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? C++ library libnormaliz
? GUI interface jNormaliz

Version 3.1 just released!

http://www.math.uos.de/normaliz



NORMALIZ



NORMALIZ

polymakeSingular

CoCoA

GAPSage

Regina

Macaulay 2



NORMALIZ

polymakeSingular

CoCoA

GAPSage

Regina

SCIP

Macaulay 2



Rational Cones

L . . . a lattice (subgroup of Zd)



Rational Cones

L . . . a lattice (subgroup of Zd)

C . . . a (rational polyhedral) cone

C = cone(x1, . . . , xn) ⊂ Rd

= {a1x1 + · · ·+ anxn | a1, . . . , an ∈ R+}
= {x ∈ Rn | Ax ≥ 0}

with a generating system x1, . . . , xn∈ Zd.



Rational Cones

L . . . a lattice (subgroup of Zd)

C . . . a (rational polyhedral) cone

C = cone(x1, . . . , xn) ⊂ Rd

= {a1x1 + · · ·+ anxn | a1, . . . , an ∈ R+}
= {x ∈ Rn | Ax ≥ 0}

with a generating system x1, . . . , xn∈ Zd.

C simplicial: x1, . . . , xn linearly independent



Rational Cones

L . . . a lattice (subgroup of Zd)

C . . . a (rational polyhedral) cone

C = cone(x1, . . . , xn) ⊂ Rd

= {a1x1 + · · ·+ anxn | a1, . . . , an ∈ R+}
= {x ∈ Rn | Ax ≥ 0}

with a generating system x1, . . . , xn∈ Zd.

C simplicial: x1, . . . , xn linearly independent

Theorem [Gordan’s Lemma]
Let C ⊂ Rd be the cone generated by x1, . . . , xn ∈ Zd. Then C ∩ L is
an affine monoid M , i.e. a finitely generated submonoid of Zd.
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The Tasks of Normaliz: Hilbert Basis

Assume C pointed: x,−x ∈ C ⇒ x = 0.

x ∈M = C ∩ L, x 6= 0 is irreducible:

x = y + z ⇒ y = 0 or z = 0.

Theorem [Hilbert’s Basis Theorem]
There are only finitely many irreducible elements in C ∩ L and they
form the unique minimal system of generators, the Hilbert Basis.
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triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.
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S = cone(x1, . . . , xd) simplex. Then

E = {q1x1 + · · ·+ qdxd | 0 ≤ qi < 1}︸ ︷︷ ︸
π

∩Zd

together with x1, . . . , xd generate the monoid
S ∩ Zd.

Every residue class in Zd/U , U = Zx1 + · · ·+ Zxd, has exactly one
representative in E.
Normaliz generates the points in E. They are candidates for the
Hilbert Basis and their number is given by the volume of the simplex

|E| = vol(S) = det(x1, . . . , xd).

The points in E are then reduced to a Hilbert Basis of S ∩ Zd.

Therefore vol(S) is a critical size for the runtime of Normaliz.
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Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

(Theoretically) Best choice for these points are the vertices of the
bottom B(S) (union of the bounded faces of conv((S ∩ Zd) \ {0}))

B(S)

(Practically) Computation of the whole bottom would equalize the
benefit from the small volume or even make it worse

Determine only some points from B(S) using

How? Compute points from the cone and use
them for a new triangulation.

2. Approximation

1. Integer Programming



Integer Programming



The Algorithm

S = cone(x1, . . . , xd) simplex in triangulation



The Algorithm

S = cone(x1, . . . , xd) simplex in triangulation
GOAL
Compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd) = NTx,

N . . . normal vector on the hyperplane spanned
by x1, . . . , xd.



The Algorithm

S = cone(x1, . . . , xd) simplex in triangulation
GOAL
Compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd) = NTx,

N . . . normal vector on the hyperplane spanned
by x1, . . . , xd.

Solve the IP

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)



The Algorithm

S = cone(x1, . . . , xd) simplex in triangulation
GOAL
Compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd) = NTx,

N . . . normal vector on the hyperplane spanned
by x1, . . . , xd.

Solve the IP

If problem can be solved: form a stellar subdivision with the solution.

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)



The Algorithm

S = cone(x1, . . . , xd) simplex in triangulation
GOAL
Compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd) = NTx,

N . . . normal vector on the hyperplane spanned
by x1, . . . , xd.

Solve the IP

If problem can be solved: form a stellar subdivision with the solution.

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)



The Algorithm

Algorithm Bottom Points

Input: S = cone(x1, . . . , xd) simplex with
vol(S) ≥ Bound

Return: Points from B(S)
1: B,S ← ∅
2: store S into S
3: while S 6= ∅ do
4: let T = cone(y1, . . . , yd) be the first ele-

ment of S and delete it
5: compute a normal vector N on hyperplane

spanned by y1, . . . , yd
6: compute hyperplanes {H1, . . . ,Hd} and

volume of T
7: if vol(T ) < Bound then continue



The Algorithm

Algorithm Bottom Points

Input: S = cone(x1, . . . , xd) simplex with
vol(S) ≥ Bound

Return: Points from B(S)
1: B,S ← ∅
2: store S into S
3: while S 6= ∅ do
4: let T = cone(y1, . . . , yd) be the first ele-

ment of S and delete it
5: compute a normal vector N on hyperplane

spanned by y1, . . . , yd
6: compute hyperplanes {H1, . . . ,Hd} and

volume of T
7: if vol(T ) < Bound then continue
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Algorithm Bottom Points

Input: S = cone(x1, . . . , xd) simplex with
vol(S) ≥ Bound

Return: Points from B(S)
1: B,S ← ∅
2: store S into S
3: while S 6= ∅ do
4: let T = cone(y1, . . . , yd) be the first ele-

ment of S and delete it
5: compute a normal vector N on hyperplane

spanned by y1, . . . , yd
6: compute hyperplanes {H1, . . . ,Hd} and

volume of T
7: if vol(T ) < Bound then continue

T

H1

H2

y1

y2
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The Algorithm

Algorithm Bottom Points

3: while S 6= ∅ do
...

8: if IP (?) is solvable for T then
9: y ← optimal solution of (?)

10: store y into B
11: for all hyperplanes Hi of T do
12: if y /∈ Hi then
13: Ti ← cone(y1, . . . , yi−1, y, yi+1, . . . , yd)
14: store Ti into S
15: return B

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

B = {(1, 2), (1, 1)}

We triangulate the lower facets of conv(B ∪ {x1, . . . , xd}) and
evaluate this triangulation with the usual Normaliz algorithm.
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Results

hickerson-16 hickerson-18 knapsack 11 60

simplex vol 9.83 e 7 4.17 e 14 2.8 e 14

bottom vol 8.10 e 5 3.86 e 7 2.02 e 7

(1) (2) (1) (2) (1) (2)

our vol 3.93 e 6 3.93 e 6 5.47 e 7 8.42 e 7 2.39 e 7 9.36 e 9

factor 25 25 7.62 e 6 4.95 e 6 1.09 e 7 2.99 e 4

old time 2s >12d >8d

new time 0.5s 0.4s 46s 50s 5s 2m30s
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Thank you!


