Z} x_{d}$, has exactly one representative in E.
Normaliz generates the points in E. They are candidates for the Hilbert Basis and their number is given by the volume of the simplex

$$
|E|=\operatorname{vol}(S)=\operatorname{det}\left(x_{1}, \ldots, x_{d}\right)
$$

The points in E are then reduced to a Hilbert Basis of $S \cap \mathbb{Z}^{d}$.

Simplicial Cones

$S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex. Then

$$
E=\underbrace{\left\{q_{1} x_{1}+\cdots+q_{d} x_{d} \mid 0 \leq q_{i}<1\right\}}_{\pi} \cap \mathbb{Z}^{d}
$$

together with x_{1}, \ldots, x_{d} generate the monoid $S \cap \mathbb{Z}^{d}$.

Every residue class in $\mathbb{Z}^{d} / U, U=\mathbb{Z} x_{1}+\cdots+\mathbb{Z} x_{d}$, has exactly one representative in E.
Normaliz generates the points in E. They are candidates for the Hilbert Basis and their number is given by the volume of the simplex

$$
|E|=\operatorname{vol}(S)=\operatorname{det}\left(x_{1}, \ldots, x_{d}\right)
$$

The points in E are then reduced to a Hilbert Basis of $S \cap \mathbb{Z}^{d}$.
Therefore $\operatorname{vol}(S)$ is a critical size for the runtime of Normaliz.

Our Approach

If simplex S has big volume: decompose it into smaller simplices, such that the sum of their volumes decreases remarkably.

Our Approach

If simplex S has big volume: decompose it into smaller simplices, such that the sum of their volumes decreases remarkably.

How? Compute points from the cone and use them for a new triangulation.

Our Approach

If simplex S has big volume: decompose it into smaller simplices, such that the sum of their volumes decreases remarkably.

How? Compute points from the cone and use them for a new triangulation.

(Theoretically) Best choice for these points are the vertices of the bottom $B(S)$ (union of the bounded faces of $\operatorname{conv}\left(\left(S \cap \mathbb{Z}^{d}\right) \backslash\{0\}\right)$)

Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

How? Compute points from the cone and use
them for a new triangulation.
•
(Theoretically) Best choice for these points are the vertices of the bottom $B(S)$ (union of the bounded faces of $\operatorname{conv}\left(\left(S \cap \mathbb{Z}^{d}\right) \backslash\{0\}\right)$) (Practically) Computation of the whole bottom would equalize the benefit from the small volume or even make it worse

Our Approach

If simplex S has big volume: decompose it into smaller simplices, such that the sum of their volumes decreases remarkably.

How? Compute points from the cone and use them for a new triangulation.

(Theoretically) Best choice for these points are the vertices of the bottom $B(S)$ (union of the bounded faces of $\operatorname{conv}\left(\left(S \cap \mathbb{Z}^{d}\right) \backslash\{0\}\right)$) (Practically) Computation of the whole bottom would equalize the benefit from the small volume or even make it worse

Determine only some points from $B(S)$ using

1. Integer Programming
2. Approximation

Integer Programming

The Algorithm

$S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex in triangulation

The Algorithm

$S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex in triangulation GOAL
Compute a point x that minimizes the sum of determinants:

$$
\sum^{d} \operatorname{det}\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{d}\right)=N^{T} x
$$

N ... normal vector on the hyperplane spanned by x_{1}, \ldots, x_{d}.

The Algorithm

$S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex in triangulation GOAL
Compute a point x that minimizes the sum of determinants:

$$
\sum_{i=1}^{d} \operatorname{det}\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{d}\right)=N^{T} x
$$

N ... normal vector on the hyperplane spanned by x_{1}, \ldots, x_{d}.

Solve the IP

$$
\min \left\{N^{T} x \mid x \in S \cap \mathbb{Z}^{d}, x \neq 0, N^{T} x<N^{T} x_{1}\right\}
$$

The Algorithm

$S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex in triangulation GOAL
Compute a point x that minimizes the sum of determinants:

$$
\sum_{i=1}^{d} \operatorname{det}\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{d}\right)=N^{T} x
$$

N ... normal vector on the hyperplane spanned by x_{1}, \ldots, x_{d}.

Solve the IP

$$
\min \left\{N^{T} x \mid x \in S \cap \mathbb{Z}^{d}, x \neq 0, N^{T} x<N^{T} x_{1}\right\}
$$

If problem can be solved: form a stellar subdivision with the solution.

The Algorithm

$S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex in triangulation GOAL
Compute a point x that minimizes the sum of determinants:

$$
\sum_{i=1}^{d} \operatorname{det}\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{d}\right)=N^{T} x
$$

N ... normal vector on the hyperplane spanned by x_{1}, \ldots, x_{d}.

