
Richard Sieg joint with
Winfried Bruns

& Christof Söger

The Subdivision of Large
Simplicial Cones in Normaliz

ICMS 2016

NORMALIZ

NORMALIZ
? Open source software (GPL)
? written in C++ (using Boost and GMP/MPIR)
? parallelized with OpenMP
? runs under Linux, MacOs and MS Windows
? C++ library libnormaliz
? GUI interface jNormaliz

NORMALIZ
? Open source software (GPL)
? written in C++ (using Boost and GMP/MPIR)
? parallelized with OpenMP
? runs under Linux, MacOs and MS Windows
? C++ library libnormaliz
? GUI interface jNormaliz

Version 3.1 just released!

http://www.math.uos.de/normaliz

NORMALIZ

NORMALIZ

polymakeSingular

CoCoA

GAPSage

Regina

Macaulay 2

NORMALIZ

polymakeSingular

CoCoA

GAPSage

Regina

SCIP

Macaulay 2

Rational Cones

L . . . a lattice (subgroup of Zd)

Rational Cones

L . . . a lattice (subgroup of Zd)

C . . . a (rational polyhedral) cone

C = cone(x1, . . . , xn) ⊂ Rd

= {a1x1 + · · ·+ anxn | a1, . . . , an ∈ R+}
= {x ∈ Rn | Ax ≥ 0}

with a generating system x1, . . . , xn∈ Zd.

Rational Cones

L . . . a lattice (subgroup of Zd)

C . . . a (rational polyhedral) cone

C = cone(x1, . . . , xn) ⊂ Rd

= {a1x1 + · · ·+ anxn | a1, . . . , an ∈ R+}
= {x ∈ Rn | Ax ≥ 0}

with a generating system x1, . . . , xn∈ Zd.

C simplicial: x1, . . . , xn linearly independent

Rational Cones

L . . . a lattice (subgroup of Zd)

C . . . a (rational polyhedral) cone

C = cone(x1, . . . , xn) ⊂ Rd

= {a1x1 + · · ·+ anxn | a1, . . . , an ∈ R+}
= {x ∈ Rn | Ax ≥ 0}

with a generating system x1, . . . , xn∈ Zd.

C simplicial: x1, . . . , xn linearly independent

Theorem [Gordan’s Lemma]
Let C ⊂ Rd be the cone generated by x1, . . . , xn ∈ Zd. Then C ∩ L is
an affine monoid M , i.e. a finitely generated submonoid of Zd.

The Tasks of Normaliz: Hilbert Basis

Assume C pointed: x,−x ∈ C ⇒ x = 0.

The Tasks of Normaliz: Hilbert Basis

Assume C pointed: x,−x ∈ C ⇒ x = 0.

x ∈M = C ∩ L, x 6= 0 is irreducible:

x = y + z ⇒ y = 0 or z = 0.

The Tasks of Normaliz: Hilbert Basis

Assume C pointed: x,−x ∈ C ⇒ x = 0.

x ∈M = C ∩ L, x 6= 0 is irreducible:

x = y + z ⇒ y = 0 or z = 0.

The Tasks of Normaliz: Hilbert Basis

Assume C pointed: x,−x ∈ C ⇒ x = 0.

x ∈M = C ∩ L, x 6= 0 is irreducible:

x = y + z ⇒ y = 0 or z = 0.

Theorem [Hilbert’s Basis Theorem]
There are only finitely many irreducible elements in C ∩ L and they
form the unique minimal system of generators, the Hilbert Basis.

Normaliz Algorithm

In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the

cone is full dimensional and L = Zd.
? Compute a triangulation of the cone, that is a

face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section

Normaliz Algorithm

In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the

cone is full dimensional and L = Zd.
? Compute a triangulation of the cone, that is a

face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section

Normaliz Algorithm

In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the

cone is full dimensional and L = Zd.
? Compute a triangulation of the cone, that is a

face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section

Normaliz Algorithm

In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the

cone is full dimensional and L = Zd.
? Compute a triangulation of the cone, that is a

face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section

Normaliz Algorithm

In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the

cone is full dimensional and L = Zd.
? Compute a triangulation of the cone, that is a

face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section

Normaliz Algorithm

In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the

cone is full dimensional and L = Zd.
? Compute a triangulation of the cone, that is a

face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section

Simplicial Cones

S = cone(x1, . . . , xd) simplex. Then

E = {q1x1 + · · ·+ qdxd | 0 ≤ qi < 1}︸ ︷︷ ︸
π

∩Zd

together with x1, . . . , xd generate the monoid
S ∩ Zd.

