Symmetry Handling in Binary Programs via Polyhedral Methods

Christopher Hojny

joint work with Marc Pfetsch

Technische Universität Darmstadt Department of Mathematics

\Rightarrow Discrete
Optimization

2016 International Conference on Mathematical Software

Motivation

- Consider a necklace with n black (0) and white (1) beads.
- Associate with a necklace a vector in $\{0,1\}^{n}$.
- necklaces $x, x^{\prime} \in\{0,1\}^{n}$ are "equal" $\Leftrightarrow \exists$ cyclic shift γ such that $\gamma(x)=x^{\prime}$.

Motivation

- Consider a necklace with n black (0) and white (1) beads.
- Associate with a necklace a vector in $\{0,1\}^{n}$.
- necklaces $x, x^{\prime} \in\{0,1\}^{n}$ are "equal" $\Leftrightarrow \exists$ cyclic shift γ such that $\gamma(x)=x^{\prime}$.

1 shift

Motivation

- Consider a necklace with n black (0) and white (1) beads.
- Associate with a necklace a vector in $\{0,1\}^{n}$.
- necklaces $x, x^{\prime} \in\{0,1\}^{n}$ are "equal" $\Leftrightarrow \exists$ cyclic shift γ such that $\gamma(x)=x^{\prime}$.

2 shifts

Motivation

- Consider a necklace with n black (0) and white (1) beads.
- Associate with a necklace a vector in $\{0,1\}^{n}$.
- necklaces $x, x^{\prime} \in\{0,1\}^{n}$ are "equal" $\Leftrightarrow \exists$ cyclic shift γ such that $\gamma(x)=x^{\prime}$.

3 shifts

Motivation

- Consider a necklace with n black (0) and white (1) beads.
- Associate with a necklace a vector in $\{0,1\}^{n}$.
- necklaces $x, x^{\prime} \in\{0,1\}^{n}$ are "equal" $\Leftrightarrow \exists$ cyclic shift γ such that $\gamma(x)=x^{\prime}$.

Question: How can we characterize (the convex hull of) a representative system of "distinct" necklaces?

Outline

Symmetry Detection

Representative Systems

Symretopes and Symresacks

Numerical Experiments

Symmetry Detection

Consider binary program (BP)

$$
\max \left\{c^{\top} x: A x \leq b, x \in\{0,1\}^{n}\right\}
$$

We can distinguish two types of permutation symmetries of BP:

Problem Symmetry Group

Contains all permutations $\gamma \in \mathcal{S}_{n}$ with

- $A \gamma(x) \leq b \quad \Leftrightarrow \quad A x \leq b$ and
- $c^{\top} \gamma(x)=c^{\top} x$.

Formulation Symmetry Group

Contains all permutations $\gamma \in \mathcal{S}_{n}$ for which there is $\sigma \in \mathcal{S}_{m}$ s.t.

- $\gamma(c)=c$,
- $\sigma(b)=b$, and
- $A_{\sigma(i), \gamma()}=A_{i, j}$.

Symmetry Detection

Consider binary program (BP)

$$
\max \left\{c^{\top} x: A x \leq b, x \in\{0,1\}^{n}\right\}
$$

We can distinguish two types of permutation symmetries of BP:

Problem Symmetry Group

Contains all permutations $\gamma \in \mathcal{S}_{n}$ with

- $A \gamma(x) \leq b \quad \Leftrightarrow \quad A x \leq b$ and
- $c^{\top} \gamma(x)=c^{\top} x$.
- NP-hard

Formulation Symmetry Group

Contains all permutations $\gamma \in \mathcal{S}_{n}$ for which there is $\sigma \in \mathcal{S}_{m}$ s.t.

- $\gamma(c)=c$,
- $\sigma(b)=b$, and
- $A_{\sigma(i), \gamma()}=A_{i, j}$.
- Graph-Isomorphism-hard

How to Determine Formulation Symmetries?

Build an auxillary colored graph and determine its color preserving automorphisms.

How to Determine Formulation Symmetries?

Build an auxillary colored graph and determine its color preserving automorphisms.

$\max x_{1}+x_{2}$	
x_{2}	≤ 1
x_{1}	≤ 1
$2 x_{1}+2 x_{2}$	≤ 2

How to Determine Formulation Symmetries?

Build an auxillary colored graph and determine its color preserving automorphisms.

Automorphism group can be determined, e.g., with

- bliss,
- nauty, and
- saucy.

Outline

Symmetry Detection

Representative Systems

Symretopes and Symresacks

Numerical Experiments

Orbit Representative Systems

Given a symmetry group 「 of a binary program (BP), how can we determine a representative system of the orbits

$$
\Gamma(x)=\{\gamma(x): \gamma \in \Gamma\},
$$

where x is feasible for $B P$?
Idea: Add

$$
a^{\gamma \top} x:=\sum_{i=1}^{n}\left(2^{n-\gamma(i)}-2^{n-i}\right) x_{i} \leq 0
$$

for each $\gamma \in \Gamma$ to $\mathbf{B P}$.