Solve the IP

$$
\min \left\{N^{T} x \mid x \in S \cap \mathbb{Z}^{d}, x \neq 0, N^{T} x<N^{T} x_{1}\right\}
$$

If problem can be solved: form a stellar subdivision with the solution.

The Algorithm

Algorithm Bottom Points
Input: $S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex with. $\operatorname{vol}(S) \geq$ Bound
Return: Points from $B(S)$
1: $\mathcal{B}, \mathcal{S} \leftarrow \emptyset$
2: store S into \mathcal{S}
3: while $\mathcal{S} \neq \emptyset$ do
4: let $T=\operatorname{cone}\left(y_{1}, \ldots, y_{d}\right)$ be the first element of \mathcal{S} and delete it
5: \quad compute a normal vector N on hyperplane spanned by y_{1}, \ldots, y_{d}
6: compute hyperplanes $\left\{H_{1}, \ldots, H_{d}\right\}$ and volume of T
7: \quad if $\operatorname{vol}(T)<$ Bound then continue

The Algorithm

Algorithm Bottom Points
Input: $S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex with. $\operatorname{vol}(S) \geq$ Bound
Return: Points from $B(S)$
1: $\mathcal{B}, \mathcal{S} \leftarrow \emptyset$
2: store S into \mathcal{S}
3: while $\mathcal{S} \neq \emptyset$ do
4: let $T=\operatorname{cone}\left(y_{1}, \ldots, y_{d}\right)$ be the first element of \mathcal{S} and delete it
5: \quad compute a normal vector N on hyperplane spanned by y_{1}, \ldots, y_{d}
6: compute hyperplanes $\left\{H_{1}, \ldots, H_{d}\right\}$ and volume of T
7: \quad if $\operatorname{vol}(T)<$ Bound then continue

The Algorithm

Algorithm Bottom Points
Input: $S=\operatorname{cone}\left(x_{1}, \ldots, x_{d}\right)$ simplex with . $\operatorname{vol}(S) \geq$ Bound
Return: Points from $B(S)$
1: $\mathcal{B}, \mathcal{S} \leftarrow \emptyset$
2: store S into \mathcal{S}
3: while $\mathcal{S} \neq \emptyset$ do
4: let $T=\operatorname{cone}\left(y_{1}, \ldots, y_{d}\right)$ be the first element of \mathcal{S} and delete it

5: \quad compute a normal vector N on hyperplane spanned by y_{1}, \ldots, y_{d}
6: compute hyperplanes $\left\{H_{1}, \ldots, H_{d}\right\}$ and volume of T
7: \quad if $\operatorname{vol}(T)<$ Bound then continue

The Algorithm

15: return \mathcal{B}

$$
\min \left\{N^{T} x \mid x \in S \cap \mathbb{Z}^{d}, x \neq 0, N^{T} x<N^{T} x_{1}\right\}
$$

The Algorithm

15: return \mathcal{B}

$$
\min \left\{N^{T} x \mid x \in S \cap \mathbb{Z}^{d}, x \neq 0, N^{T} x<N^{T} x_{1}\right\}
$$

The Algorithm

The Algorithm

```
Algorithm Bottom Points
    3: while \(\mathcal{S} \neq \emptyset\) do
    8: if IP \((\star)\) is solvable for \(T\) then
    9: \(\quad y \leftarrow\) optimal solution of \((\star)\)
10: \(\quad\) store \(y\) into \(\mathcal{B}\)
11: \(\quad\) for all hyperplanes \(H_{i}\) of \(T\) do
12:
13:
14:
    \(T_{i} \leftarrow \operatorname{cone}\left(y_{1}, \ldots, y_{i-1}, y, y_{i+1}, \ldots, y_{d}\right) \quad \mathcal{B}=\{(1,2),(1,1)\}\)
```

15: return \mathcal{B}
$\min \left\{N^{T} x \mid x \in S \cap \mathbb{Z}^{d}, x \neq 0, N^{T} x<N^{T} x_{1}\right\}$

The Algorithm

Algorithm Bottom Points
3: while $\mathcal{S} \neq \emptyset$ do

8: if IP (\star) is solvable for T then $y \leftarrow$ optimal solution of (\star)
10: \quad store y into \mathcal{B}
11: \quad for all hyperplanes H_{i} of T do
12:
13:
14: if $y \notin H_{i}$ then

$T_{i} \leftarrow \operatorname{cone}\left(y_{1}, \ldots, y_{i-1}, y, y_{i+1}, \ldots, y_{d}\right) \quad \mathcal{B}=\{(1,2),(1,1)\}$ store T_{i} into \mathcal{S}
15: return \mathcal{B}

$$
\min \left\{N^{T} x \mid x \in S \cap \mathbb{Z}^{d}, x \neq 0, N^{T} x<N^{T} x_{1}\right\}
$$

We triangulate the lower facets of $\operatorname{conv}\left(\mathcal{B} \cup\left\{x_{1}, \ldots, x_{d}\right\}\right)$ and evaluate this triangulation with the usual Normaliz algorithm.