Simplicial Cones

S = cone(x1, . . . , xd) simplex. Then

E = {q1x1 + · · ·+ qdxd | 0 ≤ qi < 1}︸ ︷︷ ︸
π

∩Zd

together with x1, . . . , xd generate the monoid
S ∩ Zd.

Every residue class in Zd/U , U = Zx1 + · · ·+ Zxd, has exactly one
representative in E.

Simplicial Cones

S = cone(x1, . . . , xd) simplex. Then

E = {q1x1 + · · ·+ qdxd | 0 ≤ qi < 1}︸ ︷︷ ︸
π

∩Zd

together with x1, . . . , xd generate the monoid
S ∩ Zd.

Every residue class in Zd/U , U = Zx1 + · · ·+ Zxd, has exactly one
representative in E.
Normaliz generates the points in E. They are candidates for the
Hilbert Basis and their number is given by the volume of the simplex

|E| = vol(S) = det(x1, . . . , xd).

The points in E are then reduced to a Hilbert Basis of S ∩ Zd.

Simplicial Cones

S = cone(x1, . . . , xd) simplex. Then

E = {q1x1 + · · ·+ qdxd | 0 ≤ qi < 1}︸ ︷︷ ︸
π

∩Zd

together with x1, . . . , xd generate the monoid
S ∩ Zd.

Every residue class in Zd/U , U = Zx1 + · · ·+ Zxd, has exactly one
representative in E.
Normaliz generates the points in E. They are candidates for the
Hilbert Basis and their number is given by the volume of the simplex

|E| = vol(S) = det(x1, . . . , xd).

The points in E are then reduced to a Hilbert Basis of S ∩ Zd.

Simplicial Cones

S = cone(x1, . . . , xd) simplex. Then

E = {q1x1 + · · ·+ qdxd | 0 ≤ qi < 1}︸ ︷︷ ︸
π

∩Zd

together with x1, . . . , xd generate the monoid
S ∩ Zd.

Every residue class in Zd/U , U = Zx1 + · · ·+ Zxd, has exactly one
representative in E.
Normaliz generates the points in E. They are candidates for the
Hilbert Basis and their number is given by the volume of the simplex

|E| = vol(S) = det(x1, . . . , xd).

The points in E are then reduced to a Hilbert Basis of S ∩ Zd.

Therefore vol(S) is a critical size for the runtime of Normaliz.

Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

How? Compute points from the cone and use
them for a new triangulation.

Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

(Theoretically) Best choice for these points are the vertices of the
bottom B(S) (union of the bounded faces of conv((S ∩ Zd) \ {0}))

B(S)
How? Compute points from the cone and use
them for a new triangulation.

Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

(Theoretically) Best choice for these points are the vertices of the
bottom B(S) (union of the bounded faces of conv((S ∩ Zd) \ {0}))

B(S)

(Practically) Computation of the whole bottom would equalize the
benefit from the small volume or even make it worse

How? Compute points from the cone and use
them for a new triangulation.

Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

(Theoretically) Best choice for these points are the vertices of the
bottom B(S) (union of the bounded faces of conv((S ∩ Zd) \ {0}))

B(S)

(Practically) Computation of the whole bottom would equalize the
benefit from the small volume or even make it worse

Determine only some points from B(S) using

How? Compute points from the cone and use
them for a new triangulation.

2. Approximation

1. Integer Programming

Integer Programming

The Algorithm

S = cone(x1, . . . , xd) simplex in triangulation

The Algorithm

S = cone(x1, . . . , xd) simplex in triangulation
GOAL
Compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd) = NTx,

N . . . normal vector on the hyperplane spanned
by x1, . . . , xd.

The Algorithm

S = cone(x1, . . . , xd) simplex in triangulation
GOAL
Compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd) = NTx,

N . . . normal vector on the hyperplane spanned
by x1, . . . , xd.

Solve the IP

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

The Algorithm

S = cone(x1, . . . , xd) simplex in triangulation
GOAL
Compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd) = NTx,

N . . . normal vector on the hyperplane spanned
by x1, . . . , xd.

Solve the IP

If problem can be solved: form a stellar subdivision with the solution.