Pros and Cons

Pros

- $a^{\gamma^{\top}} x \leq 0$ cuts off symmetric solutions
- $\left\{x \in\{0,1\}^{n}: A x \leq b\right\} \cap$
$\bigcap_{\gamma \in \Gamma}\left\{x \in \mathbb{R}^{n}: a^{\gamma \top} x \leq 0\right\}$ is lexmax representative system of BP, see [Friedman, 2007]

Cons

- coefficients of $a^{\gamma^{\top}} x \leq 0$ grow exponentially large
- possibly many inequalities, one for each $\gamma \in \Gamma$

Outline

Symmetry Detection

Representative Systems

Symretopes and Symresacks

Numerical Experiments

Symretopes

Definition

Given $\Gamma \leq \mathcal{S}_{n}$, the symretope w.r.t. Γ is the polytope

$$
S(\Gamma):=\operatorname{conv}\left(\left\{x \in\{0,1\}^{n}: a^{\gamma^{\top}} x \leq 0 \forall \gamma \in \Gamma\right\}\right)
$$

Symretopes

Definition

Given $\Gamma \leq \mathcal{S}_{n}$, the symretope w.r.t. Γ is the polytope

$$
\mathrm{S}(\Gamma):=\operatorname{conv}\left(\left\{x \in\{0,1\}^{n}: a^{\gamma \top} x \leq 0 \forall \gamma \in \Gamma\right\}\right) .
$$

- If Γ is given by generators, the optimization problem over symresacks is NP-hard.
- There is $\Gamma \leq \mathcal{S}_{n}$ such that the coefficients of facet inequalities grow exponentially.

To avoid exponential coefficients, find tractable IP-formulation for symretopes with small coefficients.

Idea: Consider 0/1-knapsack polytope induced by $\mathrm{a}^{\gamma \top} x \leq 0$.

Symresacks

Definition

Given $\gamma \in \mathcal{S}_{n}$, the symresack w.r.t. γ is the polytope

$$
P_{\gamma}:=\operatorname{conv}\left(\left\{x \in\{0,1\}^{n}: a^{\gamma \top} x \leq 0\right\}\right) .
$$

Properties

- non-standard knapsack polytopes,
- feasible points can be completely characterized by minimal cover inequalities and box constraints,
- in general, there are exponential many minimal covers

Separation Complexity

Theorem

The separation problem of minimal cover inequalities for P_{γ} and $\bar{x} \in \mathbb{R}^{n}$ can be solved in time $\mathcal{O}\left(n^{2}\right)$.

Consequences: Symmetry handling is possible with $\{0, \pm 1\}$-inequalities:

- separate minimal cover inequalities of P_{γ} instead of adding $a^{\gamma^{\top}} x \leq 0$,
- separation is possible in time $\mathcal{O}\left(|\Gamma| n^{2}\right)$,
- avoid exponential coefficients.

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

							1	x_{i}	u
							1	x_{1}	1
x	1	2	3	4	5	6	0	x_{2}	0
							1	x_{3}	1
$\gamma(x)$	4	3	5	1	6	2	1	x_{4}	1
							0	x_{5}	1
							1	x_{6}	1

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Infeasibility Detection

x	1	2	3	4	5	6
	$7(x)$	4	3	5	1	6

l	x_{i}	u
1	x_{1}	1
0	x_{2}	0
1	x_{3}	1
1	x_{4}	1
0	x_{5}	1
1	x_{6}	1

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Infeasibility Detection							11	$\begin{gathered} x_{i} \\ x_{1} \end{gathered}$	u1
x									
	1	2	3	4	5	6	0	x_{2}	0
$\gamma(x)$							1	x_{3}	1
	4	3	5	1	6	2	1	X_{4}	1
							0	x_{5}	1
							1	χ_{6}	1

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Feasibility Detection

x	1	2	3	4	5	6
$\gamma(x)$	4	3	5	1	6	2

l	x_{i}	u
1	x_{1}	1
1	x_{2}	1
0	x_{3}	0
1	x_{4}	1
0	x_{5}	1
1	x_{6}	1

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Feasibility Detection							I1	$\begin{aligned} & x_{i} \\ & x_{1} \end{aligned}$	$\begin{aligned} & u \\ & 1 \end{aligned}$
x									
	1	2	3	4	5	6	1	x_{2}	1
$\gamma(x)$							0	x_{3}	0
	4	3	5	1	6	2	1	x_{4}	1
							0	χ_{5}	1
							1	χ_{6}	1

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Bound tightening							1	x_{i}	u
x								x_{1}	1
	1	2	3	4	5	6	0	x_{2}	0
							0	x_{3}	1
$\gamma(x)$	4	3	5	1	6	2	1	X_{4}	1
							0	x_{5}	0
							0	χ_{6}	1