The Algorithm

Level 0

The Algorithm

Level 0

The Algorithm

Level 0

Level 2

Implementation \& Results

* use SCIP (3.2.0) via its C++ interace

Gregor Hendel

Implementation \& Results

* use SCIP (3.2.0) via its C++ interace
* parallelization with OpenMP
* individual time limit
* individual feasibility bounds

Implementation \& Results

* use SCIP (3.2.0) via its C++ interace
* parallelization with OpenMP
* individual time limit
* individual feasibility bounds

	hickerson-16	hickerson-18	knapsack_11_60
dimension	9	10	12
simplex volume	9.83×10^{7}	4.17×10^{14}	2.8×10^{14}
bottom volume	8.10×10^{5}	3.86×10^{7}	2.02×10^{7}
volume used			
integer programs solved			
improvement factor			
old runtime			
new runtime			

SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound $=10^{6}$

Implementation \& Results

* use SCIP (3.2.0) via its C++ interace
* parallelization with OpenMP
* individual time limit
* individual feasibility bounds

	hickerson-16	hickerson-18	knapsack_11_60
dimension	9	10	12
simplex volume	9.83×10^{7}	4.17×10^{14}	2.8×10^{14}
bottom volume	8.10×10^{5}	3.86×10^{7}	2.02×10^{7}
volume used	3.93×10^{6}	5.47×10^{7}	2.39×10^{7}
integer programs solved			
improvement factor			
old runtime			
new runtime			

SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound $=10^{6}$

Implementation \& Results

* use SCIP (3.2.0) via its C++ interace
* parallelization with OpenMP
* individual time limit
* individual feasibility bounds

	hickerson-16	hickerson-18	knapsack_11_60
dimension	9	10	12
simplex volume	9.83×10^{7}	4.17×10^{14}	2.8×10^{14}
bottom volume	8.10×10^{5}	3.86×10^{7}	2.02×10^{7}
volume used	3.93×10^{6}	5.47×10^{7}	2.39×10^{7}
integer programs solved	4	582016	11621
improvement factor			
old runtime			
new runtime			

SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound $=10^{6}$

Implementation \& Results

* use SCIP (3.2.0) via its C++ interace
* parallelization with OpenMP
* individual time limit
* individual feasibility bounds

	hickerson-16	hickerson-18	knapsack_11_60
dimension	9	10	12
simplex volume	9.83×10^{7}	4.17×10^{14}	2.8×10^{14}
bottom volume	8.10×10^{5}	3.86×10^{7}	2.02×10^{7}
volume used	3.93×10^{6}	5.47×10^{7}	2.39×10^{7}
integer programs solved	4	582016	11621
improvement factor	25	7.62×10^{6}	1.17×10^{7}
old runtime			
new runtime			

SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound $=10^{6}$

Implementation \& Results

* use SCIP (3.2.0) via its C++ interace
* parallelization with OpenMP
* individual time limit
* individual feasibility bounds

	hickerson-16	hickerson-18	knapsack_11_60
dimension	9	10	12
simplex volume	9.83×10^{7}	4.17×10^{14}	2.8×10^{14}
bottom volume	8.10×10^{5}	3.86×10^{7}	2.02×10^{7}
volume used	3.93×10^{6}	5.47×10^{7}	2.39×10^{7}
integer programs solved	4	582016	11621
improvement factor	25	7.62×10^{6}	1.17×10^{7}
old runtime	2 s	$>12 \mathrm{~d}$	$>8 \mathrm{~d}$
new runtime			

SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound $=10^{6}$

Implementation \& Results

* use SCIP (3.2.0) via its C++ interace
* parallelization with OpenMP
* individual time limit
* individual feasibility bounds

	hickerson-16	hickerson-18	knapsack_11_60
dimension	9	10	12
simplex volume	9.83×10^{7}	4.17×10^{14}	2.8×10^{14}
bottom volume	8.10×10^{5}	3.86×10^{7}	2.02×10^{7}
volume used	3.93×10^{6}	5.47×10^{7}	2.39×10^{7}
integer programs solved	4	582016	11621
improvement factor	25	7.62×10^{6}	1.17×10^{7}
old runtime	2 s	$>12 \mathrm{~d}$	$>8 \mathrm{~d}$
new runtime	0.5 s	46 s	5.1 s

SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound $=10^{6}$

Implementation \& Results

Implementation \& Results

Approximation

The Algorithm

1. Look at the cross section at level 1 of the (transformed) simplex.

The Algorithm

1. Look at the cross section at level 1 of the (transformed) simplex.
2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_{n}=\left\{x_{i}=x_{j}\right\}$.

