Symmetry Handling in Binary Programs via Polyhedral Methods Christopher Hojny

joint work with Marc Pfetsch

TECHNISCHE UNIVERSITÄT DARMSTADT

Technische Universität Darmstadt Department of Mathematics

2016 International Conference on Mathematical Software

- ► Consider a necklace with *n* black (0) and white (1) beads.
- Associate with a necklace a vector in $\{0, 1\}^n$.
- ▶ necklaces $x, x' \in \{0, 1\}^n$ are "equal" $\Leftrightarrow \exists$ cyclic shift γ such that $\gamma(x) = x'$.

- ► Consider a necklace with *n* black (0) and white (1) beads.
- Associate with a necklace a vector in $\{0, 1\}^n$.
- ▶ necklaces $x, x' \in \{0, 1\}^n$ are "equal" $\Leftrightarrow \exists$ cyclic shift γ such that $\gamma(x) = x'$.

- ► Consider a necklace with *n* black (0) and white (1) beads.
- ▶ Associate with a necklace a vector in {0, 1}^{*n*}.
- ▶ necklaces $x, x' \in \{0, 1\}^n$ are "equal" $\Leftrightarrow \exists$ cyclic shift γ such that $\gamma(x) = x'$.

- ► Consider a necklace with *n* black (0) and white (1) beads.
- ▶ Associate with a necklace a vector in {0, 1}^{*n*}.
- ▶ necklaces $x, x' \in \{0, 1\}^n$ are "equal" $\Leftrightarrow \exists$ cyclic shift γ such that $\gamma(x) = x'$.

- ► Consider a necklace with *n* black (0) and white (1) beads.
- ▶ Associate with a necklace a vector in {0, 1}^{*n*}.
- ▶ necklaces $x, x' \in \{0, 1\}^n$ are "equal" $\Leftrightarrow \exists$ cyclic shift γ such that $\gamma(x) = x'$.

Question: How can we characterize (the convex hull of) a representative system of "distinct" necklaces?

Outline

Symmetry Detection

Representative Systems

Symretopes and Symresacks

Numerical Experiments

Symmetry Detection

Consider binary program (BP)

$$\max\{c^{\top}x : Ax \le b, x \in \{0,1\}^n\}.$$

We can distinguish two types of permutation symmetries of BP:

Problem Symmetry Group

Contains all permutations $\gamma \in \mathcal{S}_n$ with

•
$$A\gamma(x) \leq b \quad \Leftrightarrow \quad Ax \leq b$$
 and

$$\triangleright \ \mathbf{C}^{\top} \gamma(\mathbf{X}) = \mathbf{C}^{\top} \mathbf{X}.$$

Formulation Symmetry Group

Contains all permutations $\gamma \in S_n$ for which there is $\sigma \in S_m$ s.t.

► $\gamma(c) = c$,

$$\blacktriangleright A_{\sigma(i),\gamma(j)} = A_{i,j}.$$

Symmetry Detection

Consider binary program (BP)

$$\max\{c^{\top}x : Ax \le b, x \in \{0,1\}^n\}.$$

We can distinguish two types of permutation symmetries of BP:

Problem Symmetry Group

Contains all permutations $\gamma \in \mathcal{S}_n$ with

- $A\gamma(x) \leq b \quad \Leftrightarrow \quad Ax \leq b$ and
- ► $c^{\top}\gamma(x) = c^{\top}x$.
- NP-hard

Formulation Symmetry Group

Contains all permutations $\gamma \in S_n$ for which there is $\sigma \in S_m$ s.t.

- ► $\gamma(c) = c$,
- $\sigma(b) = b$, and

$$\blacktriangleright A_{\sigma(i),\gamma(j)} = A_{i,j}.$$

Graph-Isomorphism-hard

How to Determine Formulation Symmetries?

Build an auxillary colored graph and determine its color preserving automorphisms.

How to Determine Formulation Symmetries?

Build an auxillary colored graph and determine its color preserving automorphisms.

How to Determine Formulation Symmetries?

Build an auxillary colored graph and determine its color preserving automorphisms.

Automorphism group can be determined, e.g., with

- ▶ bliss,
- ▶ nauty, and
- saucy.

Outline

Symmetry Detection

Representative Systems

Symretopes and Symresacks

Numerical Experiments

Orbit Representative Systems

Given a symmetry group Γ of a binary program (BP), how can we determine a representative system of the orbits

$$\Gamma(\mathbf{x}) = \{\gamma(\mathbf{x}) : \gamma \in \Gamma\},\$$

where x is feasible for BP?