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Bound tightening				
$x(x)$1 2 3 4 5 6 4 3 5 1 6 2\quad1 x_{i} u 1 x_{1} 1 0 x_{2} 0 0 x_{3} 1 1 x_{4} 1 0 x_{5} 0 0 x_{6} 1				

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Bound tightening							1	x_{i}	u
x	1	2	3	4	5	6	1 0	x_{1} x_{2}	1 0
$\gamma(x)$							0	x_{3}	0
	4	3	5	1	6	2	1	X_{4}	1
							0	x_{5}	0
							0	x_{6}	1

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?
Bound tightening

$x(x)$| 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 3 | 5 | 1 | 6 | 2 |\quad| 1 | x_{i} | u |
| :--- | :--- | :--- | :--- |
| | x_{1} | 1 |
| 0 | x_{2} | 0 |
| 0 | x_{3} | 0 |
| 1 | x_{4} | 1 |
| 0 | x_{5} | 0 |
| 0 | x_{6} | 1 |

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Bound tightening							11	$\begin{gathered} x_{i} \\ x_{1} \end{gathered}$	u
x									1
	1	2	3	4	5	6	0	x_{2}	0
$\gamma(x)$							0	x_{3}	0
	4	3	5	1	6	2	1	X_{4}	1
							0	X_{5}	0
							0	χ_{6}	1

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Bound tightening							11	$\begin{gathered} x_{i} \\ x_{1} \end{gathered}$	u1
x									
	1	2	3	4	5	6	0	x_{2}	0
$\gamma(x)$							0	x_{3}	0
	4	3	5	1	6	2	1	x_{4}	1
							0	x_{5}	0
							0	x_{6}	0

Propagation Problem

Input: Upper and lower bounds $u, I \in\{0,1\}^{n}, \gamma \in \mathcal{S}_{n}$ Questions:

- Is there a vertex x of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Theorem

The propagation problem for P_{γ} can be solved in time $\mathcal{O}(n)$.

Outline

Symmetry Detection

Representative Systems

Symretopes and Symresacks

Numerical Experiments

Implementation

- implemented constraint handler for symresacks in SCIP 3.2.1 containing
- separation of minimal cover inequalities,
- propagation rules,
- resolution methods if propagation detected infeasibility,
- implemented constraint handler for orbisacks [Kaibel and Loos, 2011] which are symresacks for $\gamma=(1,2)(3,4) \ldots(2 n-1,2 n)$
- use automated symmetry detection methods of [Pfetsch and Rehn, 2015],
- use CPLEX 12.6.1 as LP-solver

Numerical Experiments

tests were run on

- Linux cluster with Intel i3 3.2GHz dual core processors,
- 8GB memory,
- single thread
- time limit: 3600 seconds
test instances
- MIPLIB 2010 benchmark
- SONET network design [Sherali and Smith, 2001]
- Wagon Load Balancing [Ghoniem and Sherali, 2011]

Numerical Experiments: MIPLIB 2010 benchmark

number of solved instances, default 60/87			
	prop	sepa	sepa+prob
orbisacks	61	62	61
symresacks	62	60	61

speed up of solution time

orbisacks	0.94	0.91	0.93
symresacks	0.93	1.00	0.97
reduction of nodes			0.82
orbisacks	0.93	0.87	0.92
symresacks	0.91	0.93	

Numerical Experiments: SONET

number of solved instances, default 50/50			
	prop	sepa	sepa+prob
orbisacks	50	50	50
symresacks	50	50	50

speed up of solution time

orbisacks	0.06	0.04	0.04
symresacks	0.06	0.04	0.04
reduction of nodes			0.02
orbisacks	0.04	0.02	0.02
symresacks	0.04	0.02	

Numerical Experiments: Wagon Load Balancing

number of solved instances, default 2/120			
	prop	sepa	sepa+prob
orbisacks	2	2	2
symresacks	10	120	120
speed up of solution time			
orbisacks	1.01	1.03	1.01
symresacks	1.00	0.02	0.02
reduction of nodes		1.00	
orbisacks	1.00	1.04	0.01

Thank you for your attention!

Literature

[^0]In Dress, A., Xu, Y., and Zhu, B., editors, Combinatorial Optimization and Applications, volume 4616 of Lecture Notes in Computer Science, pages 146-153. Springer Berlin Heidelberg.

[^0]: Friedman, E. J. (2007).
 Fundamental domains for integer programs with symmetries.

 Ghoniem, A. and Sherali, H. D. (2011).
 Defeating symmetry in combinatorial optimization via objective perturbations and hierarchical constraints.
 IIE Transactions, 43(8):575-588.
 Kaibel, V. and Loos, A. (2011).
 Finding descriptions of polytopes via extended formulations and liftings.
 In Mahjoub, A. R., editor, Progress in Combinatorial Optimization. Wiley.
 Pfetsch, M. E. and Rehn, T. (2015).
 A computational comparison of symmetry handling methods for mixed integer programs.
 Sherali, H. D. and Smith, J. C. (2001).
 improving discrete model representations via symmetry considerations.
 Management Science, 47(10):1396-1407.

