
Mixed-Integer Optimization with
Ordinary Differential Equations

for Gas Networks

Vom Fachbereich Mathematik
der Technischen Universität Darmstadt

zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

genehmigte

Dissertation

von

Oliver Habeck, M. Sc.

aus Neustadt an der Aisch

Referent: Prof. Dr. Marc E. Pfetsch
Korreferent: Prof. Dr. Stefan Ulbrich
Tag der Einreichung: 8. Juli 2020
Tag der mündlichen Prüfung: 28. September 2020

Darmstadt 2020

D 17

Acknowledgments

During the past five years in which I have been working on this thesis I got to meet,
got to work with, got to know, and even got to become friends with several people.
Since all of this would not have been possible if not for the funding of the subpro-
ject A01 “Global Methods for Stationary Gas Transport” within the collaborative
research center “CRC/Transregio 154 Mathematical Modelling, Simulation and Op-
timization Using the Example of Gas Networks” (CRC 154) by the German Research
Foundation (Deutsche Forschungsgemeinschaft, DFG), I gratefully acknowledge the
financial support of the DFG.
First and foremost, I would like to thank my supervisor Prof. Marc E. Pfetsch

who hired me despite knowing how much programming would be involved and how
little programming experience – in particular no knowledge of the programming lan-
guage C – I had. He always gave me the opportunity to follow my own ideas and spent
many hours discussing ideas or problems with me – often about the implementation.
Even though we did not always agree on everything, I think that we did work well
together and I very much enjoyed working under his supervision.
Furthermore, I want to thank Prof. Stefan Ulbrich. Having finished my Master’s

thesis under his supervision he told me about project A01 and referred me to Marc
Pfetsch. Moreover, his ideas and advice was invaluable for the work in project A01
and for this thesis. In addition, I am also grateful that he accepted to act as a referee
for this thesis.
Besides, I would like to thank Prof. Robert Haller-Dintelmann and Prof. Jens

Lang for accepting to be part of the examination committee for my thesis.
Many, many thanks go to my current as well as former colleagues in the research

group optimization. I always appreciated the (most of the times) good working
atmosphere, our joint time in Kleinwalsertal, and the activities beyond work. Several
of my colleagues have contributed to this thesis in one or the other way. To begin
with, it was a pleasure working with Christopher Hojny. We have not only shared
countless tea and coffee breaks, but he also helped me a lot when I started using
SCIP. Since then we became friends, had plenty of very helpful discussions, and
finally he did proofread a part of my thesis. Furthermore, thanks goes to Frederic

iii

Matter for being such a great office mate and friend, proofreading parts of my thesis,
and providing many opportunities for “your mother” jokes. Further, thanks go to
Kristina Janzen, Andreas Schmitt, and Anna Walter, especially for proofreading
parts of my thesis.
I gratefully look back to travelling with my colleagues from CRC 154. We have had

a great time in Berlin, Bamberg, Erlangen, Nürnberg, and especially in Blankensee.
In particular, I enjoyed the time with Johann Schmitt who has always been there
when I needed someone to talk. Moreover, he ever so often entertained me and all
of our colleagues with his stories or shadowboxing.
Finally, I want like to thank Christine Herter. Having just started, when I was

almost into my last year of writing this thesis, she is by now one of the most impor-
tant persons in my life. During the last months she had to put up with me talking a
lot about my thesis, and gave me encouragement and moral support, in particular,
during some times in which I was quite nervous.

iv

Zusammenfassung

In der vorliegenden Arbeit entwickeln wir einen Spatial Branch-and-Bound Algorith-
mus zur globalen Lösung einer Klasse von gemischt-ganzzahligen nichtlinearen Opti-
mierungsproblemen, die gewöhnliche Differentialgleichungen als Nebenbedingungen
enthalten. Dazu treffen wir die Annahme, dass die Optimierungsprobleme dieser
Klasse nur von den Randwerten der Differentialgleichungen abhängen. Dadurch un-
terscheidet sich diese Klasse und auch unser darauf basierender Ansatz grundlegend
von anderen in der Literatur untersuchten Optimierungsproblemen und Methoden.
Dabei ist die besondere Struktur der Optimierungsprobleme motiviert durch die An-
wendung auf stationären Gastransport. Bei dieser Anwendung lässt sich der Gasfluss
auf Rohren durch gewöhnliche Differentialgleichungen beschreiben und es reicht den
jeweiligen Gasdruck an den Enden der Rohre zu wissen.
Um die für einen Branch-and-Bound Algorithmus notwendigen Relaxierung der

Differentialgleichungen zu konstruieren, untersuchen wir in Kapitel 2 zunächst ein
hinreichendes Kriterium, so dass numerische Einschrittverfahren zur Lösung von
parameterabhängigen skalaren Anfangswertproblemen untere oder obere Schranken
and die exakte Lösung liefern. Daraufhin betrachten wir drei Verfahren und spezi-
fizieren Bedingungen, so dass diese Verfahren untere oder obere Schranken liefern.
Zudem untersuchen wir hinreichende Bedingungen unter denen die durch die Verfah-
ren berechneten Approximationen der exakten Lösung konvex oder konkav von den
Anfangswerten und Parametern abhängen. Anschließend wenden wir diese Resulta-
te auf die stationären, isothermen Euler-Gleichungen an, welche in unserem Beispiel
stationärer Gastransport die Differentialgleichungen sind.
In Kapitel 3 leiten wir dann einen Spatial Branch-and-Bound Algorithmus für

unsere allgemeine Klasse von Optimierungsproblemen her. Dazu definieren wir zu-
erst eine Relaxierung der Differentialgleichungen basierend auf der Annahme, dass
wir (mithilfe von numerischen Verfahren wie oben beschrieben) untere und obere
Schranken an die exakten Lösungen der Differentialgleichungen berechnen können.
Aufgrund der Annahme, dass die Optimierungsprobleme nur von den Randwerten
der Differentialgleichungen abhängen, können wir die Relaxierungen so konstruieren,
dass diese nur implizit von den Diskretisierungen für die numerischen Einschrittver-

v

fahren abhängen, d.h. ohne dass wir zusätzliche Variablen für die Diskretisierungen
in das Modell aufnehmen müssen. Dies ermöglicht es uns während des Branch-and-
Bound Algorithmus die Diskretisierungen adaptiv zu verändern. Dadurch unterschei-
det sich unser Verfahren grundlegend von sogenannten first-discretize-then-optimize
Ansätzen und leidet nicht unter dem Nachteil, dass das Optimierungsproblem für
feinere Diskretisierungen immer größer wird.
Wir wenden diesen Algorithmus danach auf das Anwendungsbeispiel stationärer

Gastransport an. Dazu präsentieren wir zuerst Modelle für die verschiedenen Ele-
mente eines Gasnetzwerkes. Anschließend zeigen wir, wie wir lineare Relaxierungen
für den Gasfluss konstruieren können, und dass die notwendigen Voraussetzungen
für eine endliche Terminierung des Spatial Branch-and-Bound Algorithmus erfüllt
sind.
Im nächsten Kapitel untersuchen wir verschiedene kombinatorische Modelle mit

denen sich die Flussrichtungen von potentialbasierten Flüssen beschreiben lassen.
Die Besonderheit von potentialbasierten Flüssen, wie zum Beispiel von stationärem
Gas- oder Wasserfluss, ist, dass der Fluss notwendigerweise azyklisch ist, sofern der
Druck nicht durch Kompressoren oder Pumpen erhöht wird. Die hauptsächliche
Motivation zur Herleitung dieser kombinatorischen Modelle liefern dafür die langen
Laufzeiten unseres Algorithmus bei der Anwendung auf stationären Gastransport.
Am Ende von Kapitel 5 zeigen wir, dass wir mithilfe der kombinatorischen Mo-
delle die Optimierung von potentialbasierten Energienetzen deutlich beschleunigen
können. Dafür verwenden wir wiederum das Beispiel des stationären Gastransports.
Allerdings verwenden wir anstatt der Differentialgleichungen ein algebraisches Mo-
dell zur Beschreibung des Gasflusses.
In Kapitel 6 präsentieren wir Details unserer Implementierung des Spatial Branch-

and-Bound Algorithmus für das Modell mit Differentialgleichungen mit dem Branch-
and-Bound Framework SCIP. Danach zeigen wir, dass wir mit unserem Algorithmus,
mithilfe der kombinatorischen Modelle und zusätzlichen Techniken zur Verkleinerung
von Flussschranken, Optimierungsprobleme auch auf Gasnetzwerken realistischer
Größe erfolgreich und effizient lösen können.

vi

Abstract

This thesis deals with the development of a spatial branch-and-bound algorithm for
global optimization of a class of mixed integer nonlinear problems including ordinary
differential equation (ODE) constraints on an underlying network structure. The dis-
tinguishing feature of this class is that the ODE solutions only need to be known at
a finite number of points, that is, the junctions of the underlying network. Instead of
using a first-discretize-then-optimize approach, we show that we can compute lower
and upper bounds on the solutions of initial value problems by using appropriate
discretization methods. To construct relaxations of ODE constraints, we derive suf-
ficient conditions under which a discretization method yields a lower or an upper
bound and apply the result to specify the conditions for particular methods. Ex-
ploiting the underlying network structure, we use these methods to define under-
and overestimators of the ODE solutions. Moreover, we derive conditions that en-
sure the convexity or concavity of the obtained under- and overestimators. The
underlying network structure, enables us to incorporate the relaxations defined by
discretization methods into the mixed-integer optimization problem without intro-
ducing new variables for the discretization. This in turn makes it possible to use the
relaxations in a spatial branch-and-bound process which allows to adaptively refine
the discretizations. With this algorithm we can compute global ε-optimal solutions
or decide infeasibility for optimization problems of the class above. Furthermore,
we prove that this algorithm terminates finitely under some natural assumptions on
the under- and overestimators.
Then we apply our spatial branch-and-bound algorithm to the example of station-

ary gas transport to show that the approach works. To speed-up the optimization
process we introduce problem specific bound tightening methods based on the dis-
cretizations and moreover we investigate acyclic flows. To this end, we consider
potential-based flows which are a basic model to represent energy networks. In pas-
sive networks potential-based flows are necessarily acyclic. Based on binary variables
for flow directions, we introduce several combinatorial models for acyclic flows. We
study in particular one model that captures acyclicity together with the supply and
demand behavior of the network. We analyze properties of this model, including

vii

variable fixing rules and the complexity of linear optimization over the correspond-
ing polytope. Using this model we can solve optimization problems on a gas network
including almost 300 ODE constraints with a geometric mean time of about nine
minutes to prove optimality.

viii

Contents

Acknowledgments iii

Zusammenfassung v

Abstract vii

Contents xi

1 Introduction 1
1.1 The Physics of Gas Flow in Pipelines 3
1.2 Goals and Fundamental Ideas . 6
1.3 Outline of the Thesis . 9
1.4 Literature Review . 11
1.5 Scientific Contribution . 13

2 Bounding the Solutions of Ordinary Differential Equations 15
2.1 Literature Review . 16
2.2 Bounding Scalar ODEs . 18
2.3 Gas Flow in Pipelines without Height Differences 32
2.4 Gas Flow in Pipelines with Height Differences 40
2.5 Outlook . 47

3 Spatial Branch-and-Bound for ODE Constrained Problems 49
3.1 Literature Review . 51
3.2 Relaxation Hierarchy . 54
3.3 Basic Spatial Branch-and-Bound Approach 60
3.4 Adaptive Spatial Branch-and-Bound 64

4 Stationary Gas Transport 75
4.1 Literature Review . 75
4.2 Modeling Stationary Gas Networks 77

4.2.1 Pipelines . 79

ix

Contents

4.2.2 Short Cuts . 80
4.2.3 Valves . 80
4.2.4 Resistors . 81
4.2.5 Control Valves . 83
4.2.6 Compressor Stations . 85
4.2.7 Optimization Model for Stationary Gas Transport 88

4.3 LP-Relaxation for Gas Flow on Pipelines 89
4.3.1 Linear Underestimators 91
4.3.2 Linear Overestimators . 92
4.3.3 Relaxation Algorithm . 95

4.4 Spatial Branch-and-Bound Algorithm for Stationary Gas Transport 100
4.5 Possible Extensions to the Model 103

4.5.1 Nonconstant Friction Coefficient 104
4.5.2 Pipelines with Height Differences 105

4.6 First Numerical Results . 107

5 Combinatorial Models for Acyclic Flows 111
5.1 Literature Review . 113
5.2 Potential-based Flows . 114
5.3 Combinatorial Models for Acyclic Flows 116

5.3.1 Relations among Combinatorial Models 121
5.3.2 Acyclic Subgraphs and Computational Complexity 124
5.3.3 Acyclic Subgraphs with Sources and Sinks 127
5.3.4 Analysis of Acyclic Subgraphs with Sources and Sinks . . 129
5.3.5 Analysis of the Single Source and Sink Case 134

5.4 Numerical Results . 138
5.4.1 Model Integration of Flow Direction Variables 139
5.4.2 Results . 141

6 Implementation and Numerical Results 147
6.1 Model Implementation with SCIP 148

6.1.1 Linear Resistors . 149
6.1.2 Nonlinear Resistors . 150
6.1.3 Pipelines with Potential-Based Flow Model 151
6.1.4 Pipelines with ODE Model 152

6.2 Bound Tightening Techniques . 155
6.2.1 Pressure Bounds . 155
6.2.2 Flow Bounds . 157

6.3 Computational Experiments . 159
6.3.1 Numerical Issues . 163

x

Contents

6.3.2 Influence of the Objective Function 166
6.3.3 Influence of the Compressor Model 168
6.3.4 Comprehensive Performance Tests 170

7 Conclusion and Outlook 177

Bibliography 181

List of Algorithms xiii

List of Figures xv

List of Tables xvii

xi

CHA PTER 1
Introduction

This thesis deals with the development of a new method for global optimization of
mixed-integer nonlinear problems including ordinary differential equations (ODEs).
The source of both motivation and inspiration for the particular structure of the
investigated problems as well as the methods and algorithmics is the application on
stationary gas transport. This is the ever-present application in this thesis, since
the thesis originated from the subproject A01 “Global Methods for Stationary Gas
Transport” within the collaborative research center “CRC/Transregio 154 Mathemat-
ical Modelling, Simulation and Optimization Using the Example of Gas Networks”
(CRC 154) funded by the German Research Foundation (Deutsche Forschungsge-
meinschaft, DFG).

In 2014 the DFG decided to fund the CRC 154 which was proposed by re-
searchers from the universities Friedrich-Alexander-Universität Erlangen-Nürnberg,
Humboldt-Universität zu Berlin, Technische Universität Darmstadt, and Univer-
sität Duisburg-Essen and the research institutes Weierstraß-Institut für Angewandte
Analysis und Stochastik Berlin, and Zuse Institute Berlin. Moreover, in 2018 the
DFG extended the funding for additional four years. In the broader sense, these
decisions have been made since (energy efficient) gas transport became of particu-
lar interest to the general public and is a relevant application for different parts of
(applied) mathematics.

