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Motivation

I Consider a necklace with n black (0) and white (1) beads.
I Associate with a necklace a vector in {0, 1}n.
I necklaces x , x ′ ∈ {0, 1}n are “equal”⇔ ∃ cyclic shift γ such that γ(x) = x ′.

?=

Question: How can we characterize (the convex hull of) a representative system of
“distinct” necklaces?
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Symmetry Detection

Consider binary program (BP)

max{c>x : Ax ≤ b, x ∈ {0, 1}n}.

We can distinguish two types of permutation symmetries of BP:

Problem Symmetry Group

Contains all permutations γ ∈ Sn

with

I Aγ(x) ≤ b ⇔ Ax ≤ b and
I c>γ(x) = c>x .

I NP-hard

Formulation Symmetry Group

Contains all permutations γ ∈ Sn for
which there is σ ∈ Sm s.t.

I γ(c) = c,
I σ(b) = b, and
I Aσ(i),γ(j) = Ai ,j .

I Graph-Isomorphism-hard
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How to Determine Formulation Symmetries?

Build an auxillary colored graph and determine its color preserving automorphisms.

max x1+x2

x2 ≤ 1

x1 ≤ 1

2x1+2x2 ≤ 2
3

2

1
x1

x2

Automorphism group can be determined, e.g., with
I bliss,
I nauty, and
I saucy.
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Orbit Representative Systems

Given a symmetry group Γ of a binary program (BP), how can we determine a
representative system of the orbits

Γ(x) = {γ(x) : γ ∈ Γ},

where x is feasible for BP?

Idea: Add

aγ>x :=
n∑

i=1

(2n−γ(i) − 2n−i ) xi ≤ 0

for each γ ∈ Γ to BP.
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Pros and Cons

Pros

I aγ>x ≤ 0 cuts off symmetric
solutions

I {x ∈ {0, 1}n : Ax ≤ b}∩⋂
γ∈Γ{x ∈ Rn : aγ>x ≤ 0} is

lexmax representative system
of BP, see [Friedman, 2007]

Cons

I coefficients of aγ>x ≤ 0 grow
exponentially large

I possibly many inequalities,
one for each γ ∈ Γ
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Symretopes

Definition

Given Γ ≤ Sn, the symretope w.r.t. Γ is the polytope

S(Γ) := conv
(
{x ∈ {0, 1}n : aγ>x ≤ 0 ∀γ ∈ Γ}

)
.

I If Γ is given by generators, the optimization problem over symresacks is
NP-hard.

I There is Γ ≤ Sn such that the coefficients of facet inequalities grow
exponentially.

To avoid exponential coefficients, find tractable IP-formulation for symretopes with
small coefficients.

Idea: Consider 0/1-knapsack polytope induced by aγ>x ≤ 0.
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Symresacks

Definition

Given γ ∈ Sn, the symresack w.r.t. γ is the polytope

Pγ := conv
(
{x ∈ {0, 1}n : aγ>x ≤ 0}

)
.

Properties
I non-standard knapsack polytopes,
I feasible points can be completely characterized by minimal cover inequalities

and box constraints,
I in general, there are exponential many minimal covers
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Separation Complexity

Theorem

The separation problem of minimal cover inequalities
for Pγ and x̄ ∈ Rn can be solved in time O(n2).

Consequences: Symmetry handling is possible with {0,±1}-inequalities:

I separate minimal cover inequalities of Pγ instead of adding aγ>x ≤ 0,
I separation is possible in time O(|Γ|n2),
I avoid exponential coefficients.