cross section at level 1

The Algorithm

1. Look at the cross section at level 1 of the (transformed) simplex.
2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_{n}=\left\{x_{i}=x_{j}\right\}$.
3. Detect the minimal face containing the point and collect its vertices (at most d).

cross section at level 1

The Algorithm

1. Look at the cross section at level 1 of the (transformed) simplex.
2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_{n}=\left\{x_{i}=x_{j}\right\}$.
3. Detect the minimal face containing the point and collect its vertices (at most d).

cross section at level 1

The Algorithm

1. Look at the cross section at level 1 of the (transformed) simplex.
2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_{n}=\left\{x_{i}=x_{j}\right\}$.
3. Detect the minimal face containing the point and collect its vertices (at most d).
4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.

The Algorithm

1. Look at the cross section at level 1 of the (transformed) simplex.
2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_{n}=\left\{x_{i}=x_{j}\right\}$.
3. Detect the minimal face containing the point and collect its vertices (at most d).
4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.

The Algorithm

1. Look at the cross section at level 1 of the (transformed) simplex.
2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_{n}=\left\{x_{i}=x_{j}\right\}$.
3. Detect the minimal face containing the point and collect its vertices (at most d).
4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.

The Algorithm

1. Look at the cross section at level 1 of the (transformed) simplex.
2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_{n}=\left\{x_{i}=x_{j}\right\}$.
3. Detect the minimal face containing the point and collect its vertices (at most d).
4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.

The Algorithm

1. Look at the cross section at level 1 of the (transformed) simplex.
2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_{n}=\left\{x_{i}=x_{j}\right\}$.
3. Detect the minimal face containing the point and collect its vertices (at most d).
4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.
\Rightarrow list of points \mathcal{B} (bottom candidates)

The Algorithm

1. Look at the cross section at level 1 of the (transformed) simplex.
2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_{n}=\left\{x_{i}=x_{j}\right\}$.
3. Detect the minimal face containing the point and collect its vertices (at most d).
4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.
\Rightarrow list of points \mathcal{B} (bottom candidates)
Choose a grading minimizing point from \mathcal{B} and continue as before.

The Algorithm

1. Look at the cross section at level 1 of the (transformed) simplex.
2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_{n}=\left\{x_{i}=x_{j}\right\}$.
3. Detect the minimal face containing the point and collect its vertices (at most d).
4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.
\Rightarrow list of points \mathcal{B} (bottom candidates)
Choose a grading minimizing point from \mathcal{B} and continue as before.

Results

	hickerson-16		hickerson-18		knapsack_11_60	
simplex vol	9.83 e 7		4.17 e 14		2.8 e 14	
bottom vol	8.10 e 5		3.86 e 7		2.02 e 7	
	(1)	(2)	(1)	(2)	(1)	(2)
our vol	3.93 e 6	3.93 e 6	5.47 e 7	8.42 e 7	2.39 e 7	9.36 e 9
factor	25	25	7.62 e 6	4.95 e 6	1.09 e 7	2.99 e 4
old time	2s		$>12 \mathrm{~d}$		$>8 \mathrm{~d}$	
new time	0.5s	0.4s	46s	50s	5s	2m30s

Improvements \& Outlook

* If "large" simplices are remaining (both cases): approximate on a higher level. (Which one?)

Improvements \& Outlook

* If "large" simplices are remaining (both cases): approximate on a higher level.
(Which one?)
* Tweak settings in SCIP (time bounds etc.).

Improvements \& Outlook

* If "large" simplices are remaining (both cases): approximate on a higher level. (Which one?)
* Tweak settings in SCIP (time bounds etc.).
* Use less generators for approximating cone. (Partial Fourier-Motzkin Elimination)

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

nr positive halfspaces

Partial Fourier-Motzkin Elimination

Demo

```
Normaliz 3.0.0
    (C) The Normaliz Team, University of Osnabrueck
        September 2015 \.|
        \|
Compute: DefaultMode
Computing extreme rays as support hyperplanes of the dual cone:
************************************************************
starting primal algorithm (only support hyperplanes) ...
Generators sorted lexicographically
Start simplex 1 2 3 4 5 6 7 8 9 10
Checking for pointed ... done.
Select extreme rays via comparison ... done.
*****************************************************************
starting primal algorithm with full triangulation ...
Roughness 7
Generators sorted by degree and lexicographically
Generators per degree:
2: 2 4: 2 14: 6
Start simplex 1 2 3 4 5 6 7 8 9 10
Pointed since graded
evaluating 1 simplices
|||||||||||||||||||||||||||||||||||||
1 simplices, 0 HB candidates accumulated.
1 \text { large simplices stored}
Evaluating 1 large simplices
Large simplex 1 / 1
simplex volume 416728074151872
***************************************************
```