In 2011 the nuclear disaster in Fukushima triggered the energy turnaround in
Germany. As a part of that eight nuclear power plants were decommissioned and
the total nuclear power phase-out by the end of the year 2022 was decided. In the
transition period, until enough renewable and sustainable energy can be produced to
completely replace nuclear and fossil fuel driven power production, gas is considered
to play an important role. In the medium term there are sufficient gas resources, the

1

Chapter 1. Introduction

transport is quite safe, and gas cannot only be used to generate power but for heating,
too. Furthermore, since gas driven power plants are able to start up and shut down
quickly, they are better suited to react on power and demand fluctuations in the
energy network to ensure a stable and sufficient energy supply than, for example,
coal-fired power plants. Such power fluctuations may for example be caused by rapid
weather changes which directly impact the production of renewable energy through
wind or solar power plants. Moreover, the gas network itself can be used as an energy
storage by inserting additional gas. To this end, not only natural gas can be injected
but also green hydrogen which can be produced if there is a surplus of renewable
energy. The importance of green hydrogen has been emphasized by the recently made
public national hydrogen strategy of the German government [14]. Furthermore,
in the long run gas networks can eventually be repurposed to transport hydrogen
instead of natural gas; see [150]. Note that the production of green hydrogen is
not a scenario far-off in the future. The Dutch gas transport company Gasunie [42],
which operates a gas network in the Netherlands and northern Germany, has opened
the first one megawatt green hydrogen plant called “HyStock” near Groningen in
June 2019. Hence, gas transmission system operators face new challenges, all the
while safe, reliable and energy efficient gas transport is desired. However, the daily
operation and long-term planning of gas networks is still very strong oriented on
experience and simulation tools.

With the different levels of detail of physical models for the gas flow stationary as
well as instationary gas transport is an interesting application from a mathematical
point of view. Gas transport posed many challenges and open questions for dif-
ferent parts and communities of (applied) mathematics back in 2014 and still does
in 2020; for example, see Hante et al. [58]. Within the CRC 154 different ques-
tions have been and are addressed. These questions range from the development
of new techniques for robust or stochastic optimization with algebraic models, over
the existence of solutions for and the global optimization with ordinary differential
equations, to finding appropriate coupling or optimality conditions and developing
large-scale simulation methods for high detailed models involving hyperbolic partial
differential equations. Moreover, the developed models and methods are typically
not only applicable to the specific application of gas transport but to a broader class
of problems and energy networks. Furthermore, also the modeling and analysis of
gas markets with detailed models of the gas flow is of particular interest in the field
of economics.

Due to its public and mathematical relevance the DFG decided to accept the re-
search proposal for the CRC 154 including the subproject A01. With its goal to
develop methods for global optimization of stationary gas transport the research
proposal of subproject A01 is the starting point of this thesis. Since the application

2

1.1. The Physics of Gas Flow in Pipelines

on stationary gas transport will be used throughout this thesis, we start by intro-
ducing the particular ordinary differential equation, which we use to describe the gas
flow in a pipeline, and the modeling choices under which this differential equation
is derived.

1.1 The Physics of Gas Flow in Pipelines

In the context of gas transport optimization or simulation, gas flow through pipelines
is usually described by the one-dimensional Euler equations or a model derived
from them through simplifications. The Euler equations themselves are a system of
nonlinear hyperbolic partial differential equations (PDEs), which are derived from
the Navier-Stokes equations; see Feistauer [36]. The Euler equations for a single
pipeline consist of the continuity equation, the momentum equation, and the energy
equation

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(p+ ρv2) = − λ

2D
ρv|v| − gρσ,

∂t
(
ρ(1

2v
2 + e)

)
+ ∂x

(
ρv(1

2v
2 + e) + pv

)
= −kw

D
(T − Tw) ,

(1.1)

together with appropriate initial and boundary data. In these constraints the un-
knowns are the density ρ(x, t) ∈ R≥0 in kg/m3, the velocity v(x, t) ∈ R in direc-
tion of the pipeline in m/s, the pressure p(x, t) ∈ R>0 in Pa, and the tempera-
ture T (x, t) ∈ R>0 of the gas in K. Moreover, e(x, t) = cV T (x, t) + g h(x) denotes
the internal energy as the sum of thermal and potential energy. The parameters are
the friction coefficient λ, the diameter D of the pipeline in m, the slope σ ∈ [−1, 1] of
the pipeline, the height h(x) of the pipeline in m, the specific heat capacity cV of the
gas in J/(kg K), the heat transfer coefficient kw between the gas and the pipelines
wall in J/(s m2 K), and the temperature of the pipelines wall Tw(x, t) ∈ R>0 in K.
Furthermore, g denotes the gravitational acceleration in m/s2, e.g., the standard
gravitational acceleration of 9.806 65 m/s2.

The Euler equations with its four unknowns and three equations are completed
by the thermodynamical standard equation for real gases

p = ρRs T z (1.2)

with the specific gas constant Rs in J/(kg K) and the compressibility factor z of the
gas.

3

Chapter 1. Introduction

Before we derive our model from the equations (1.1) and (1.2), note that these
already contain some modeling choices, which we will keep throughout this thesis.
First of all, they are formulated for a single composition of gas and not for a mixture
of several gas types, i.e., we assume that the gas in the network and the inflow at
the entries does not vary in calorific value, molar mass, norm density, and so forth.
We assume that the slope σ is constant along a pipeline. Furthermore, there are
several approximations and (empirical) formulas for the friction coefficient and the
compressibility factor known in the literature. We use the formula of Nikuradse [106,
107]

λ =
(

2 log10

(D
κ

)
+ 1.138

)−2

(1.3)

to determine the friction coefficient. Here, κ denotes the integral roughness in m of
the pipelines inner surface. Later, in Section 4.5 we will discuss how to incorporate
flow dependent formulas for the friction coefficient into our algorithmic framework.
To compute the compressibility factor, we use the formula of the American Gas
Association (AGA)

z(p, T) = 1 + 0.257
p

pc
− 0.533

p

pc

Tc
T

(1.4)

see Králik et al. [84]. Here, pc and Tc denote the pseudocritical pressure and pseud-
ocritical temperature of the gas.

In order to derive the model we will use throughout this thesis, we make the
following two major assumptions.

1. We consider stationary gas transport, i.e., changes over time are neglected.

2. We consider the isothermal case, i.e., we assume the gas has a constant mean
temperature Tm.

We use these assumptions for the following reasons. The planning of gas transport
and the operation of a gas network includes various time scales, which is also reflected
in the contracts for gas transportation. In Germany, there are long-term contracts
over weeks or even years, but also short-term contracts where customers can buy the
right to inject or withdraw gas the day before it actually happens. Furthermore, the
transmission system operators have to react on fluctuations in consumption or supply
during the day; for an overview on gas markets and rules in Germany see Chapter 3
in Koch et al. [82]. In long-term planning, it is a common assumption to consider
stationary gas transport, for instance, since the exact state of the network, demands,
supply, and weather conditions are not known. The second assumption of constant
gas temperature is also very common, especially in long-term planning, when only
statistical data on temperature is available. Furthermore, in Germany gas pipelines
are often under ground, which additionally reduces temperature fluctuations of the
surroundings.

4

1.1. The Physics of Gas Flow in Pipelines

For (1.1) these two assumptions imply dropping the time derivatives and the
energy equation. Then the equations read

∂x(ρv) = 0,

∂x(p+ ρv2) = − λ

2D
ρv|v| − gρσ.

(1.5)

To rewrite these equations in terms of pressure p and mass flow q in kg/s instead
of p, ρ, and v, we use the formula q = Aρv for mass flow in cylindrical pipelines
with cross-sectional area A and assume a constant compressibility factor zm. To
this end we define zm := z(pm, Tm) using a mean pressure value pm. With the lower
and upper pressure bounds pl, pl and pr, pr on the left and right boundary of the
pipeline, which are given in our test data (see Section 6.3), we use the formula

pm :=
1

2
max{pl, pr}+

1

2
min{pl, pr} (1.6)

for pm as suggested by Geißler et al. [45].

As a consequence of the constant compressibility factor, the speed of sound c in
m/s in the gas is also constant. In general, the speed of sound is given by c =

√
∂ρp,

but by using the equation of state (1.2) with constant compressibility factor zm, we
deduce that c =

√
RsTmzm =

√
ρ−1p. With that, we can express (1.5) in terms of p

and q by

∂xq = 0,

∂x

(
p+

c2q2

A2p

)
= − λc2

2DA2

q|q|
p
− g

c2
σ p.

(1.7)

The continuity equation reduces to the mass flow q being constant and thus in the
stationary isothermal setting the former hyperbolic PDE system turns into a scalar
ordinary differential equation of the form

∂xp

(
1− c2q2

A2p2

)
= − λ c2

2DA2

q|q|
p
− g

c2
σ p. (1.8)

Note that the fraction c2q2

A2p2 is equal to
(
v
c

)2. Since the gas typically travels with a
velocity which is much smaller compared to the speed of sound, this term is often
neglected; see Osiadacz [108]. In fact, neglecting this term is used to derive the
Weymouth equation, which is, according to Ríos-Mercado and Borraz-Sánchez [114],
“most-widely used to model flow capacities.” For σ = 0 the Weymouth equation is

5

Chapter 1. Introduction

given by

p(0)2 − p(L)2 =

(
4

π

)2
L

D5
λ c2 q|q|, (1.9)

where L is the length of the pipe in m and p(0), p(L) are the pressure values at
both ends of the pipe. For a derivation of this equation see, for example, Koch et
al. [82]. We will use this algebraic model for the computational results in Chapter 5,
but the most parts of this thesis deal with global optimization of ODE constraint
optimization problems. Therefore, we consider a more detailed ODE model instead
and assume that |v|c ≤ νc holds for a constant νc ∈ (0, 1). Then solving equation (1.8)
for ∂xp yields

∂xp = −1

2

λ c2 q|q| p
D(A2p2 − c2q2)

− gσA2p3

c2(A2p2 − c2q2)
. (1.10)

Throughout this thesis we will denote the right-hand side with ϕσ. Finally, the ODE
we use to describe the gas flow through a pipeline is

∂xp(x) = ϕσ
(
p(x), q

)
:= −1

2

p(x)

c2D

λc4q|q|+ 2DgσA2p(x)2

A2p(x)2 − c2q2
, x ∈ [0, L]. (1.11)

Since we will often consider the case without height differences (first), i.e., σ = 0,
we use the shorthand notation ϕ = ϕ0.

1.2 Goals and Fundamental Ideas

The main goal formulated in the proposal of project A01 and also of this thesis is the
development of a global optimization method for problems constrained by ODEs such
as the stationary isothermal Euler equation (1.8). A very natural approach for solv-
ing ODE or PDE constrained optimization problems is to discretize the differential
equations and then solve the resulting mixed-integer nonlinear program (MINLP)
with a fixed discretization to global optimality, e.g., by spatial branch-and-bound
which is a standard method for global optimization. However, this only yields so-
lutions with an a priori fixed accuracy and this does not define a relaxation of the
original problem, i.e., exact solutions of the ODEs or PDEs typically are infeasible
for the discretized MINLP. To overcome the former problem, one can perform an
a posteriori accuracy check and, if it fails, refine the discretization and solve the
adjusted MINLP again. A problem with this approach is that the MINLPs become
very large for fine discretizations. Moreover, in general we cannot expect conver-
gence of the solutions even if the discretization step sizes tend to 0; Hante and
Schmidt [60] provide sufficient conditions for the convergence of the optimal value
of ODE constrained problems.

6

1.2. Goals and Fundamental Ideas

Our goal is to develop a method which combines adaptive discretization with spa-
tial branch-and-bound in a single algorithm, i.e., without repeatedly solving MINLPs
by spatial branch-and-bound. To define relaxations of the ODE constraints which
are necessary for spatial branch-and-bound the following idea has been sketched
in the original proposal of subproject A01. Discretizing the differential equations,
here (1.7), results in a nonlinear equality system, for example,

pi − pi−1

xi − xi−1
+
c2 q2

A2

(
p−1
i − p

−1
i−1

xi − xi−1

)
+

λc2

2DA2
q|q| 1

pi
+

g

c2
σ pi = 0 ∀i ∈ [N],

where we have 0 = x0 < x1 < · · · < xN = L and [N] := {1, . . . , N} for N ∈ N. Then,
if we can derive appropriate error estimates for the error produced by discretization,
we can turn this equality system into an inequality system by adding and subtracting
the error estimator. Thus, for a fixed discretization this yields a relaxation of the
original problem which can be solved by state-of-the-art MINLP solver. However,
to control the quality of the relaxation, the discretization has to be refined.

Consider a general one-step method for solving initial value problems, i.e., a dis-
cretization method which can be formulated as

p0 = p(0), pi = pi−1 + hi ϕh
(
xi−1, hi, q, pi−1, pi

)
∀i ∈ [N] (1.12)

with increment function ϕh and hi = xi − xi−1 for i ∈ [N]. A naive idea is to
use the local discretization error as error estimator for such methods. The local
discretization error for a one-step method such as (1.12) is

τ(x, h) = p(x+ h)− p(x)− hϕh
(
x, h, q, p(x), p(x+ h)

)
,

i.e., the error produced by performing one discretization step. Then, if we can derive
a bound on the local discretization error, |τ(x, h)| ≤ ξ, as tight as possible, we can
simply add ±ξ to the iteration rule of the one-step method, that is, we get the
inequality system

pi−1 + hi ϕh
(
xi−1, hi, q, pi−1)− ξ ≤ pi ≤ pi−1 + hi ϕh

(
xi−1, hi, q, pi−1) + ξ

for i ∈ [N] and the the exact solution of the ODE would define a feasible solution
through pi = p(xi) for i ∈ [N]. But the problem with this is that due to adding±ξ for
every step the feasible set for pi grows funnel-like in i. Since the local discretization
error usually decreases for step sizes hi → 0, we can control the error of the relaxation
by refining the discretization. However, this requires that we introduce additional
variables in the optimization model. To the best of our knowledge it is still an open

7

Chapter 1. Introduction

question whether and how this can be done in a single spatial branch-and-bound
algorithm, i.e., without having the restart spatial branch-and-bound.

Our fundamental ideas on how to overcome these problems are based on the
observation that our optimization problem (which we will introduce in Chapter 4)
only depends on the boundary values of the ODE (1.11). That is, for every pipeline
we have constraints of the form

∂xp(x) = ϕσ
(
p(x), q

)
, x ∈ [0, L],

pu = p(0), pv = p(L),
(1.13)

where pu and pv are variables which represent the pressure levels at both ends of the
pipelines. Other than that our model is an MINLP, which does not depend on the
solution of the differential equations. Thus, if we would have an algebraic formula
for the analytical solution of (1.11), then we could replace the ODE constraints by
the solution operator P (pu, q) = pv which maps initial value p(0) = pu and mass
flow q to the solution at the boundary p(L) = pv. Note that there actually exist
analytical solutions of (1.11), however, evaluating them requires numerical evalua-
tion for example by Newton’s method and hence they are not suited for the use in
standard spatial branch-and-bound approaches; see Gugat et al. [54]. Nevertheless,
if we can define an appropriate relaxation R of the feasible set

F :=
{

(pu, pv, q) ∈
[
pu, pu

]
×
[
pv, pv

]
×
[
q, q
]

: (pu, pv, q) satisfy (1.13)
}

defined by the ODE constraints (1.13), then we could still replace the ODE con-
straints by the relaxation R.