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

The Algorithm

S = cone(x1, . . . , xd) simplex in triangulation
GOAL
Compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd) = NTx,

N . . . normal vector on the hyperplane spanned
by x1, . . . , xd.

Solve the IP

If problem can be solved: form a stellar subdivision with the solution.

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

The Algorithm

Algorithm Bottom Points

Input: S = cone(x1, . . . , xd) simplex with
vol(S) ≥ Bound

Return: Points from B(S)
1: B,S ← ∅
2: store S into S
3: while S 6= ∅ do
4: let T = cone(y1, . . . , yd) be the first ele-

ment of S and delete it
5: compute a normal vector N on hyperplane

spanned by y1, . . . , yd
6: compute hyperplanes {H1, . . . ,Hd} and

volume of T
7: if vol(T) < Bound then continue

The Algorithm

Algorithm Bottom Points

Input: S = cone(x1, . . . , xd) simplex with
vol(S) ≥ Bound

Return: Points from B(S)
1: B,S ← ∅
2: store S into S
3: while S 6= ∅ do
4: let T = cone(y1, . . . , yd) be the first ele-

ment of S and delete it
5: compute a normal vector N on hyperplane

spanned by y1, . . . , yd
6: compute hyperplanes {H1, . . . ,Hd} and

volume of T
7: if vol(T) < Bound then continue

The Algorithm

Algorithm Bottom Points

Input: S = cone(x1, . . . , xd) simplex with
vol(S) ≥ Bound

Return: Points from B(S)
1: B,S ← ∅
2: store S into S
3: while S 6= ∅ do
4: let T = cone(y1, . . . , yd) be the first ele-

ment of S and delete it
5: compute a normal vector N on hyperplane

spanned by y1, . . . , yd
6: compute hyperplanes {H1, . . . ,Hd} and

volume of T
7: if vol(T) < Bound then continue

T

H1

H2

y1

y2

The Algorithm

Algorithm Bottom Points

3: while S 6= ∅ do
...

8: if IP (?) is solvable for T then
9: y ← optimal solution of (?)

10: store y into B
11: for all hyperplanes Hi of T do
12: if y /∈ Hi then
13: Ti ← cone(y1, . . . , yi−1, y, yi+1, . . . , yd)
14: store Ti into S
15: return B

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

The Algorithm

Algorithm Bottom Points

3: while S 6= ∅ do
...

8: if IP (?) is solvable for T then
9: y ← optimal solution of (?)

10: store y into B
11: for all hyperplanes Hi of T do
12: if y /∈ Hi then
13: Ti ← cone(y1, . . . , yi−1, y, yi+1, . . . , yd)
14: store Ti into S
15: return B

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

y

B = {(1, 2)

The Algorithm

Algorithm Bottom Points

3: while S 6= ∅ do
...

8: if IP (?) is solvable for T then
9: y ← optimal solution of (?)

10: store y into B
11: for all hyperplanes Hi of T do
12: if y /∈ Hi then
13: Ti ← cone(y1, . . . , yi−1, y, yi+1, . . . , yd)
14: store Ti into S
15: return B

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

T1

T2

B = {(1, 2), (1, 1)}

The Algorithm

Algorithm Bottom Points

3: while S 6= ∅ do
...

8: if IP (?) is solvable for T then
9: y ← optimal solution of (?)

10: store y into B
11: for all hyperplanes Hi of T do
12: if y /∈ Hi then
13: Ti ← cone(y1, . . . , yi−1, y, yi+1, . . . , yd)
14: store Ti into S
15: return B

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

B = {(1, 2), (1, 1)}

The Algorithm

Algorithm Bottom Points

3: while S 6= ∅ do
...

8: if IP (?) is solvable for T then
9: y ← optimal solution of (?)

10: store y into B
11: for all hyperplanes Hi of T do
12: if y /∈ Hi then
13: Ti ← cone(y1, . . . , yi−1, y, yi+1, . . . , yd)
14: store Ti into S
15: return B

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

B = {(1, 2), (1, 1)}

We triangulate the lower facets of conv(B ∪ {x1, . . . , xd}) and
evaluate this triangulation with the usual Normaliz algorithm.