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 12



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility DetectionFeasibility DetectionBound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 13



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility DetectionFeasibility DetectionBound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u
x1

x2

x3

x4

x5

x6

1
0
1
1
0
1

1
0
1
1
1
1

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 13



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility Detection

Feasibility DetectionBound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u
x1

x2

x3

x4

x5

x6

1
0
1
1
0
1

1
0
1
1
1
1

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 13



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility Detection

Feasibility DetectionBound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u
x1

x2

x3

x4

x5

x6

1
0
1
1
0
1

1
0
1
1
1
1

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 13



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility Detection

Feasibility Detection

Bound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u
x1

x2

x3

x4

x5

x6

1
1
0
1
0
1

1
1
0
1
1
1

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 13



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility Detection

Feasibility Detection

Bound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u
x1

x2

x3

x4

x5

x6

1
1
0
1
0
1

1
1
0
1
1
1

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 13



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility DetectionFeasibility Detection

Bound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u
x1

x2

x3

x4

x5

x6

0
0
0
1
0
0

1
0
1
1
0
1

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 13



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility DetectionFeasibility Detection

Bound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u
x1

x2

x3

x4

x5

x6

1
0
0
1
0
0

1
0
1
1
0
1

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 13



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility DetectionFeasibility Detection

Bound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u
x1

x2

x3

x4

x5

x6

1
0
0
1
0
0

1
0
0
1
0
1

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 13



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility DetectionFeasibility Detection

Bound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u
x1

x2

x3

x4

x5

x6

1
0
0
1
0
0

1
0
0
1
0
1

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 13



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility DetectionFeasibility Detection

Bound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u
x1

x2

x3

x4

x5

x6

1
0
0
1
0
0

1
0
0
1
0
1

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 13



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility DetectionFeasibility Detection

Bound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u
x1

x2

x3

x4

x5

x6

1
0
0
1
0
0

1
0
0
1
0
0

ICMS 2016 | Christopher Hojny: Symmetry Handling in Binary Programs via Polyhedral Methods | 13



Propagation Problem

Input: Upper and lower bounds u, l ∈ {0, 1}n, γ ∈ Sn

Questions:
I Is there a vertex x of Pγ with l ≤ x ≤ u?
I Can we tighten some bounds?

Infeasibility DetectionFeasibility Detection

Bound tightening

x 1 2 3 4 5 6

γ(x) 4 3 5 1 6 2

l xi u
x1

x2

x3

x4

x5

x6

1
0
0
1
0
0

1
0
0
1
0
0

Theorem

The propagation problem for Pγ can be solved in
time O(n).
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Implementation

I implemented constraint handler for symresacks in SCIP 3.2.1 containing
I separation of minimal cover inequalities,
I propagation rules,
I resolution methods if propagation detected infeasibility,

I implemented constraint handler for orbisacks [Kaibel and Loos, 2011] which
are symresacks for γ = (1, 2)(3, 4) ... (2n − 1, 2n)

I use automated symmetry detection methods of [Pfetsch and Rehn, 2015],
I use CPLEX 12.6.1 as LP-solver
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Numerical Experiments

tests were run on
I Linux cluster with Intel i3 3.2GHz dual core processors,
I 8GB memory,
I single thread
I time limit: 3600 seconds

test instances
I MIPLIB 2010 benchmark
I SONET network design [Sherali and Smith, 2001]
I Wagon Load Balancing [Ghoniem and Sherali, 2011]
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Numerical Experiments:
MIPLIB 2010 benchmark

number of solved instances, default 60/87
prop sepa sepa+prob

orbisacks 61 62 61
symresacks 62 60 61

speed up of solution time

orbisacks 0.94 0.91 0.93
symresacks 0.93 1.00 0.97

reduction of nodes

orbisacks 0.93 0.87 0.82
symresacks 0.91 0.93 0.92
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Numerical Experiments:
SONET

number of solved instances, default 50/50
prop sepa sepa+prob

orbisacks 50 50 50
symresacks 50 50 50

speed up of solution time

orbisacks 0.06 0.04 0.04
symresacks 0.06 0.04 0.04

reduction of nodes

orbisacks 0.04 0.02 0.02
symresacks 0.04 0.02 0.02
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Numerical Experiments:
Wagon Load Balancing

number of solved instances, default 2/120
prop sepa sepa+prob

orbisacks 2 2 2
symresacks 10 120 120

speed up of solution time

orbisacks 1.01 1.03 1.01
symresacks 1.00 0.02 0.02

reduction of nodes

orbisacks 1.00 1.04 1.00
symresacks 0.95 0.01 0.01
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Thank you for your attention!
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