Our main idea to define a suitable relaxation R is the following. Instead of us-
ing the local discretization error to relax the discretization, suppose that we can
prove that a numerical one-step method (1.12) actually produces a lower or an up-
per bound on the analytical solution, that is, we are able to prove that either the
inequality pN ≤ p(L) or pN ≥ p(L) holds. In the case that we can find two methods
such that one produces a lower bound and one produces a upper bound, we can
use this in a spatial branch-and-bound approach as follows. In every node of the
branch-and-bound tree, we solve a convex or linear relaxation of the original prob-
lem. If this relaxation is feasible, then we check for each pipeline if the corresponding
solution is close to the exact solution. Therefor, we evaluate the two methods with
the mass flow and one pressure value in the solution. If the difference of the lower
and upper bound satisfies a given tolerance and the other pressure value is within
the range of the lower and upper bound, we say that the solution is approximatively
feasible (δ-feasible). If the difference does not satisfy the a priori tolerance and both
methods are convergent, we refine the discretization and recompute the lower and

8

1.3. Outline of the Thesis

upper bounds until the tolerance holds. Moreover, if the solution is not approxi-
matively feasible, the hope is that we can cut the solution off based on information
given by the evaluation of the two one-step methods.
Note that in this idea the discretization is only implicitly used to check feasibility

of solutions and to separate infeasible solutions, that is, the optimization problem
does not include variables to explicitly represent the discretization. Nevertheless,
finer discretizations still yield tighter bounds. Hence, this enables us to adaptively
change the discretization to compute solutions with the desired accuracy.

1.3 Outline of the Thesis

The structure of this thesis partially follows the fundamental ideas presented in the
previous section. In Chapter 2 we investigate numerical methods which produce
lower or upper bounds for the solution of initial value problems. To this end, we
first provide sufficient conditions under which one-step methods produce lower and
upper bounds for scalar ODEs. Then we apply this result to three particular one-
step methods and specify the conditions such that these particular methods produce
lower or upper bounds. Moreover, we study the properties of the corresponding
input-output functions, i.e., the functions which map the initial values and parameter
to the approximation at the second boundary. For the example above, the input-
output function is the function (p0, q) 7→ pN . Then in Sections 2.3 and 2.4, we apply
the results to stationary gas transport, that is, the ODE (1.11). First we consider
only horizontal pipelines, i.e., the case σ = 0, and afterwards extend the results to
the general case. In Section 2.5, we present a result which extends the sufficient
conditions from scalar ODEs to ODE systems and discuss an idea how to combine
different one-step methods to compute lower and upper bounds if these methods
only produce bounds for specific parts of the ODE solution.
In Chapter 3, we introduce a particular class of mixed-integer nonlinear opti-

mization problems containing ODE constraints motivated by the structure of the
stationary gas transport problem and develop a general spatial branch-and-bound
framework to compute δ-feasible solutions for such problems. Therefor, we first re-
formulate and define a relaxation of this problem class in Section 3.2 based on the
assumption that under- and overestimators for the analytical solution of the differ-
ential equations exists. Then we show how δ-feasible solutions of the relaxation and
the reformulation and thus the original problem as well are related. This gives rise
to two approaches similar to first-discretize-then-optimize, i.e., either use a fine dis-
cretization and solve the resulting problem once or iteratively solve an MINLP, check
differences of lower and upper bounds in the solution, and refine the discretization
if necessary. We show that both approaches work under mild assumptions in Sec-

9

Chapter 1. Introduction

tion 3.3. However, we show that the idea presented above to combine the feasibility
check and refining the discretization in a single spatial branch-and-bound tree yields
a finitely terminating spatial branch-and-bound algorithm in Section 3.4.

We apply this framework to the example of stationary gas transport in Chapter 4.
There we introduce the models for different network elements first. Based on the
results from Section 2.3, we show how we can derive a linear relaxation of the gas
flow on pipelines without height differences via the explicit midpoint method and
the implicit trapezoidal rule in Section 4.3. Then we prove that this particular re-
laxation satisfies the necessary requirements such that the spatial branch-and-bound
framework terminates finitely. Afterwards, in Section 4.5, we show how to extend
this approach such that we can also use models with a nonconstant friction coeffi-
cient (see (1.3)) and handle pipelines with height differences. Finally in Section 4.6,
we present first numerical results for global optimization on a small gas network.

Motivated by the numerical results and the observation that in our stationary
setting gas cannot flow in cycles (unless pressure is increased in compressor stations),
we develop and investigate combinatorial models for acyclic flows in Chapter 5.
Since not only stationary gas flow is acyclic but more generally so-called potential-
based flows are acyclic, we investigate potential-based flows there. To this end, we
introduce binary variables which are coupled with the flow variables and represent
the flow directions. Moreover, we introduce a nested sequence of polytopes which
provide combinatorial models for the flow directions in Section 5.3. Thereby, these
polytopes relax more and more of the nonlinear constraints of potential-based flows.
Subsequently, we study their relation and investigate the complexity of optimizing
over a polytope which is solely based on the flow direction variables. In Section 5.3.3,
we then introduce our main combinatorial model, exploiting both acyclicity and the
fact that one needs to connect sources and sinks. To see that this model provides
a good compromise between the nonlinear model and the so-called acyclic subgraph
polytope, the particular model is investigated in Sections 5.3.4 and 5.3.5 in more
detail. Then in Section 5.4, we use this model for optimization of a stationary gas
transport problem with the potential-based flow model instead of the ODE model.
We demonstrate that this approach leads to an improvement of the total geometric
mean solving time by about a factor of 3, a factor of about 5 in the geometric mean
time to prove optimality, and a significant speed-up for the total computational time
with a factor of 7.

In Chapter 6 we present the implementation and numerical results of our spa-
tial branch-and-bound algorithm for the ODE constrained stationary gas transport
model. We discuss problem specific bound tightening methods based on the lower
and upper bounds derived by the explicit midpoint method and trapezoidal rule, and
a variant of optimality based bound tightening in Section 6.2. Then in Section 6.3

10

1.4. Literature Review

we present the computational setting and test data. We discuss some numerical
problems we are facing and investigate the influence of the objective function and
compressor station model on the computational performance and the results. In the
end of Chapter 6 we present a comprehensive computational study of the effect of
our bound tightening techniques and the combinatorial model for handling acyclic
flows. We show that these significantly improve the performance of our algorithm
such that we can efficiently solve optimization problems on a gas network of realistic
size.
Finally, we end this thesis with a conclusion and an outlook in Chapter 7.

1.4 Literature Review

In the following, we summarize some literature related to our goal of developing
a spatial branch-and-bound algorithm for solving ODE constrained optimization
problems, the application of stationary gas transport and potential-based flows. We
remark that Chapters 2 to 5 contain more detailed literature reviews specifically
dealing with the topics addressed in these chapters.
Spatial branch-and-bound is a standard method for global optimization of (non-

convex) MINLPs and is typically used by state-of-the-art solvers for such problems;
for example, see Horst and Tuy [73], and Kılınç and Sahinidis [79]. Moreover, spatial
branch-and-bound is often used within first-discretize-then-optimize approaches for
ODE or PDE constrained problems, that is, after discretizing the original problem
spatial branch-and-bound is applied to solve the resulting MINLP to global opti-
mality; see, e.g., Gerdts [46]. However, the solutions only provide an approximation
of the exact solutions with respect to an a priori fixed accuracy. For the case of
ODE constrained problems including integer variables Hante and Schmidt [60] pro-
vide sufficient conditions such that at least the optimal values converge to the exact
optimal value, if the discretizations are iteratively refined and the resulting MINLPs
solved again. The drawback of first-discretize-then-optimize approaches is that the
MINLPs become very large for high precision and thus harder to solve.
During spatial branch-and-bound convex or linear relaxations of the original prob-

lem are solved on increasingly smaller parts of the feasible set. To this end, there
exist various convexification techniques; for example, see McCormick [99], Adjiman
and coworkers [3, 4], or Sherali and coworkers [137, 138, 139]. To derive relaxations
of ordinary differential equations (over time) there exist two major approaches called
time-discretization techniques and continuous-time enclosure techniques. The basic
idea of the first approach is based on discretizing the ODEs and then relaxing the
result; see, for example, Nedialkov et al. [104], Neher et al. [105], or Sahlodin and
Chachuat [124, 125]. The main idea of continuous-time enclosure techniques is to

11

Chapter 1. Introduction

construct an auxiliary ODE system such that its solutions provide lower and upper
bounds; for example, see Singer and Barton [140], Scott and Barton [134], or Har-
wood and Barton [63]. Moreover, these methods can be used for global optimization
of dynamic systems, e.g., see Chachuat et al. [21, 22] or Lin and Stadtherr [91],
however, they do not fit in with our ideas presented in Section 1.2. In the time-
discretization approaches the solved problems explicitly depend on the discretiza-
tion and in the continuous-time enclosure approaches the auxiliary ODE systems
still have to be solved with arbitrary precision. Furthermore, Bajaj and Hasan [6]
present a deterministic global optimization algorithm for dynamical systems by con-
structing edge-concave underestimators for functions depending on ODE solutions.
Thereby, Bajaj and Hasan extend the work by Hasan [64].

The problem class which we consider in Chapter 3 is related to mixed-integer
optimal control problems with ODEs as well as PDEs. A starting point for literature
on optimal control with ODEs see the following list. Sager et al. [120] developed a
convexification method to handle discrete decisions over time that switch the right-
hand sides of ODEs and show how to efficiently compute feasible solutions. This
method has been further investigated and extended in a series of articles by Sager
and coworkers [119, 121], Jung et al. [76], Zeile and coworkers [122, 156, 157], and
Kirches et al. [80].

For a starting point on literature on optimal control including PDE constraints
see, for example, Hinze et al. [70] and the following articles. Buchheim et al. [17]
present a global approach for solving particular semilinear elliptic mixed-integer
PDE problems with distributed and boundary control using outer-approximation.
Moreover, the convexification method by Sager et al. [120] has been extended to
PDE constrained problems by Hante and Sager [59], Göttlich et al. [48], Hahn et
al. [57], and Manns and Kirches [95].

Throughout this thesis, we will use the application on stationary gas transport as
example. We refer to Koch et al. [82] and Ríos-Mercado and Borraz-Sánchez [114] for
general information on modeling and solution methods for gas transport problems.
Moreover, Hante et al. [58] present challenges and open problems for gas and fluid
flow in networks. Furthermore, the articles by Gugat et al. [53] and Schmidt et
al. [128] propose two approaches for solving ODE constraint optimization problems,
too. Since they are applied to a stationary gas transport problem similar to ours
they will be discussed in more detail in Chapter 4.

In Chapter 5, we investigate combinatorial models for acyclic flows which can
be used to speed-up the optimization of potential-based flows. There, we exploit
that potential-based flows are necessarily acyclic. For an overview on potential-
based flows see Hendrickson and Janson [67]. Furthermore, an important exis-
tence and uniqueness result for potential-based flows can be found in the articles

12

1.5. Scientific Contribution

by Maugis [98], Collins et al. [26], and Ríos-Mercado et al. [115]. Acyclic flows are
also studied by Becker and Hiller in the articles [7, 8, 9, 68], however, by a different
approach than ours. We discuss the differences in Section 5.1.

We remark that Chapters 2 and 3 and parts of Chapter 4 are based on the results
presented in the article [56] which is joint work with Marc E. Pfetsch and Stefan
Ulbrich. Moreover, Chapter 5 has been published online in similar form in the
article [55] which is joint work with Marc E. Pfetsch, too. Furthermore, this article
is submitted for publication in an international journal.

1.5 Scientific Contribution

The main scientific contribution of this thesis is the development of a spatial branch-
and-bound algorithm for global optimization of a particular class of ODE constrained
optimization problems in Chapter 3. Due to the assumption of an underlying net-
work structure, i.e., the ODEs have to hold on arcs and are coupled to the opti-
mization problem only through parameters and boundary values, this class of op-
timization problems is distinct from other approaches for mixed integer optimal
control which often deal with integer decisions over time, for example, optimal gear
shifting. Our algorithm is based on standard methods from numerical analysis and
integer as well as nonlinear optimization, that is, one-step methods for solving ini-
tial value problems and spatial branch-and-bound for global optimization of mixed-
integer nonlinear problems, however, they are combined in a novel way. The main
mathematical challenge is the construction of relaxations for ODE constraints and
their integration into spatial branch-and-bound. To this end, we define relaxations
of ODE constraints implicitly based on one-step methods for which we prove in
Chapter 2 that they produce lower and upper bounds on the solutions of initial
value problems and that their corresponding input-output functions are convex or
concave. The particular construction of the relaxations enables us to use adaptive
discretizations of ODEs within a single spatial branch-and-bound tree. To the best
of our knowledge neither have these specific properties of the input-output func-
tions been investigated before nor exists another algorithm which combines spatial
branch-and-bound and adaptive discretization of ODEs.

In Chapter 5, we develop and investigate combinatorial models for acyclic flows.
Therefore, we study different polytopes which provide such combinatorial models
and investigate the complexity of optimizing over some of them. We show that the
models can be used to significantly speed-up global optimization of potential-based
flows. Our computational results for the example of stationary gas transport (with
the potential-based flow model) show a speed-up factor of about 5 in the geometric

13

Chapter 1. Introduction

mean time to prove optimality and even a speed-up factor of about 7 in the total
running time.
Combining our spatial branch-and-bound algorithm for ODE constrained prob-

lems with the combinatorial models for acyclic flows and problem specific bound
tightening techniques yields a fast solver for global optimization of stationary gas
transport problems with a more detailed model than usually considered in the liter-
ature; see Chapters 4 and 6. We have put a lot of effort into the implementation of
the algorithm and the additional techniques with the branch-and-bound framework
SCIP. As a consequence, we can solve optimization problems on a gas network with
582 nodes and almost 300 pipelines, i.e., ODE constraints, with a geometric mean
time of about 9 minutes to prove optimality and less than 100 seconds to prove
infeasibility. The same network has been used to present other global optimization
approaches on the example of stationary gas transport, too, however, they use an
algebraic potential-based flow model instead of the more complex ODE model we
use; for example, see Pfetsch et al. [111], Koch et al. [82], or Burlacu et al. [20].