Idea: Add

$$a^{\gamma op} x \coloneqq \sum_{i=1}^n (2^{n-\gamma(i)} - 2^{n-i}) x_i \le 0$$

for each $\gamma \in \Gamma$ to BP.

Pros and Cons

Pros

- a^{γ[⊤]}x ≤ 0 cuts off symmetric solutions
- ► { $x \in \{0, 1\}^n$: $Ax \leq b$ } ∩ $\bigcap_{\gamma \in \Gamma} \{x \in \mathbb{R}^n : a^{\gamma \top}x \leq 0$ } is lexmax representative system of BP, see [Friedman, 2007]

Cons

- ► coefficients of a^γ[⊤]x ≤ 0 grow exponentially large
- ► possibly many inequalities, one for each γ ∈ Γ

Outline

Symmetry Detection

Representative Systems

Symretopes and Symresacks

Numerical Experiments

Symretopes

Definition

Given $\Gamma \leq S_n$, the symmetope w.r.t. Γ is the polytope

$$\mathsf{S}(\Gamma) \coloneqq \mathsf{conv}\left(\{x \in \{0,1\}^n : a^{\gamma \top}x \le 0 \; \forall \gamma \in \Gamma\}\right).$$

Symretopes

Definition

Given $\Gamma \leq S_n$, the symmetope w.r.t. Γ is the polytope

S(Γ) := conv ({
$$x \in \{0,1\}^n$$
 : $a^{\gamma \top}x ≤ 0 \forall \gamma \in Γ$ }).

- If Γ is given by generators, the optimization problem over symresacks is NP-hard.
- ► There is Γ ≤ S_n such that the coefficients of facet inequalities grow exponentially.

To avoid exponential coefficients, find tractable IP-formulation for symretopes with small coefficients.

Idea: Consider 0/1-knapsack polytope induced by $a^{\gamma \top} x \leq 0$.

Symresacks

Definition

Given $\gamma \in S_n$, the symresack w.r.t. γ is the polytope

$$P_{\gamma} \coloneqq \operatorname{conv} \left(\{ x \in \{0, 1\}^n : a^{\gamma \top} x \leq 0 \} \right).$$

Properties

- non-standard knapsack polytopes,
- feasible points can be completely characterized by minimal cover inequalities and box constraints,
- ▶ in general, there are exponential many minimal covers

Separation Complexity

Theorem

The separation problem of minimal cover inequalities for P_{γ} and $\bar{x} \in \mathbb{R}^n$ can be solved in time $\mathcal{O}(n^2)$.

Consequences: Symmetry handling is possible with $\{0, \pm 1\}$ -inequalities:

- ► separate minimal cover inequalities of P_{γ} instead of adding $a^{\gamma \top} x \leq 0$,
- separation is possible in time $\mathcal{O}(|\Gamma|n^2)$,
- avoid exponential coefficients.

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- ▶ Is there a vertex *x* of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- ▶ Is there a vertex *x* of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

x	1	2	3	4	5	6
$\gamma(x)$	4	3	5	1	6	2

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- Is there a vertex *x* of P_{γ} with $l \le x \le u$?
- Can we tighten some bounds?

Infeasibility Detection

x	1	2	3	4	5	6
γ (x)	4	3	5	1	6	2

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- ▶ Is there a vertex *x* of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Infeasibility Detection

x	1	2	3	4	5	6
γ (x)	4	3	5	1	6	2

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- Is there a vertex *x* of P_{γ} with $l \le x \le u$?
- Can we tighten some bounds?

Feasibility Detection

x	1	2	3	4	5	6
$\gamma(x)$	4	3	5	1	6	2

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- ▶ Is there a vertex *x* of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Feasibility Detection

x	1	2	3	4	5	6
γ (x)	4	3	5	1	6	2

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- Is there a vertex *x* of P_{γ} with $l \le x \le u$?
- Can we tighten some bounds?

x	1	2	3	4	5	6
$\gamma(x)$	4	3	5	1	6	2

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- Is there a vertex *x* of P_{γ} with $l \le x \le u$?
- Can we tighten some bounds?

x	1	2	3	4	5	6
γ (x)	4	3	5	1	6	2

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- Is there a vertex *x* of P_{γ} with $l \le x \le u$?
- Can we tighten some bounds?