The Algorithm

Level 0

The Algorithm

Level 0

Level 1

The Algorithm

Level 0

Level 1

Level 2

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

Gregor Hendel

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

hickerson-16 hickerson-18 knapsack 11 60

dimension 9 10 12

simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

volume used 3.93× 106 5.47× 107 2.39× 107

integer programs solved 4 582016 11621

improvement factor 25 7.62× 106 1.17× 107

old runtime 2s > 12d > 8d

new runtime 0.5s 46s 5.1s
SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound = 106

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

hickerson-16 hickerson-18 knapsack 11 60

dimension 9 10 12

simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

volume used 3.93× 106 5.47× 107 2.39× 107

integer programs solved 4 582016 11621

improvement factor 25 7.62× 106 1.17× 107

old runtime 2s > 12d > 8d

new runtime 0.5s 46s 5.1s
SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound = 106

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

hickerson-16 hickerson-18 knapsack 11 60

dimension 9 10 12

simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

volume used 3.93× 106 5.47× 107 2.39× 107

integer programs solved 4 582016 11621

improvement factor 25 7.62× 106 1.17× 107

old runtime 2s > 12d > 8d

new runtime 0.5s 46s 5.1s
SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound = 106

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

hickerson-16 hickerson-18 knapsack 11 60

dimension 9 10 12

simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

volume used 3.93× 106 5.47× 107 2.39× 107

integer programs solved 4 582016 11621

improvement factor 25 7.62× 106 1.17× 107

old runtime 2s > 12d > 8d

new runtime 0.5s 46s 5.1s
SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound = 106

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

hickerson-16 hickerson-18 knapsack 11 60

dimension 9 10 12

simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

volume used 3.93× 106 5.47× 107 2.39× 107

integer programs solved 4 582016 11621

improvement factor 25 7.62× 106 1.17× 107

old runtime 2s > 12d > 8d

new runtime 0.5s 46s 5.1s
SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound = 106

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

hickerson-16 hickerson-18 knapsack 11 60

dimension 9 10 12

simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

volume used 3.93× 106 5.47× 107 2.39× 107

integer programs solved 4 582016 11621

improvement factor 25 7.62× 106 1.17× 107

old runtime 2s > 12d > 8d

new runtime 0.5s 46s 5.1s
SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound = 106

Implementation & Results

Implementation & Results

our choice

Approximation

The Algorithm

1. Look at the cross section at level 1 of
the (transformed) simplex.

cross section at level 1

The Algorithm

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

cross section at level 1

The Algorithm

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

cross section at level 1

The Algorithm

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

cross section at level 1

The Algorithm

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

The Algorithm

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

The Algorithm

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

The Algorithm

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

The Algorithm

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

⇒ list of points B (bottom candidates)

The Algorithm

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

⇒ list of points B (bottom candidates)

Choose a grading minimizing point from B and continue as before.

The Algorithm

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

⇒ list of points B (bottom candidates)

Choose a grading minimizing point from B and continue as before.

Results

hickerson-16 hickerson-18 knapsack 11 60

simplex vol 9.83 e 7 4.17 e 14 2.8 e 14

bottom vol 8.10 e 5 3.86 e 7 2.02 e 7

(1) (2) (1) (2) (1) (2)

our vol 3.93 e 6 3.93 e 6 5.47 e 7 8.42 e 7 2.39 e 7 9.36 e 9

factor 25 25 7.62 e 6 4.95 e 6 1.09 e 7 2.99 e 4

old time 2s >12d >8d

new time 0.5s 0.4s 46s 50s 5s 2m30s

Improvements & Outlook

? If “large” simplices are remaining (both cases): approximate on a
higher level.
(Which one?)

? Tweak settings in SCIP (time bounds etc.).

? Use less generators for approximating cone.
(Partial Fourier-Motzkin Elimination)

Improvements & Outlook

? If “large” simplices are remaining (both cases): approximate on a
higher level.
(Which one?)

? Tweak settings in SCIP (time bounds etc.).

? Use less generators for approximating cone.
(Partial Fourier-Motzkin Elimination)

Improvements & Outlook

? If “large” simplices are remaining (both cases): approximate on a
higher level.
(Which one?)

? Tweak settings in SCIP (time bounds etc.).

? Use less generators for approximating cone.
(Partial Fourier-Motzkin Elimination)

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

2

2

nr positive halfspaces

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

was already “good”

Partial Fourier-Motzkin Elimination

2

12

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

still extreme ray

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

X

Demo

Thank you!