14

CHA PTER 2
Bounding the Solutions of

Ordinary Differential Equations

In the introduction, we presented an idea how to use numerical one-step methods
to define relaxations for ordinary differential equation constraints of optimization
problems. To concretize this idea consider constraints

∂sy(s) = f(s, x, y(s)), s ∈ [0, S],

y(0) = y0, y(S) = yS ,

x ∈ X, y0 ∈ Y 0, yS ∈ Y S ,
(2.1)

given by a parameter-dependent differential equation with continuously differen-
tiable right-hand side f , parameters x and solution y(s), which is coupled with
variables y0 and yS . Let X ⊂ Rk and Y 0, Y S ⊂ Rn be bounded and convex. Our
working assumption is that the differential equation is only coupled to the remain-
ing constraints of the optimization problem by these constraints, i.e., the rest of the
problem only depends on the variables x, y0 and yS , but not on the solution y(s)

for s ∈ (0, S).
Suppose that the ODE admits an analytical solution and let F : X × Y 0 → Y S

be an algebraic function which describes the relation between parameters x, initial
values y(0) and end values y(S), i.e., F (x, y(0)) = y(S). Then, for example, if F can
be decomposed in an expression tree (see, e.g., Smith and Pantelides [144]), we can
replace the ODE constraint above by F (x, y0) = yS and solve the resulting MINLP
by standard techniques.
Our idea comes into play, if no such function F exists or it cannot be treated

by standard techniques; e.g., see Gugat et al. [54] who show that an analytical

15

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

solution of (1.11) exists but it has to be evaluated numerically, for example, by
Newton’s method. If we can find two one-step methods which provably yield a lower,
respectively, an upper bound on the exact solution y(s), then the corresponding
input-output functions F ` and Fu, i.e., the functions which map parameters and
initial value to the computed approximation of y(S), satisfy F ` ≤ F ≤ Fu. Hence,
we could use these functions to define a relaxation of the ODE constraint via

F `(x, y0, N) ≤ yS ≤ Fu(x, y0, N),

where N denotes the number of grid points in the discretization,
To investigate this idea the chapter is structured as follows. We start with a

literature review of existing approaches to enclose the solution of ODEs. Then,
in Section 2.2 we study one-step methods for scalar initial value problems. After
providing a sufficient criterion such that one-step methods produce lower or upper
bounds, we apply this result to three particular one-step methods. Moreover, we
characterize conditions under which the corresponding input-output functions are
convex or concave. We show that these methods can be used to compute lower
and upper bounds on the gas flow in horizontal pipes in Section 2.3 and extend the
results to nonzero slope in Section 2.4. Finally, in Section 2.5 we discuss how to
perform bound propagation if the properties of the ODE solution are not favorable
and discuss the extension to ODE systems.
We point out that the results presented in this chapter are a revised and ex-

tended version of results that were already published in [56] which is joint work with
Marc E. Pfetsch and Stefan Ulbrich. Section 2.2 is extended by further remarks,
in particular, Remark 2.8, which discusses the convergence of the considered meth-
ods. Note that the convergence of the particular methods will be important for the
spatial branch-and-bound algorithm which we develop in Chapter 3. Furthermore,
the results in Sections 2.3 and 2.4 have been generalized.

2.1 Literature Review

Generating tight enclosures for solutions of ordinary differential equations is of great
interest for global optimization of dynamic systems; see, for example, Chachuat
et al. [21, 22] or Lin and Stadtherr [91]. In the literature there are two major
approaches to compute such enclosures for parametric initial value problems, namely
time-discretization techniques and continuous-time enclosure techniques.
The basic idea of time-discretization techniques is similar, though more sophis-

ticated, to the idea of using the local discretization error to derive bounds on the
ODE solution, which was sketched in Section 1.2. After discretizing the differential

16

2.1. Literature Review

equation, these methods (try to) compute tight bounds on the approximation error.
Several publications about this topic are based on the work of Moore [103], who
used interval analysis to test if a solution of an ODE exists and is unique over a
finite time step. Nedialkov et al. [104] review such methods using interval arith-
metic. Other methods based on Taylor models (often) in combination with interval
arithmetic for parametric ODEs have been developed by Neher et al. [105], Lin and
coworkers [90, 92], Sahlodin and Chachuat [124, 125], and Houska et al. [74, 75].

Although the basic idea of these approaches, i.e., to derive tight bounds on the
discretization error, is similar to our investigation, it has to the best of our knowledge
not been studied before if specific methods already produce lower or upper bounds.

The class of continuous-time enclosure techniques is based on results for differential
inequalities; see Walter [153]. Using these results auxiliary ODE systems are derived
such that their solutions provide lower and upper bounds for the original ODE
solution. Singer and Barton [140] construct such an auxiliary system for parametric
ODEs as follows. Using a linearization of the right-hand side at a solution for a
particular (continuous) parameter, two new right-hand sides are constructed which
under- and overestimate the original right-hand side. Building on the results by
Walter [153], the solution of the constructed auxiliary system encloses the original
solution for all parameters. Moreover, the lower and upper bounds are convex,
respectively, concave in the parameters. The construction the auxiliary ODE system
has been improved such that the solution yields tighter bounds by using McCormick
relaxations by Scott et al. [136] and Scott and Barton [134]. Furthermore, Scott and
Barton [133] used these ideas to derive convex and concave relaxations for solutions
of differential algebraic equations. Besides, Harwood and Barton [62, 63] derive
auxiliary ODE systems such that the solutions are affine linear functions in the
parameters for every point in time.

In two articles Villanueva and coworkers [23, 152] provide a framework to combine
the two approaches, i.e., the time-discretization techniques and the continuous-time
enclosure techniques.

Both techniques can be used for global optimization of ODE constrained prob-
lems, however, they do not fit in with our ideas discussed in Section 1.2. For the
time-discretization techniques we would have to add variables corresponding to the
discretization and are thus limited to the accuracy of the initial discretization. On
the other hand, we do not have to add such variables for the continuous-time enclo-
sure techniques, but these approaches require to solve of the auxiliary system with
arbitrary precision. Thus, we would lose the desired adaptivity of the discretization
in our approach.

17

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

2.2 Bounding Scalar ODEs

In this section, we consider scalar parameter-dependent initial value problems

y(0) = y0, ∂sy(s) = f(s, x, y(s)), s ∈ [0, S], (2.2)

i.e., the solutions are one-dimensional functions y : [0, S] → R. Note that we as-
sume that f is continuously differentiable and that there exists a (unique) solution
of this differential equation for all initial values y0 ∈ Y 0 ⊆ R and all parame-
ters x ∈ X ⊆ Rk, where Y 0 and X are bounded and convex.
In Section 1.2 and above we discussed an idea how to obtain relaxations of the

feasible set defined by ODE constraints by using one-step methods for solving the
ODEs. Hence, given a discretization 0 = s0 < s1 < · · · < sN = S with hi := si−si−1

for all i ∈ [N] = {1, . . . , N}, we investigate (possibly implicit) one-step methods that
can be written in the form

y0 = y0, yi = yi−1 + hi fh(si−1, hi, x, yi−1, yi) ∀i ∈ [N], (2.3)

where fh is the increment function. Our goal is to derive sufficient conditions on
the increment function fh such that the method provably yields a lower or upper
bound on the true solution of (2.2), i.e., that either yN ≤ y(S) or y(S) ≤ yN
holds. Moreover, we are interested in the input-output functions of particular one-
step methods, that is, the functions (x, y0, N) 7→ yN which map the parameters x
and initial value y0 to the last approximation yN produced through evaluating the
one-step method on a discretization with N + 1 grid points.

Remark 2.1. Note that in the literature cited above as well as in textbooks on
numerical methods for ODEs, see, e.g., Mattheij and Molenaar [97], it is custom
to consider ODEs in time. However, in our recurring example of stationary gas
transport we consider differential equations in space. Moreover, in mixed-integer
nonlinear programming abstract problem settings usually contain variables x. Thus,
we decided to consider differential equations in s (which can denote either space
or time) and parameters x in this section and the next chapter; see the abstract
optimization problem (3.1). Though, in the context of stationary gas transport x
denotes the spatial variable. Even so, it should be clear by context in which respect x
is used.

In the textbook context of one-step methods for ordinary differential equations,
the global discretization error ei = y(si) − yi for i ∈ [N] is usually studied to
prove convergence to the exact solution. By definition the global discretization error
might be a good indicator, if a particular method defines lower or upper bounds on

18

2.2. Bounding Scalar ODEs

the exact solution. However, known techniques, e.g., see Skeel [143] or Lang and
Verwer [85], only yield estimates of ei. Even though, these estimates can be very
accurate for small step sizes, they do not a priori prove if the global error is positive
or negative. This holds especially for large step sizes. Instead, we will see that the
local discretization error

τ(s, h) = y(s+ h)− y(s)− h fh
(
s, h, x, y(s), y(s+ h)

)
,

i.e., the error produced by plugging the analytical solution of the ODE into the
recursion formula (2.3) of the one-step method, provides a suitable indicator.

Example 2.2. We consider an explicit method, that is, fh(s, h, x, y, ỹ) is indepen-
dent of ỹ, with nonnegative local discretization error, i.e.,

y(si)− y(si−1)− hi fh
(
si−1, hi, x, y(si−1)

)
≥ 0 (2.4)

holds for all i ∈ [N]. From (2.4), we immediately get

y(s1)− y1 = y(s1)− y(s0)− h1 fh
(
s0, h1, x, y(s0)

)
≥ 0.

Nevertheless, this does not guarantee that y(s2) − y2 ≥ 0 holds. For example,
consider the ODE ∂sy(s) = −y(s) with y(0) = 1. For this particular ODE with
the solution y(s) = e−s, the explicit Euler method given by the increment function
fh(si−1, hi, x, yi−1, yi) = f(si−1, yi−1) with equidistant step size h has a nonnegative
local discretization error and produces the solution yi = (1 − h)i for all i. Thus,
with h = 2 we have −1 = y2i−1 ≤ y(s2i−1) and y(s2i) ≤ y2i = 1 for all i. On the
other hand, let 0 < h ≤ 1. Since y(s) = e−s = limn→∞(1− s

n)n holds and (1− s
n)n

is increasing in n for n ≥ s, we can derive that the inequality

y(si) = e−ih = lim
n→∞

(
1− ih

n

)n ≥ (1− ih
i

)i
= (1− h)i = yi

is true for all i.

This example suggests that a signed local discretization error and small step sizes
are sufficient for producing lower and upper bounds. In fact, by (2.4)

y(si) ≥ y(si−1) + hi fh
(
si−1, hi, x, y(si−1)

)
≥ yi−1 + hi fh

(
si−1, hi, x, yi−1

)
= yi

holds if y(si−1) ≥ yi−1 and y + h fh(s, h, x, y) is nondecreasing w.r.t. y, which is
typically true for small step sizes. Thus, we can derive y(si) ≥ yi.

19

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

Lemma 2.3. Consider a one-step method of the form (2.3) for a scalar ODE (2.2),
i.e., y(s) ∈ R. Let the local discretization error of the method be nonnegative, i.e.,
for all s ∈ [0, S] and h ≥ 0 with s+ h ≤ S and all parameters x ∈ X the inequality

τ(s, h) = y(s+ h)− y(s)− h fh
(
s, h, x, y(s), y(s+ h)

)
≥ 0

holds. Suppose the derivatives of the increment function fh satisfy

∂yfh(s, h, x, y, ỹ) ≥ b and ∂ỹfh(s, h, x, y, ỹ) ≤ B

for constants b, B ∈ R. Then if the step sizes hi satisfy

0 < hi ≤ hmax =

{
∞, if b ≥ 0 and B ≤ 0,

1
max{−b,B} , otherwise,

for all i ∈ [N], the one-step method produces a lower bound on the ODE solution y(s)

for all x ∈ X, that is, yi ≤ y(si) for all i ∈ [N].

Otherwise, if the local discretization error of the method is nonpositive, i.e.,

τ(s, h) = y(s+ h)− y(s)− h fh
(
s, h, x, y(s), y(s+ h)

)
≤ 0

holds for all s ∈ [0, S] and h ≥ 0 with s+ h ≤ S and all parameters x ∈ X, then we
obtain under the same assumptions upper bounds yi ≥ y(si) for all i ∈ [N].

Proof. We prove the lemma by induction on the number of grid points N . Consider
the function

R(s, h, x, y, ỹ) = ỹ − y − h fh(s, h, x, y, ỹ).

Then a step of (2.3) is given by the equation R(si−1, hi, x, yi−1, yi) = 0. By the
assumption on the derivatives of fh, we get

∂ỹR(s, h, x, y, ỹ) = 1− h ∂ỹfh(s, h, x, y, ỹ) ≥ 1− hB.

Obviously, R is nondecreasing w.r.t. ỹ if B ≤ 0 holds, or if the step size satisfies the
inequality h ≤ 1

B . Since the local discretization error is nonnegative and y0 = y(0),
we can derive the inequality

R
(
0, h1, x, y(0), y(s1)

)
≥ 0 = R

(
0, h1, x, y0, y1

)
.

Therefore, we obtain the inequality y(s1) ≥ y1 if either B ≤ 0 or h1 ≤ 1
B holds. For

induction we assume that y(si) ≥ yi is satisfied. Since ∂yfh is bounded below by b,

20

2.2. Bounding Scalar ODEs

we know that

∂yR(s, h, x, y, ỹ) = −1− h ∂yfh(s, h, x, y, ỹ) ≤ −1− h b

holds. Thus, R is nonincreasing w.r.t. y if either b ≥ 0 or h ≤ − 1
b is true. Again,

using that the local discretization error is nonnegative we derive

R
(
si, hi+1, x, y(si), y(si+1)

)
≥ 0 = R

(
si, hi+1, x, yi, yi+1

)
.

Furthermore, the monotonicity w.r.t. the fourth argument and y(si) ≥ yi results in

R
(
si, hi+1, x, yi, y(si+1)

)
≥ R

(
si, hi+1, x, y(si), y(si+1)

)
≥ R

(
si, hi+1, x, yi, yi+1

)
,

and consequently y(si+1) ≥ yi+1 holds. Then induction yields that the one-step
method produces a lower bound on y(S).
The case of nonpositive local discretization error and the obtained upper bound

can be treated in the same way.

Note that for most one-step methods like Runge-Kutta methods, the assumption
that the right-hand side f of the ODE is Lipschitz continuous already ensures that
the partial derivatives ∂yfh and ∂ỹfh are bounded.

Remark 2.4. If we consider an explicit one-step method, i.e., fh(s, h, x, y, ỹ) is
independent of ỹ and we get yi = yi−1 − hi fh(si−1, hi, x, yi−1), then the previous
lemma yields that we can choose

hmax =

{
∞, if b ≥ 0,

− 1
b , else.

Remark 2.5. If we consider an “end value problem” instead of an initial value prob-
lem, that is, ∂sy(s) = f(s, x, y(s)) holds for s ∈ [0, S] and y(S) = yS , then Lemma 2.3
shows that we can still compute lower and upper bounds on the solution, however,
with the modification that the bounds are now reversed, i.e., nonnegative local dis-
cretization error now yields upper bounds and nonpositive local discretization error
now yields lower bounds.

Remark 2.6. In the autonomous case (f is independent of s), the sign condition of
Lemma 2.3 for the local discretization error is also necessary in the following sense.
If there exist s and y(s), such that there is no h̄ > 0 for which (2.4) holds for

all 0 < h ≤ h̄, then the method (2.3) does not produce lower bounds for all initial
values y0. In fact, in the autonomous case without restrictions on the initial value y0,

21

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

we can choose y(0) = y0 such that there exists h0 > 0 with nonpositive local
discretization error. Then a strict version of the second assertion of Lemma 2.3
is applicable, yielding y1 > y(s1), i.e., we obtain an upper instead of a lower bound.

With the sufficient criterion given by Lemma 2.3 at hand, we will characterize
conditions under which three particular methods produce lower or upper bounds.
Moreover, we study sufficient conditions such that the corresponding input-output
functions are convex or concave. Again, let 0 = s0 < s1 < · · · < sN = S be a
given discretization with step sizes hi = si− si−1 for all i ∈ [N]. The three methods
are the explicit midpoint method, the second-order Taylor method and the implicit
trapezoidal rule defined by their respective increment functions

femh (s, h, x, y) := f
(
s+ h

2 , x, y + h
2 f(s, x, y)

)
, (2.5)

f tah (s, h, x, y) := f(s, x, y) + h
2

(
∂yf · f + ∂sf

)
(s, x, y) (2.6)

and

f trh (s, h, x, y, ỹ) := 1
2 f(s, x, y) + 1

2 f(s, x, ỹ). (2.7)

Moreover, we denote with F em : X×Y 0×N, F ta : X×Y 0×N and F tr : X×Y 0×N
the corresponding input-output functions (x, y0, N) 7→ yN which are defined through
evaluating the three methods.