x	1	2	3	4	5	6
γ (x)	4	3	5	1	6	2

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- Is there a vertex *x* of P_{γ} with $l \le x \le u$?
- Can we tighten some bounds?

x	1	2	3	4	5	6
γ (x)	4	3	5	1	6	2

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- ▶ Is there a vertex *x* of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

x	1	2	3	4	5	6
γ (x)	4	3	5	1	6	2

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- Is there a vertex *x* of P_{γ} with $l \le x \le u$?
- Can we tighten some bounds?

x	1	2	3	4	5	6
γ (x)	4	3	5	1	6	2

1	Xi	и
1	<i>x</i> ₁	1
0	<i>X</i> ₂	0
0	<i>X</i> 3	0
1	<i>x</i> ₄	1
0	<i>X</i> 5	0
0	<i>x</i> ₆	0

Input: Upper and lower bounds $u, l \in \{0, 1\}^n, \gamma \in S_n$ Questions:

- ▶ Is there a vertex *x* of P_{γ} with $I \leq x \leq u$?
- Can we tighten some bounds?

Theorem							
The propagation time $\mathcal{O}(n)$.	problem	for	P_{γ}	can	be	solved	in

Outline

Symmetry Detection

Representative Systems

Symretopes and Symresacks

Numerical Experiments

Implementation

- ▶ implemented constraint handler for symresacks in SCIP 3.2.1 containing
 - separation of minimal cover inequalities,
 - propagation rules,
 - resolution methods if propagation detected infeasibility,
- ► implemented constraint handler for orbisacks [Kaibel and Loos, 2011] which are symresacks for γ = (1, 2)(3, 4) ... (2n - 1, 2n)
- use automated symmetry detection methods of [Pfetsch and Rehn, 2015],
- ▶ use CPLEX 12.6.1 as LP-solver

Numerical Experiments

tests were run on

- ► Linux cluster with Intel i3 3.2GHz dual core processors,
- ► 8GB memory,
- single thread
- ▶ time limit: 3600 seconds

test instances

- MIPLIB 2010 benchmark
- SONET network design [Sherali and Smith, 2001]
- Wagon Load Balancing [Ghoniem and Sherali, 2011]

Numerical Experiments: MIPLIB 2010 benchmark

number of solved instances, default 60/87					
	prop	sepa	sepa+prob		
orbisacks	61	62	61		
symresacks	62	60	61		
speed up of solution time					
orbisacks	0.94	0.91	0.93		
symresacks	0.93	1.00	0.97		
reduction o	f nodes				
orbisacks	0.93	0.87	0.82		
symresacks	0.91	0.93	0.92		

Numerical Experiments: SONET

number of solved instances, default 50/50					
	prop	sepa	sepa+prob		
orbisacks	50	50	50		
symresacks	50	50	50		
speed up of solution time					
orbisacks	0.06	0.04	0.04		
symresacks	0.06	0.04	0.04		
reduction o	f nodes				
orbisacks	0.04	0.02	0.02		
svmresacks	0.04	0.02	0.02		

Numerical Experiments: Wagon Load Balancing

number of solved instances, default 2/120				
	prop	sepa	sepa+prob	
orbisacks	2	2	2	
symresacks	10	120	120	
speed up o	f solution	time		
orbisacks	1.01	1.03	1.01	
symresacks	1.00	0.02	0.02	
reduction o	f nodes			
orbisacks	1.00	1.04	1.00	
symresacks	0.95	0.01	0.01	

Thank you for your attention!

Literature

Friedman, E. J. (2007). Fundamental domains for integer programs with symmetries. In Dress, A, X, W, rand Zhu, B, editors, Combinatorial Optimization and Applications, volume 4616 of Lecture Notes in Computer Science, pages 146–153. Springer Berlin Heidelberg.

Ghoniem, A. and Sherali, H. D. (2011). Defeating symmetry in combinatorial optimization via objective perturbations and hierarchical constraints. IIE Transactions, 43(8):575–588.

Kalbel, V. and Loos, A. (2011). Finding descriptions of polytopes via extended formulations and liftings. In Mahjoub, A. R., editor, Progress in Combinatorial Optimization. Wiley.

Pfetsch, M. E. and Rehn, T. (2015). A computational comparison of symmetry handling methods for mixed integer programs.

Sherali, H. D. and Smith, J. C. (2001). Improving discrete model representations via symmetry considerations. Management Science, 47(10):1396–1407.