Remark 2.7. We point out that we do not study these three methods by chance.
Neither are they the only methods Lemma 2.3 can be successfully applied to. The
reason to investigate them is that they do the trick for the application on stationary
gas transport, i.e., they define lower and upper bounds on the solution of (1.11). In
the case σ = 0, lower and upper bounds are given by the explicit midpoint method
and the trapezoidal rule. In the case σ 6= 0, lower and upper bounds can be computed
by the second-order Taylor method and the trapezoidal rule. Furthermore, note that
also our implementation for the case σ = 0 is based on the explicit midpoint method
and the trapezoidal rule; see the following Sections 2.3, 2.4 and 4.3.

Remark 2.8. An important property for the spatial branch-and-bound approach
which we develop in Chapter 3 is that these three methods are convergent under
mild assumptions on f ; e.g., see Theorem 3.4 and Corollary 3.5 in Chapter 3 of
Mattheij and Molenaar [97].

A one-step is called consistent if the local discretization error satisfies

lim
h→0

∣∣∣τ(s, h)

h

∣∣∣ = 0.

22

2.2. Bounding Scalar ODEs

Moreover, the method is called convergent if the global discretization error satisfies

lim
h→0

ei = lim
h→0

y(si)− yi = 0

for all i ∈ [N]. A method is called consistent of order k if τ(x, h)h−1 ∈ O(hk) holds
and convergent of order k if ei ∈ O(hk) holds for all i ∈ [N]. Consistency and
convergence of a one-step method are related as follows.
Suppose that y(s) ∈ Y ⊆ R for all initial values y0 ∈ Y 0 and parameters x ∈ X.

Let f be locally Lipschitz continuous w.r.t. y on [0, S] × X × Y . Then a one-step
method with yi ∈ Y for all i ∈ [N] is convergent if and only if it is consistent.
Moreover, the convergence order coincides with the consistency order.
Note that under these assumptions the three methods above are convergent of

order 2. To see this we have to show that the local discretization error is consistent
of order 2. For example, consider the explicit midpoint method. By Taylor’s theorem
we get

y(s+ h) = y(s) + h ∂sy(s) + 1
2h

2 ∂ssy(s) +O(h3)

and

f
(
s+ h

2 , x, y(s) + h
2 f(s, x, y(s))

)
= f(s, x, y(s)) + 1

2h ∂sf(s, x, y(s)) + 1
2h ∂yf(s, x, y(s)) · f(s, x, y(s)) +O(h2)

= ∂sy(s) + 1
2h ∂ssy(s) +O(h2).

Together these two equations yield

τ(s, h) = y(s+ h)− y(s)− h f
(
s+ h

2 , x, y(s) + h
2 f(s, x, y(s))

)
= O(h3),

i.e., the explicit midpoint method is consistent and convergent of order 2. Fur-
thermore, that the second-order Taylor method and the trapezoidal rule too have
convergence order 2 can be seen analogously.

Explicit Midpoint Method
Direct application of Lemma 2.3 to the explicit midpoint method

y0 = y0, yi = yi−1 + hi f
em
h (si−1, hi, x, yi−1) ∀i ∈ [N], (2.8)

with femh (s, h, x, y) = f(s+ h
2 , x, y+ h

2 f(s, x, y)) defined in (2.5) yields the following
result.

Corollary 2.9. Let f(s, x, y) be continuously differentiable and ∂yf(s, x, y) be non-
negative. If both y(s) and ∂sy(s) are convex then the explicit midpoint method pro-

23

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

duces lower bounds on y(si) for all i ∈ [N]. If both y(s) and ∂sy(s) are concave then
the method produces upper bounds.

Otherwise, let ∂yf(s, x, y) be nonpositive and bounded, i.e., b ≤ ∂yf(s, x, y) ≤ 0

holds for some b ∈ R, and let the step sizes hi satisfy the condition 0 < hi ≤ − 1
b

for all i ∈ [N]. Then yi is a lower bound on the ODE solution y(si) for all i ∈ [N]

if y(s) is concave and ∂sy(s) is convex. On the other hand, yi is an upper bound
if y(s) is convex and ∂sy(s) is concave.

Proof. Let ∂yf(s, x, y) be nonnegative and y(s) as well as ∂sy(s) be convex. In order
to use Lemma 2.3 we have to show that the local discretization error

τ(s, h) = y(s+ h)− y(s)− h f
(
s+ h

2 , x, y(s) + h
2 f(s, x, y(s))

)
is nonnegative.

Because ∂sy(s) is convex, we obtain

y(s+ h)− y(s) =

∫ s+h

s

∂sy(s̃) ds̃

≥
∫ s+h

s

∂sy(s+ h
2) + ∂ssy(s+ h

2)
(
s̃− (s+ h

2)
)

ds̃

= h ∂sy(s+ h
2) + ∂ssy(s+ h

2)
[

1
2 (s+ h)2 − 1

2s
2 − (s+ h

2)h
]

= h f
(
s+ h

2 , x, y(s+ h
2)
)
.

(2.9)

Moreover, by assumption y(s) is convex, too. Hence the inequality

y(s+ h
2) ≥ y(s) + h

2∂sy(s) (2.10)

holds. Together with ∂yf(s, x, y) ≥ 0 the inequalities (2.9) and (2.10) yield

y(s+ h)− y(s)− h f
(
s+ h

2 , x, y(s) + h
2 f(s, x, y(s))

)
≥ 0,

and thus by Lemma 2.3 the explicit midpoint method produces lower bounds on the
solution of the ODE. Furthermore, the other cases are similar.

Note that one does not have to know the exact solution of an ODE to determine
whether the assumptions of Corollary 2.9 are satisfied. Since the second derivative
of the solution is given by

∂ssy(s) = ∂sf
(
s, x, y(s)

)
+ ∂yf

(
s, x, y(s)

)
· f
(
s, x, y(s)

)
, (2.11)

24

2.2. Bounding Scalar ODEs

it often suffices to analyze the right-hand side to check whether the solution y(s) is
convex or concave. Analogously, we can check the condition on ∂sy(s).

Corollary 2.9 shows that in particular cases we can use the explicit midpoint
method to define a lower or upper bound on the solution of an ODE constraint; see
Section 1.2. For the use in a spatial branch-and-bound algorithm it is desirable that
relaxations are either convex or concave, thus we state sufficient conditions such that
the input-output function F em : (x, y0, N) 7→ yN is convex or concave.

Lemma 2.10. Let f(s, x, y) be continuously differentiable and convex in (x, y) for
all s ∈ [0, S], and let ∂yf(s, x, y) be nonnegative. Then the input-output function
F em : X × Y 0 ×N → R defined by (x, y0, N) 7→ yN through evaluating the explicit
midpoint method (2.8) with parameter x, initial value y0 and N discretization steps
is continuously differentiable and convex in (x, y0).

If f(s, x, y) is concave instead of convex, then F em is concave w.r.t. (x, y0).

Proof. We consider the function which describes a single step of the explicit midpoint
method, that is,

yem(s, h, x, y) = y + h f
(
s+ h

2 , x, y + h
2 f(s, x, y)

)
.

Then we can write yi = yem(si−1, hi, x, yi−1) for all i ∈ [N].

Let y, y′ ∈ Y 0 and x, x′ ∈ X, and denote their convex combinations with µ ∈ (0, 1)

by ỹ = µ y + (1 − µ)y′ and x̃ = µx + (1 − µ)x′. Since f is by assumption convex
in (x, y), the inequality

ỹ + h
2 f(s, x̃, ỹ) ≤ µ[y + h

2 f(s, x, y)] + (1− µ)[y′ + h
2 f(s, x′, y′)]

holds. Together with ∂yf(s, x, y) being nonnegative, we can derive

yem(s, h, x̃, ỹ) = ỹ + h f
(
s+ h

2 , x̃, ỹ + h
2 f(s, x̃, ỹ)

)
≤ ỹ + h f

(
s+ h

2 , x̃, µ[y + h
2 f(s, x, y)] + (1− µ)[y′ + h

2 f(s, x′, y′)]
)

≤ ỹ + µh f
(
s+ h

2 , x, y + h
2 f(s, x, y)

)
+ (1− µ)h f

(
s+ h

2 , x
′, y′ + h

2 f(s, x′, y′)
)

= µ yem(s, h, x, y) + (1− µ) yem(s, h, x′, y′).

Hence, yem is convex w.r.t. (x, y). Additionally, yem is continuously differentiable
if f is continuously differentiable and, since ∂yf(s, x, y) is nonnegative, we can derive
that ∂yyem(s, h, x, y) ≥ 1 is true.

Since the composition of a nondecreasing convex function with a convex function
is convex and yem is continuously differentiable, we can inductively show that yN

25

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

is continuously differentiable and convex w.r.t. parameter and initial value. Analo-
gously, we can see that it is concave if f is concave.

Note that in the case of ∂yf(s, x, y) ≤ 0 the proof above does not work, but yem

and also F em might still be convex or concave. For example, in Section 2.3 we are
going to apply the explicit midpoint method to the differential equation (1.11) and
see that the input-output function is convex although the derivative of the right-hand
side is nonpositive.

Second-Order Taylor Method
Since the assumptions of Corollary 2.9 are rather strict, we investigate the second-
order Taylor method

y0 = y0, yi = yi−1 + hi f
ta
h (si−1, hi, x, yi−1) ∀i ∈ [N] (2.12)

with f tah (s, h, x, y) = f(s, x, y) + h
2 (∂yf · f + ∂sf)(s, x, y) as defined in (2.6). The

investigation of this method is especially motivated by the application to gas flow
in pipelines with positive slope; see Section 2.4. Again, by using Lemma 2.3 we can
derive the following result analogously to Corollary 2.9.

Corollary 2.11. Let f(s, x, y) be twice continuously differentiable. Let b, b′ ∈ R
with b ≤ 0 and b′ ≥ 0, and suppose that

b ≤ ∂yf(s, x, y) and − b′ ≤
(
∂yyf · f + (∂yf)2 + ∂syf

)
(s, x, y)

holds for all x ∈ X. Furthermore, let ∂sy(s) be convex. The second-order Taylor
method (2.12) produces lower bounds yi ≤ y(si) for all i ∈ [N] if the step sizes hi
satisfy the inequality

0 < hi ≤

{
∞ if b = b′ = 0,

2
−b+
√
b2+2b′

otherwise.
(2.13)

If ∂sy(s) is concave, then under the above condition on the step sizes hi the second-
order Taylor method (2.12) produces upper bounds on y(si) for all i ∈ [N].

Proof. Suppose that ∂sy(s) is convex. Then using equation (2.11) we can derive

y(s+ h)− y(s) =

∫ s+h

s

∂sy(s̃) ds̃ ≥
∫ s+h

s

∂sy(s) + ∂ssy(s) · (s̃− s) ds̃

= h f tah (s, h, x, y(s)).

26

2.2. Bounding Scalar ODEs

Thus, the second-order Taylor method has a nonnegative local discretization error.
Otherwise, if ∂sy(s) is concave, we can analogously show that the local discretization
error is nonpositive.

In order to apply Lemma 2.3, we additionally have to show that ∂yf tah is bounded
from below. Since

∂yf
ta
h (s, h, x, y) = ∂yf(s, x, y) + h

2

(
∂yyf · f + (∂yf)2 + ∂syf

)
(s, x, y) ≥ b− h

2 b
′,

the derivative ∂yf tah is nonnegative if b = b′ = 0 holds. Otherwise, choosing h

according to (2.13) implies

∂yf
ta
h (s, h, x, y) ≥ b− h

2 b
′ ≥ b+ 1

b−
√
b2+2b′

b′ = b+ b+
√
b2+2b′

b2−(b2+2b′) b
′ = b−

√
b2+2b′

2 ,

i.e., ∂yf tah is bounded from below. Hence, the second-order Taylor method produces
lower bounds if ∂sy(s) is convex and upper bounds if ∂sy(s) is concave.

Note that in Corollary 2.9 we assumed (in the case ∂yf ≥ 0) that the solu-
tion y(s) and its derivative ∂sy(s) are convex to obtain lower bounds through the
explicit midpoint method. Whereas in Corollary 2.11 we only assumed the convex-
ity of ∂sy(s) (besides of the boundedness of the increment function) to obtain lower
bounds through the second-order Taylor method. In this sense, the assumptions
here are less strict.

We now state conditions that ensure the convexity or concavity of the input-output
function F ta : (x, y0, N) 7→ yN defined by the second-order Taylor method.

Lemma 2.12. Let f be three times continuously differentiable and let b, b′ ∈ R with
b ≤ 0 and b′ ≥ 0. Suppose that

b ≤ ∂yf(s, x, y) and − b′ ≤
(
∂yyf · f + (∂yf)2 + ∂syf

)
(s, x, y)

holds for all x ∈ X. Assume that there exists h̄ > 0 satisfying (2.13) such that the
increment function f tah is convex w.r.t. (x, y) for all s ∈ [0, S] and 0 < h ≤ h̄. Then
with 0 < hi ≤ h̄ for all i ∈ [N] the input-output function F ta : X × Y 0 × N → R

defined through evaluating the second-order Taylor method (2.12) is continuously
differentiable and convex w.r.t. (x, y0).

Alternatively, let f(s, x, y) be uniformly convex w.r.t. (x, y) and its derivatives
up to order three be bounded. Then there exists h̄ > 0 such that F ta is convex
w.r.t. (x, y0) if 0 < hi ≤ h̄ for all i ∈ [N].

If f tah is concave or f(s, x, y) is uniformly concave instead of convex, then F ta is
concave w.r.t. (x, y0) under the remaining assumptions above.

27

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

Proof. Consider the function yta(s, h, x, y) := y + h f tah (s, h, x, y) defining one step
of the second-order Taylor method (2.12). Then we can write (2.12) as

y0 = y0, yi = yta(si−1, hi, x, yi−1) ∀i ∈ [N].

Hence, if yta is nondecreasing w.r.t. y and convex w.r.t. (x, y), we can inductively
derive that F ta is convex w.r.t. (x, y).
By assumption there exists h̄ > 0 satisfying (2.13) such that the increment func-

tion f tah is convex for 0 < h ≤ h̄. Then yta(s, h, x, y) is convex. Moreover, as shown
in Corollary 2.11, the inequality ∂yf tah (s, h, x, y) ≥ b−

√
b2+2b′

2 holds if the step size h
satisfies (2.13). Hence, (2.13) also implies ∂yyta(s, h, x, y) ≥ 0.
In the alternative case, assume that f(s, x, y) is uniformly convex w.r.t. (x, y).

Then the Hessian matrix ∇2f(s, x, y) w.r.t. x and y only is uniformly positive
definite. Moreover, by assumption the derivatives up to order three of f(s, x, y)

are bounded, hence there exist b, b′ satisfying the assumptions of the first case.
Then (2.13) ensures that we have ∂yyta(s, h, x, y) ≥ 0.
For the Hessian matrix ∇2yta(s, h, x, y) w.r.t. x and y only we have

∇2yta(s, h, x, y) = h∇2f(s, y, x) + h2

2 ∇
2(∂yf · f + ∂sf)(s, x, y).

Since ∇2f(s, y, x) is uniformly positive definite and the derivatives in the second
term are bounded, we can choose h̄ satisfying (2.13) small enough such that ∇2yta

is positive definite for all 0 < h ≤ h̄. Then yta(s, h, x, y) is convex in (x, y) and
nondecreasing w.r.t. y and thus F ta is convex w.r.t. (x, y).
Finally, the cases where f tah is concave or f(s, x, y) is uniformly concave instead

of convex can be handled analogously.

Trapezoidal Rule
To obtain bounds opposite to the bounds produced by either the explicit midpoint
method or the second-order Taylor method, e.g., upper bounds in cases where the
other methods define lower bounds, we consider the implicit trapezoidal rule

y0 = y0, yi = yi−1 + hi f
tr
h (si−1, hi, x, yi−1, yi) ∀i ∈ [N] (2.14)

with f trh (s, h, x, y, ỹ) := 1
2 f(s, x, y) + 1

2 f(s, x, ỹ) as defined in (2.7). Again, by using
Lemma 2.3 we can derive the following corollary.

Corollary 2.13. Let ∂sy(s) be convex, f(s, x, y) be continuously differentiable, and
the derivative b ≤ ∂yf(s, x, y) ≤ B be bounded by some constants b, B ∈ R for
all x ∈ X. Furthermore, suppose that for all i ∈ [N] the step sizes hi satisfy the

28

2.2. Bounding Scalar ODEs

condition hi · max{−b, B} ≤ 2 and a solution yi of (2.14) exists. Then yi is an
upper bound on the ODE solution y(si) for all i ∈ [N].

If ∂sy(s) is concave instead of convex, then yi is a lower bound for all i ∈ [N].

Proof. We only discuss the case in which ∂sy(s) is convex, the other case works
analogously. By Lemma 2.3 we have to show that the local discretization error is
nonpositive. Since ∂sy(s) = f

(
s, x, y(s)) is convex, the inequality

f
(
s̃, x, y(s̃)

)
≤ f

(
s, x, y(s)

)
+ 1

h

[
f
(
s+ h, x, y(s+ h)

)
− f

(
s, x, y(s)

)]
(s̃− s)

holds for all s̃ ∈ [s, s+ h]. With this we can derive the inequality

y
(
s+ h

)
− y
(
s
)

=

s+h∫
s

f
(
s̃, x, y(s̃)

)
ds̃

≤
s+h∫
s

f
(
s, x, y(s)

)
+ 1

h

[
f
(
s+ h, y(s+ h)

)
− f

(
s, x, y(s)

)]
(s̃− s) ds̃

= h
2

[
f
(
s, x, y(s)

)
+ f

(
s+ h, x, y(s+ h)

)]
and thus the local discretization error is nonpositive.
By assumption the derivative ∂yf(s, x, y) is bounded from below by b and from

above by B, which implies

∂yf
tr
h (s, h, x, y, ỹ) = 1

2∂yf(s, x, y) ≥ b
2

and

∂ỹf
tr
h (s, h, x, y, ỹ) = 1

2∂ỹf(s, x, ỹ) ≤ B
2 ,

i.e., the boundedness conditions of Lemma 2.3 are satisfied. Then, the upper bound
on the step sizes immediately follows from Lemma 2.3. Therefore, the trapezoidal
rule produces upper bounds on the solution y(si) for all i ∈ [N].

As in the paragraphs above, we now consider sufficient conditions such that the
input-output function F tr : X × Y 0 ×N defined by evaluating the trapezoidal rule
is convex or concave.

Lemma 2.14. Let f(s, x, y) be continuously differentiable and convex in (x, y) for
all s ∈ [0, S], and let b ≤ ∂yf(s, x, y) ≤ B for some constants b, B ∈ R. Fur-
thermore, suppose that the step sizes satisfy the condition hi · max{−b, B} < 2

and there exists a solution to (2.14) for all i ∈ [N]. Then the input-output func-

29

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

tion F tr : X × Y 0 × N → R defined by (x, y0, N) 7→ yN through evaluating the
trapezoidal rule (2.14) is continuously differentiable and convex in (x, y0).

If f(s, x, y) is concave instead of convex, then F tr is concave w.r.t. (x, y0).

Proof. We consider the following function, which is defined by a single step of the
trapezoidal rule:

R(s, h, x, y, ỹ) = ỹ − y − h
2

[
f(s, x, y) + f(s+ h, x, ỹ)

]
.

By assumption, there exists a solution yi of R(si−1, hi, x, yi−1, yi) = 0 for all i ∈ [N].
Furthermore, the inequality

∂ỹR(s, h, x, y, ỹ) = 1− h
2 ∂yf(s+ h, x, ỹ) ≥ 1− h

2 B > 0

holds, if B ≤ 0 or h < 2
B is satisfied, i.e., the assumptions of the implicit func-

tion theorem are satisfied. Thus, there exists a continuously differentiable func-
tion ytr(s, h, x, y) with

ytr(s, h, x, y)− h
2 f
(
s+ h, x, ytr(s, h, x, y)

)
= y + h

2 f
(
s, x, y

)
. (2.15)

Analogously to the proof of Lemma 2.10, we will use this function to inductively
obtain that yN is a convex function w.r.t. (x, y0) assuming that f(s, x, y) is a convex
function w.r.t. (x, y).

Let ỹ = µy + µ′y′ and x̃ = µx + µ′x′ for some µ ∈ (0, 1) and µ′ = 1 − µ. By the
definition of ytr, we can derive the inequality

ytr(s, h, x̃, ỹ)− h
2 f
(
s+ h, x̃, ytr(s, h, x̃, ỹ)

)
= ỹ + h

2 f
(
s, x̃, ỹ

)
≤ ỹ + h

2

[
µ f(s, x, y) + µ′ f(s, x′, y′)

]
= µ

[
ytr(s, h, x, y)− h

2 f
(
s+ h, x, ytr(s, x, y)

)]
+ µ′

[
ytr(s, h, x′, y′)− h

2 f
(
s+ h, x′, ytr(s, h, x′, y′)

)]
≤ µ ytr(s, x, y) + µ′ ytr(s, x′, y′)

− h
2 f
(
s+ h, x̃, µ ytr(s, h, x, y) + µ′ ytr(s, h, x′, y′)

)
.

From this we can derive the convexity of ytr(s, h, x, y) if y − h
2 f(s, x, y) is nonde-

creasing w.r.t. y for all x ∈ X, that is, if 1 − h
2∂yf(s, x, y) ≥ 0 holds. As we have

seen before, this is true due to the choice of h ≤ 2
B if B > 0. Thus, ytr(s, h, x, y) is

convex.

30

2.2. Bounding Scalar ODEs

Next, we show that ytr(s, h, x, y) is nondecreasing w.r.t. y. By differentiating
(2.15) we can derive

∂yy
tr(s, h, x, y)

[
1− h

2 ∂yf
(
s+ h, x, ytr(s, h, x, y)

)]
= 1 + h

2 ∂yf
(
s, x, y

)
.

The right-hand side is nonnegative if either b ≥ 0 or h < 2
−b is satisfied. Together

with the strict inequality 1 − h
2 ∂yf(s + h, x, ytr(s, h, x, y)) > 0 if either B ≤ 0

or h < 2
B holds, this yields that ytr(s, h, x, y) is nondecreasing.

By interpreting the approximations yi for i ∈ [N] of the ODE solution as a function
of parameter and initial value, we can use the following representation

yi(x, y
0) = ytr

(
si−1, hi, x, yi−1(x, y0)

)
.

Since ytr(s, h, x, y) is continuously differentiable and nondecreasing, and the compo-
sition of a convex function with a nondecreasing convex function is convex, we can
inductively derive that F tr is continuously differentiable and convex w.r.t. (x, y0).

Again, the case with a concave right-hand side f can be treated analogously.

Remark 2.15. Note that the proof of Lemma 2.14 shows that if B ≤ 0, we can
actually choose the step sizes such that 0 < hi ·max{−b, 0} ≤ 2 is satisfied, where
in contrast to the assumptions of Lemma 2.14 equality is allowed.

Coming back to the idea on how to relax ODE constraints discussed in Section 1.2
and in the beginning of this chapter. We have seen that in particular cases the
explicit midpoint method, the second-order Taylor method and the trapezoidal rule
produce lower or upper bounds on the solution of a scalar parameter-dependent
ordinary differential equation. Then if two methods produce opposite bounds, we
can use the corresponding input-output functions to define a relaxation of the ODE
constraint. For example, lower and upper bounds are produced by the explicit
midpoint method and the trapezoidal rule if y(s), ∂sy(s) are convex and ∂yf(s, x, y)

is nonnegative and bounded. Then a relaxation of (2.1) is given by

F em(x, y0, N) ≤ yS ≤ F tr(x, y0, N).

If additionally f(s, x, y) is convex, F em and F tr are convex too. Hence, we can utilize
this to construct an LP-relaxation of this inequality as follows. Since F em is convex
and continuously differentiable, we can generate gradient cuts to approximate F em

by outer-approximation; see Duran and Grossmann [30]. Moreover, because F tr

is convex the so-called concave envelope of F tr, i.e., the smallest concave function
which is greater or equal than F tr, can be constructed by using only the values

31

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

of F tr at the extreme points of X × Y 0 if X and Y 0 are polytopes; e.g., see Horst
and Tuy [73, Theorem IV.6].

2.3 Gas Flow in Pipelines without Height
Differences

In this section we apply the results for the explicit midpoint method and the trape-
zoidal rule to gas flow in pipelines without height differences. Recall that we use
the stationary isothermal Euler equation (1.11) to describe the gas flow in pipelines.
Without height differences, i.e., slope σ = 0, the differential equation is given by

∂xp(x) = ϕ
(
p(x), q

)
= −1

2

λc2q|q|p(x)

D(A2p2(x)− c2q2)
, x ∈ [0, L].

Note, we assumed that c|q|
Ap(x) is bounded from above by νc ∈ (0, 1), that is, we have

c|q|
Ap(x) ≤ νc, to derive the ODE in this form. To make sure that this condition holds
for all x ∈ [0, L], we assume that the mass flow q is nonnegative and moreover we
consider an “end value problem” instead of an initial value problem, i.e., we consider

p(L) = p0, ∂xp(x) = ϕ
(
p(x), q

)
, x ∈ [0, L],

where we fix the pressure at the end of the pipeline. Since we will shortly see that
the pressure is nonincreasing in x, by choosing (p0, q) in

U :=
{

(p, q) ∈ R2 : 0 < p ≤ p ≤ p, 0 ≤ q ≤ q ≤ q, c q ≤ νcAp
}

the condition c|q|
Ap(x) ≤ νc is satisfied for all x ∈ [0, L]. Note that we assume that

lower and upper bounds on the pressure (at both ends of the pipeline) and mass
flow are given. Moreover, during a branch-and-bound process we can ensure that
the mass flow is nonnegative by branching w.r.t. q = 0 and reorientation of the
pipeline on the branch with q ≤ 0.
To start our analysis of gas flow, we investigate properties of the right-hand side ϕ.

To this end, we define the domain of ϕ through

Uϕ :=
{

(p, q) ∈ R2 : p ≤ p, q ≤ q ≤ q, c q ≤ νcAp
}
.

Note that compared to U defined above, we relax the upper bound on p to ensure
p(x) ∈ Uϕ for all x ∈ [0, L]. Then differentiating and computing the eigenvalues of
the Hessian matrix of ϕ yields the following result.

32

2.3. Gas Flow in Pipelines without Height Differences

Lemma 2.16. The function ϕ : Uϕ → R is nonpositive, nondecreasing in p,
nonincreasing in q and concave in (p, q) ∈ Uϕ. Its second derivatives satisfy
∂ppϕ(p, q) ≤ 0, ∂pqϕ(p, q) ≥ 0 and ∂qqϕ(p, q) < 0. Furthermore, we have that ϕ(p, q),
∂pϕ(p, q), ∂qϕ(p, q), ∂ppϕ(p, q) or ∂pqϕ(p, q) are zero if and only if q = 0.

Proof. On Uϕ we have by assumption q ≥ 0 and A2p2 > c2q2. Thus, ϕ and its first
and second derivatives satisfy

ϕ(p, q) = − λc2q2p

2D(A2p2 − c2q2)
≤ 0,

∂pϕ(p, q) =
λc2q2(A2p2 + c2q2)

2D(A2p2 − c2q2)2
≥ 0,

∂qϕ(p, q) = − λc2qA2p3

D(A2p2 − c2q2)2
≤ 0,

∂ppϕ(p, q) = −λc
2q2A2p(A2p2 + 3c2q2)

D(A2p2 − c2q2)3
≤ 0,

∂pqϕ(p, q) =
λc2qA2p2(A2p2 + 3c2q2)

D(A2p2 − c2q2)3
≥ 0

and

∂qqϕ(p, q) = −λc
2A2p3(A2p2 + 3c2q2)

D(A2p2 − c2q2)3
< 0.

Furthermore, the Hessian matrix ∇2ϕ(p, q) is singular, that is, the eigenvalues
of∇2ϕ(p, q) are 0 and ∂ppϕ(p, q)+∂qqϕ(p, q). Since ∂ppϕ(p, q)+∂qqϕ(p, q) is negative,
the Hessian matrix is negative semidefinite, i.e., ϕ is concave.

This leads to the following properties of the differential equation.

Corollary 2.17. The ordinary differential equation

p(L) = p0, ∂xp(x) = ϕ
(
p(x), q

)
, x ∈ [0, L] (2.16)

has a unique solution p(x) for all (p0, q) ∈ U . Furthermore, p(x) as well as ∂xp(x)

are nonincreasing and concave. In particular, p(x) ∈ Uϕ holds for all x ∈ [0, L].

Proof. Let q = 0. Then for all (p0, 0) ∈ U , the ODE has the unique solu-
tion p(x) = p0, since ϕ(p, 0) = 0.
Otherwise, for fixed q > 0, the right-hand side ϕ(p(x), q) is negative, i.e., p(x) is

decreasing and the pressure is bounded from below by p0. Thus, since ∂ppϕ(p, q) ≤ 0

33

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

holds, the derivative ∂pϕ(p, q) is bounded by ∂pϕ(c q
νcA

, q) ≥ ∂pϕ(p, q) > 0, i.e., ϕ is
Lipschitz continuous w.r.t. p. Hence, the ODE has a unique solution.

Finally, further derivatives of p(x) are given by

∂xxp(x) = (∂pϕϕ)(p(x), q),

∂xxxp(x) = (∂ppϕϕ
2 + (∂pϕ)2 ϕ)(p(x), q).

With the properties of ϕ derived in Lemma 2.16 this yields that ∂xxp(x) and ∂xxxp(x)

are nonpositive, i.e., p(x) as well as ∂xp(x) are nonincreasing and concave. Moreover,
since p(x) is bounded from below by p0, this implies p(x) ∈ Uϕ.

To apply the explicit midpoint method, the trapezoidal rule, and Corollaries 2.9
and 2.13, we transform (2.16) into an initial value problem. To this end, we consider
the function p̃(x) := p(L− x). Then p̃(x) satisfies the differential equation

p̃(0) = p0, ∂xp̃(x) = −ϕ
(
p̃(x), q

)
, x ∈ [0, L]. (2.17)

For simplicity we consider an equidistant discretization 0 = x̃0 < x̃1 < . . . < x̃N = L

with step size h = L
N . Then the explicit midpoint method is defined by

p`0 = p0, p`i = p`i−1 − hϕ
(
p`i−1 − h

2ϕ(p`i−1, q), q
)

∀i ∈ [N], (2.18)

and the implicit trapezoidal rule is

pu0 = p0, pui = pui−1 − h
2

[
ϕ
(
pui−1, q

)
+ ϕ

(
pui , q

)]
∀i ∈ [N]. (2.19)

In the next step, we deduce by Corollaries 2.9 and 2.13 that the methods define
lower and upper bounds on p̃(x̃i) for all i ∈ [N]. Hence, p`i ≤ p(xi) ≤ pui holds
with xi = L− x̃i for all i ∈ [N].

Corollary 2.18. Let (p0, q) ∈ U and N be sufficiently big such that step size h = L
N

satisfies the inequality

0 < h ≤ 2D

λ

(1− ν2
c)2

(1 + ν2
c) ν2

c

.

Then the explicit midpoint method (2.18) defines lower bounds on the solution p(x)

of (2.16), that is p`i ≤ p(xi) for all i ∈ [N].

For instance, if νc = 0.4, then the step size has to satisfy 0 < h ≤ D
λ

441
48 .

Proof. By Corollary 2.17 we can derive that the solution p̃(x) = p(L− x) of (2.17)
is concave and ∂xp̃(x) = −∂xp(L − x) is convex. Furthermore, the right-hand side

34

2.3. Gas Flow in Pipelines without Height Differences

satisfies

0 ≥ −∂pϕ
(
p, q
)
≥ −∂pϕ

(
c q
νcA

, q
)

= − λ

2D

(1 + ν2
c) ν2

c

(1− ν2
c)2

=: b

for all (p, q) ∈ Uϕ, since −∂ppϕ(p, q) ≥ 0 holds. Hence, by Corollary 2.9 the explicit
midpoint method produces lower bounds p`i ≤ p̃(x̃i) by choosing 0 < h ≤ − 1

b .
Thus, by definition of p̃(x) = p(L− x) the explicit midpoint method produces lower
bounds p`i on p(xi) for all i ∈ [N].

Analogously to this corollary, we can immediately derive the following result by
using Corollary 2.13.

Corollary 2.19. Let (p0, q) ∈ U and N sufficiently big such that step size h satisfies

0 < h ≤ 4D

λ

(1− ν2
c)2

(1 + ν2
c) ν2

c

.

Then the trapezoidal rule (2.19) defines upper bounds on the solution p(x) of (2.16),
that is, the inequality pui ≥ p(xi) holds for all i ∈ [N].

For instance, if νc = 0.4, then the step size has to satisfy 0 < h ≤ D
λ

441
24 .

Proof. Since the trapezoidal rule is an implicit method, we first show that there
exists a solution pui of (2.19) for all i ∈ [N]. Then by the same arguments as in
the proof above and Corollary 2.13 we get that these define upper bounds on the
solution of (2.16).

Consider the function

R(h, p, p̃, q) = p̃− p+ h
2

[
ϕ
(
p, q
)

+ ϕ
(
p̃, q
)]
.

Then for all i ∈ [N] the approximations pui can be computed by solving the equa-
tion R(h, pui−1, p̃, q) = 0 for p̃. For p̃ = pui−1 we get

R(h, pui−1, p
u
i−1, q) = hϕ(pui−1, q) < 0.

Moreover, differentiating R yields ∂p̃R(h, p, p̃, q) = 1+ h
2 ∂pϕ(p̃, q) and since ∂pϕ ≥ 0

this implies ∂p̃R ≥ 1. Hence, R is strictly increasing in p̃ and there exists a unique
solution pui for all i ∈ [N].

Remark 2.20. Since the trapezoidal rule is implicitly given by

R(h, pui−1, p
u
i , q) = 0

35

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

for all i ∈ [N] and this equation cannot be solved for pui analytically, we have to
solve the equation numerically, e.g., by Newton’s method. When using Newton’s
method, then a new iterate pni is given by

pni = pn−1
i −

R(h, pui−1, p
n−1
i , q)

∂p̃R(h, pui−1, p
n−1
i , q)

,

However, note that R is strictly increasing in pui as seen above and strictly concave
in pui if q > 0. Thus,

R(h, pui−1, p
n
i , q) < R(h, pui−1, p

n−1
i , q) + ∂p̃R(h, pui−1, p

n−1
i , q)

(
pni − pn−1

i

)
= 0

holds independently of pn−1
i . That is, Newton’s method produces lower

bounds pni < pui on the exact solution.

We point out that with a straightforward implementation of Newton’s method
we actually observed solutions p`N and puN of the explicit midpoint method and the
trapezoidal rule with puN < p`N ! If the number of grid points N + 1 is big, the
numerical error produced by the Newton’s method can add up significantly, even
when solving each step of the trapezoidal rule with Newton’s method and a tolerance
of 10−7 Pa. Therefore, we will present a variant of Newton’s method in Section 6.1,
which produces solutions that are greater or equal to the exact solution pui for
all i ∈ [N].

Remark 2.21. Note that for Corollaries 2.18 and 2.19 to hold, it is essential that
the fraction c q

A p is bounded from above by νc ∈ (0, 1), which is strictly less than 1.
Otherwise, the derivative ∂pϕ(p, q) would not be bounded and we could not apply
Corollaries 2.9 and 2.13.

Remark 2.22. Instead of applying the methods (2.18) and (2.19) in opposite di-
rection of the flow, we can also use them to compute bounds in the direction of the
flow. That is, instead of the end value problem (2.16) we can also consider the initial
value problem, where we fix the pressure p(0). Then the explicit midpoint method
produces upper bounds and the trapezoidal rule produces lower bounds, if there are
solutions p`i and pui for all grid points xi.

However, the problem is that we cannot guarantee that for all i ∈ [N] approxima-
tions p`i and pui with c q ≤ νcAp`i respectively c q ≤ νcApui exist. In particular, if we
start with a small input pressure, then there might not exist solutions for all i. If
both methods fail to produce solutions, which fulfill this bound, then we can deduce
that the input pressure is too small. Otherwise, if only the trapezoidal rule fails to
produce a lower bound, e.g., if we choose the input pressure such that for the ana-

36

2.3. Gas Flow in Pipelines without Height Differences

lytical solution p(L) = c q
νcA

holds, then we cannot decide whether the discretization
is too coarse or the input pressure is infeasible. Therefore, we compute the methods
in opposite direction of the flow.

Next, we consider the two input-output functions P `, Pu : U × N → R defined
through evaluating (2.18) and (2.19). That is,

P `(p0, q,N) := p`N and Pu(p0, q,N) := puN .

Moreover, we denote with P (p0, q) = p(0) the unique solution p(x) of (2.16) with
initial value p0 and mass flow q ≥ 0 evaluated at x = 0. We can derive the following
properties for P ` and Pu; see also Figure 2.1.

Lemma 2.23. For every νc ∈ (0, 1) there exists a maximal step size h̄ > 0 such that
the functions P ` and Pu are nondecreasing, continuously differentiable and convex
in (p, q) for all N sufficiently big with 0 < L

N = h ≤ h̄.
Furthermore, every solution p(x) of the differential equation (2.16) with (p0, q) ∈ U

satisfies the inequality

P `
(
p(L), q,N

)
≤ P (p0, q) = p(0) ≤ Pu

(
p(L), q,N

)
. (2.20)

Additionally P `
(
p(L), q,N

)
and Pu

(
p(L), q,N

)
converge to p(0) for N →∞.

For instance, if νc = 0.4, then the step size has to satisfy 0 < h ≤ 4.925Dλ .

Proof. The inequality (2.20) follows from Corollaries 2.18 and 2.19. Furthermore,
under the assumptions of Corollary 2.19 the properties of Pu follow directly from
Lemma 2.14.

However, we cannot apply Lemma 2.10, since the assumption of ∂yf being non-
negative is not satisfied. Thus, it remains to show that there exists h̄ such that
P ` : U ×N→ R is differentiable, nondecreasing and convex for N sufficiently big.

With p`0 = p`0(p, q) = p, we can write (2.18) as

p`i(p, q) = pem
(
p`i−1(p, q), q, h

)
:= p`i−1(p, q)− hϕ

(
p`i−1(p, q)− h

2ϕ(p`i−1(p, q), q), q
)

for i ∈ [N]. Differentiating yields ∂p p`0(p, q) = 1, ∂q p`0(p, q) = 0 and

∂pp
`
i(p, q) = ∂pp

em
(
p`i−1(p, q), q, h

)
∂pp

`
i−1(p, q),

∂qp
`
i(p, q) = ∂pp

em
(
p`i−1(p, q), q, h

)
∂qp

`
i−1(p, q) + ∂qp

em
(
p`i−1(p, q), q, h

)

37

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

p

p0
p p

P (p0, q)

P u(p0, q, N)

P `(p0, q, N)

Figure 2.1. The figure depicts the properties of the input-output func-
tions P ` and Pu (dashed lines) for a fixed mass flow q ≥ 0. The func-
tions are nondecreasing and convex in (p0, q). Moreover, they define
a tube around the analytical solution P (p0, q) = p(0) of (2.16) (solid
line). See also Lemma 2.23.

for all i ∈ [N], where ∂pp
em and ∂qp

em denotes the partial derivative of pem

with respect to the first and second argument, respectively. Moreover, we have
∇2p`0(p, q) = 0 and

∇2p`i(p, q) =∇
(
p`i−1(p, q)

q

)>
∇2pem

(
p`i−1(p, q), q, h

)
∇
(
p`i−1(p, q)

q

)
+ ∂pp

em
(
p`i−1(p, q), q, h

)
∇2p`i−1(p, q)

for all i ∈ [N], where ∇2pem denotes the Hessian matrix w.r.t. p and q only. Hence,
we obtain by induction that ∂p p`i(p, q) ≥ 0 and ∇2p`i(p, q) is positive semidefinite,
if ∂ppem(p`i−1(p, q), q, h) ≥ 0 and ∇2pem(p`i(p, q), q, h) is positive semidefinite. If
additionally ∂qpem(p`i−1(p, q), q, h) ≥ 0 holds, then also ∂q p`i(p, q) ≥ 0 follows.

Since ϕ(p, q) ≤ 0 on Uϕ, we obtain by (2.18) that p`i(p, q) ≥ p`i−1(p, q) and thus
(p`i(p, q), q) ∈ Uϕ for i ∈ [N]. Moreover, (2.18) yields

∂pp
em(p, q, h) = 1− h ∂pϕ

(
p− h

2ϕ(p, q), q
)(

1− h
2 ∂pϕ(p, q)

)
.

By Lemma 2.16 we have ∂pϕ ≥ 0, ∂ppϕ ≤ 0 on Uϕ and by choosing the step
size h according to the assumptions of Corollary 2.18 we get 1 − h

2 ∂pϕ(p, q) ≥ 0

and 1− h ∂pϕ(p, q) ≥ 0 for (p, q) ∈ Uϕ. This shows that

∂pp
em(p, q, h) ≥ 1− h ∂p ϕ

(
p− h

2ϕ(p, q), q
)
≥ 1− h ∂p ϕ(p, q) ≥ 0.

38

2.3. Gas Flow in Pipelines without Height Differences

Moreover, one can verify that∇2pem(p, q) is singular and thus is positive semidefinite
on Uϕ if ∂pppem + ∂ppp

em ≥ 0 on Uϕ.

To show the latter, we observe that (∂ppp
em+∂qqp

em)(p, q, h) is a rational function
in p, q and h with positive denominator on Uϕ. The numerator is a polynomial which
can be written in the form

h
(
b0(p, q)−b1(p, q)h−b2(p, q)h2−b3(p, q)h3−b4(p, q)h4−b5(p, q)h5

)
=: hB(p, q, h)

where b0 to b5 are polynomials in p and q. These polynomials and all their derivatives
w.r.t. the pressure p are positive on Uϕ and since the degree of b0 w.r.t. p is greater
than the degree of the other polynomials, the derivatives of B(p, q, h) w.r.t. p are
positive at p = c q

νcA
, h = 0 and nonincreasing in h. Thus, we can determine h̄ which

satisfies the upper bound of Corollary 2.18 such that B(p, q, h) and all its derivatives
w.r.t. p are nonnegative for step sizes h with 0 < h ≤ h̄ and (p, q) ∈ Uϕ.

This shows that for 0 < h ≤ h̄ the numerator – and thus ∂pppem + ∂ppp
em –

is nonnegative for all (p, q) ∈ Uϕ. Note that then ∂ppp
em as well as ∂pppem are

nonnegative. As already observed, this implies by induction that ∂pp`i(p, q) ≥ 0 and
that ∇2p`i(p, q) is positive semidefinite, i.e., p`i(p, q) is convex, for all (p, q) ∈ U .

Finally, ∂qpem(p, 0, h) = 0 and ∂qqpem(p, q, h) ≥ 0 on Uϕ implies ∂qpem(p, q, h) ≥ 0

and we deduce ∂qp`i(p, q) ≥ 0.

Since ∂pϕ is bounded on Uϕ and both methods have consistency order 2
they are convergent by Theorem 3.4 and Corollary 3.5 in Chapter 3 of Mattheij
and Molenaar [97]; see also Remark 2.8. Hence, we deduce that P `(p(L), q,N)

and Pu(p(L), q,N) converge to p(0) for N →∞. Moreover, the particular bound on
the step size for νc = 0.4 follows by determining the maximal step size such that pem

is convex as discussed above.

Remark 2.24. As we already observed in Remark 2.21 it is a necessary assumption
that c q

A p is bounded from above by νc ∈ (0, 1). Moreover, the suitable step sizes h
and thus the discretization strongly depend on νc.

We have provided explicit bounds on h for νc = 0.4 in the results above. For the
gas network example GasLib-40 which will be discussed in Section 4.6, the upper
bound h ≤ 4.925Dλ leads to step sizes between 150 m and 570 m corresponding to 6
up to 259 grid points per pipeline. As already mentioned before, the velocity v of
the gas is typically much smaller than the speed of sound c; see Section 1.1. Due
to v

c = c q
A p , we could also use a smaller bound, e.g., νc = 0.2. Then the upper bound

on h in Lemma 2.23 would be h ≤ 29.15Dλ . Again, for the network GasLib-40 this
corresponds to step sizes 875 m and 3.4 km.

39

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

Furthermore, also larger values νc are possible, but then the maximal step size
decreases significantly. For example, using νc = 0.8 leads to step sizes h ≤ 0.16Dλ
which corresponds to 5.12 m up to 19.2 m for the network GasLib-40.

In this section, we have seen that the functions P ` and Pu can be used to define a
relaxation for constraints given by the ODE constraints (1.13). In Chapter 4 we will
use these functions where we apply the spatial branch-and-bound framework which
we will develop in the next chapter. To this end, we construct linear under- and
overestimators for the functions P ` and Pu. Since both are convex and continuously
differentiable, linear underestimators for P ` are given by gradient cuts. Moreover,
the concave envelope of Pu over U is piecewise affine linear and it suffices to evalu-
ate Pu at the vertices of the polytope U in order to compute the concave envelope;
see, e.g., Horst and Tuy [73, Theorem IV.6].

2.4 Gas Flow in Pipelines with Height Differences

So far we have only considered pipelines without height differences. In this case p(x)

is concave, see Corollary 2.17, the input-output function (p(L), q) 7→ p(0) is convex
and under the conditions of Lemma 2.23 the explicit midpoint method (2.18) yields
a convex lower bound and the trapezoidal rule (2.19) a convex upper bound. In
this section, we discuss the more general case of nonzero slope. Then p(x) is not
necessarily concave anymore, for example, see Figure 2.2, such that we cannot apply
Corollary 2.9 to show that the explicit midpoint method defines a lower or upper
bound. Instead we will distinguish three particular cases and show that the second-
order Taylor method (2.12) and the trapezoidal rule (2.14) can still be used to obtain
convex lower and upper bounds.
Recall that for slope σ ∈ [−1, 1] the Euler equation (1.8) is given by

∂xp(x)

(
1− c2q2

A2p(x)2

)
= − λc2

2DA2

q|q|
p(x)

− g

c2
σ p(x), x ∈ [0, L].

We still assume that q ≥ 0 and c q ≤ νcAp holds with νc ∈ (0, 1). Then the ODE is
given by

∂xp(x) = ϕσ
(
p(x), q

)
:= − p(x)

2c2D

2DgσA2p2(x) + λc4q2

A2p2(x)− c2q2
, x ∈ [0, L].

In the case of a nonnegative slope σ ≥ 0, the right-hand side is always negative.
Otherwise, if σ < 0, the right-hand side has the root pr(q, σ) := c2q

A

√
−λ

2Dgσ , and
ϕσ(p, q) ≥ 0 for p ≥ pr(q, σ) and ϕσ(p, q) ≤ 0 for p ≤ pr(q, σ) holds.

40

2.4. Gas Flow in Pipelines with Height Differences

0 5 10 15 20

0

10

20

30

40

50

60

70

80

0 5 10 15 20

15

20

25

30

Figure 2.2. The figure shows the pressure p(x) in bar along a 20 km
pipe. The left figure depicts p(x) for one initial value and positive
slope, and the right figure shows p(x) for different initial values and
negative slope.

Figure 2.2 shows the change in pressure of gas flowing along a pipe with positive
slope on the left and a pipe with negative slope on the right. For σ > 0 the gas has
to compensate friction and gravitation, which results in an increased pressure drop
in comparison with the case σ = 0. In the case σ < 0, gravitation works contrary to
friction, such that there is no pressure drop or increase if the pressure p(0) equals
pr(q, σ) (see the middle line on the right of Figure 2.2). If the pressure p(0) is less
than the root, the pressure drop is less than in the case of σ = 0. Furthermore, if
the pressure p(0) is larger than the root, the pressure increases in the flow direction.

Analogously to the proof of Corollary 2.18, we consider the transformed differential
equation

p̃(0) = p0, ∂xp̃(x) = −ϕσ
(
p̃(x), q

)
, x ∈ [0, L] (2.21)

with p̃(x) = p(L− x) to show that we can compute lower and upper bounds on the
inflow pressure p(0) = p̃(L). Again, we consider an equidistant discretization with
step size h = L

N . Then the application of the Taylor method yields

pta0 = p0, ptai = ptai−1 − hϕσ(ptai−1, q) + h2

2 (∂pϕσ · ϕσ)(ptai−1, q) ∀i ∈ [N]

(2.22)

and application of the trapezoidal rule is given by

ptr0 = p0, ptri = ptri−1 − h
2

[
ϕσ(ptri−1, q) + ϕσ(ptri , q)

]
∀i ∈ [N]

(2.23)

41

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

with ϕσ instead of ϕ. Analogously, to the previous sections we define the input-
output functions P ta, P tr : U ×N→ R through evaluating (2.22) and (2.23). Note
that we do not use superscript ` and u here, since we will see that the lower and
upper bound are not always given by the same method.
To show that the second-order Taylor method and the trapezoidal rule produce

convex lower and upper bounds on the solution of (2.21), we analyze the following
three cases.

1. positive slope σ > 0,
2. negative slope σ < 0 with p0 ≤ pr(q, σ), or σ = 0,
3. negative slope σ < 0 with p0 ≥ pr(q, σ).

In Lemmas 2.12 and 2.14 we have seen that the second-order Taylor method and the
trapezoidal rule define convex input-output functions, if f(s, x, y) and f tah (s, h, x, y)

are convex in (x, y). We show that these conditions are satisfied for (2.22) and (2.23)
in all three cases.

Lemma 2.25. Let λc2 ≥ −2Dgσ. Then −ϕσ(p, q) is convex on Uϕ. Moreover, we
define

ϕtah (p, q) := −ϕσ(p, q) + h
2 (∂pϕσ · ϕσ)(p, q).

Then the increment function ϕtah (p, q) is convex on Uϕ, if σ > 0 and the step size h
satisfies

0 < h ≤ D

λ

(3ν2
c + 1)(1− ν2

c)2

3ν2
c (ν4

c + 5ν2
c + 2)

=:
1

b+
, (2.24)

or otherwise if σ ≤ 0 and h satisfies

0 < h ≤ D

λ

2(3ν2
c + 1)(1− ν2

c)2

3ν2
c (2ν4

c + 5ν2
c + 1)

=:
1

b−
. (2.25)

For instance, if νc = 0.4, then the step size has to satisfy 0 < h ≤ 0.76Dλ if σ > 0

and 0 < h ≤ 2.35Dλ if σ ≤ 0.

Proof. Independently of σ ∈ [−1, 1] the Hessian matrix −∇2ϕσ(p, q) is singular and
thus positive semidefinite on Uϕ if the trace −∂ppϕσ−∂qqϕσ is nonnegative. In fact,
if the inequality λc2 ≥ −2Dgσ holds, then both derivatives ∂ppϕσ and ∂qqϕσ are
nonpositive, i.e., −ϕσ is convex on Uϕ.
Furthermore, also ∇2ϕtah (p, q) is singular and ∂ppϕtah (p, q) +∂qqϕ

ta
h (p, q) is a ratio-

nal function in (p, q, h) with positive denominator on Uϕ. The numerator is a linear
function in the step size h and positive for h = 0. Solving the numerator equals zero
for h yields an upper bound on h such that ∂ppϕtah (p, q)+∂qqϕ

ta
h (p, q) is nonnegative.

This upper bound is decreasing in σ and nondecreasing in p. Then evaluating this

42

2.4. Gas Flow in Pipelines with Height Differences

bound at p = c q
νcA

, σ = 0 and σ = 1, respectively, produces the upper bounds given
in the statement. Thus, ∂ppϕtah (p, q) + ∂qqϕ

ta
h (p, q) is nonnegative and ∇2ϕtah (p, q) is

positive semidefinite if h satisfies the upper bounds on the step size, i.e., ϕtah (p, q) is
convex on Uϕ.

Before we show that the input-output functions are not only convex, but also
provide lower and upper bounds, note that further derivatives of p̃(x) are given by

∂xxp̃(x) = (∂pϕσ · ϕσ)(p̃(x), q),

∂xxxp̃(x) = −
(
∂ppϕσ(ϕσ)2 + (∂pϕσ)2 ϕσ

)
(p̃(x), q).

(2.26)

Moreover, the derivative −∂pϕσ on Uϕ is bounded by

1−3ν2
c

c2(1−ν2
c) gσ −

λ ν2
c

2D
(ν2

c+1)
(1−ν2

c)2 = −∂pϕσ
(
c q
νcA

, q
)
≤ −∂pϕσ(p, q) ≤ −∂pϕσ(p, 0) ≤ gσ

c2

(2.27)
since −∂ppϕσ is nonnegative and −∂pqϕσ is nonpositive.

Lemma 2.26. Let σ > 0, let b+ be defined by (2.24) and define

b :=
1− 3ν2

c

c2(1− ν2
c)
gσ − λ

2D

ν2
c (ν2

c + 1)

(1− ν2
c)2

and B :=
gσ

c2
.

Then if h · max{−b, B} < 2, the trapezoidal rule produces upper bounds on the
solution of (2.21) for (p0, q) ∈ U and in particular P tr : U ×N→ R is convex on U .

Moreover, if h ·max{−b, b+} ≤ 1, the second-order Taylor method produces lower
bounds and P ta : U ×N→ R is convex on U .

For instance, if νc = 0.4 and λc2 ≥ 2Dgσ, then P tr is convex and produces upper
bounds for h ≤ 4Dλ . Besides, P ta is convex and produces lower bounds for step
sizes h ≤ 0.76Dλ .

Proof. In the case σ > 0, we have ϕσ(p, q) < 0 and ∂ppϕσ(p, q) ≤ 0 and thus
∂xxxp̃(x) ≥ 0 holds, i.e., ∂xp̃(x) is convex. However, ∂pϕσ(p, q) may change sign
and thus p̃(x) may change from concave to convex in x, see the left-hand side of
Figure 2.2.

By inequality (2.27) we have that −∂pϕσ is bounded from below by b and from
above by B. Additionally, −ϕσ is convex on Uϕ and ∂xp̃(x) is convex. Analogously
to Corollary 2.19 we can show that a solution of (2.23) exists for all i ∈ [N]. Each
step of the trapezoidal rule is given by

R(h, ptri−1, p
tr
i , q) = ptri − ptri−1 + h

2

[
ϕσ
(
ptri−1, q

)
+ ϕσ

(
ptri , q

)]
= 0.

43

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

Moreover, we have R(h, ptri−1, p
tr
i−1, q) < 0 and R(h, ptri−1, p

tr
i , q) is strictly increasing

in ptri if h ·max{−b, B} < 2 holds. Hence, there exists a solution to (2.23), and by
Corollary 2.13 and Lemma 2.14 the trapezoidal rule produces upper bounds and the
input-output function P tr is convex on U if h satisfies h ·max{−b, B} < 2.

Furthermore, by Lemma 2.25 we get that ϕtah (p, q) is convex for h ≤ b−1
+ . Besides

(∂ppϕσ · ϕσ + (∂pϕσ)2) is nonnegative on Uϕ, that is, Corollary 2.11 holds with
b′ = 0 and shows together with Lemma 2.12 that the Taylor method produces a
convex lower bound if h satisfies h ·max{−b, b+} ≤ 1.

The particular bounds for νc = 0.4 follow by evaluating b, B and b+ at νc = 0.4

and underestimating the bounds by using λc2 ≥ 2Dgσ.

Lemma 2.27. Let σ < 0 and p0 ≤ pr(q, σ), or let σ = 0. Moreover, let the inequality
λc2 ≥ −2Dgσ be satisfied and b, b− as defined in Lemmas 2.25 and 2.26. Then if
inequality h · max{−b, 0} ≤ 2 is true and a solution of (2.23) with ptri ≤ pr(q, σ)

for all i ∈ [N] exists, the trapezoidal rule produces upper bounds on the solution
of (2.21) for (p0, q) ∈ U and in particular P tr : U ×N→ R is convex on U .

Moreover, if h ·max{−b, b−} ≤ 1, the second-order Taylor method produces lower
bounds and P ta : U ×N→ R is convex on U .

For instance, if νc = 0.4, then P tr defines a convex upper bound for h ≤ D
λ

441
24

and P ta defines a convex lower bound for step sizes h ≤ 2.35Dλ .

Proof. This case is analogous to the analysis of σ > 0. Here, we have that
ϕσ(p, q) ≤ 0, ∂pϕσ(p, q) ≥ 0 and ∂ppϕσ(p, q) ≤ 0 hold on Uϕ with p ≤ pr(q, σ),
therefore ∂xxp̃(x) ≤ 0 and ∂xxxp̃(x) ≥ 0 also hold, i.e., p̃(x) is concave and ∂xp̃(x) is
convex. Moreover, the signs of ϕσ and its derivatives yield:

(∂ppϕσ · ϕσ + (∂pϕσ)2)(p, q) ≥ 0.

Again, by Lemma 2.25 −ϕσ is convex. Further, the partial derivative −∂pϕσ is
bounded by b ≤ −ϕσ ≤ 0. Thus, by Corollary 2.13 and Lemma 2.14 the trapezoidal
rule produces upper bounds and the input-output function P tr is convex on U if h
satisfies h ·max{−b, 0} ≤ 2.

Similar to before Lemma 2.25 yields that ϕtah (p, q) is convex for h ≤ b−1
− . Besides

(∂ppϕσ · ϕσ + (∂pϕσ)2) is nonnegative on Uϕ, that is, Corollary 2.11 holds again
with b′ = 0 and shows together with Lemma 2.12 that the Taylor method produces
a convex lower bound if h satisfies h ·max{−b, b−} ≤ 1. Furthermore, the particular
bounds for νc = 0.4 follow by evaluating b and b− at νc = 0.4.

44

2.4. Gas Flow in Pipelines with Height Differences

Lemma 2.28. Let σ < 0 and p0 ≥ pr(q, σ). Moreover, let λc2 ≥ −6Dgσ and
suppose that pr(p, q) ≥ c q

νcA
. Then if

0 < h ≤ λc2 + 2Dgσ

−λgσ

and a solution of (2.23) with ptri ≥ pr(q, σ) for all i ∈ [N] exists, the trapezoidal rule
produces lower bounds on the solution of (2.21) for (p0, q) ∈ U and the input-output
function P tr : U ×N→ R is convex on U .
Moreover, if h satisfies

0 < h ≤ λc2 + 2Dgσ

−3λgσ
,

the second-order Taylor method produces upper bounds and P ta : U × N → R is
convex on U .
Otherwise, if pr(p, q) < c q

νcA
, then the upper bounds on the step sizes are given by

the conditions of Lemma 2.27, i.e., the upper bounds are given by h ·max{−b, 0} ≤ 2

for the trapezoidal rule and h ·max{−b, b−} ≤ 1 for the second-order Taylor method
with b and b− as defined in Lemmas 2.25 and 2.26.

Proof. We only consider the case pr(p, q) ≥ c q
νcA

. The other case follows analogously.
In this case, we have ϕσ(p, q) ≥ 0, ∂pϕσ(p, q) ≥ 0 and ∂ppϕσ(p, q) ≤ 0. Hence, p̃(x)

is convex and −∂pϕσ is bounded by

0 ≥ −∂pϕσ
(
p, q
)
≥ −∂pϕσ

(
pr(q, σ), q

)
=

2λgσ

2Dgσ + λc2
.

However, unlike before the signs of ϕσ and its derivatives do not immediately imply
that ∂xp̃(x) is convex or concave. Nevertheless, we can show that in this case derova-
tive ∂xp̃(x) is concave. In fact, since ∂xxxp̃(x) = −(∂ppϕσ(ϕσ)2+(∂pϕσ)2 ϕσ)(p̃(x), q)

and ϕσ(p, q) ≥ 0 holds, it suffices to show that

d(p, q) :=
(
∂ppϕσ · ϕσ + (∂pϕσ)2

)
(p, q) ≥ 0

is true. To this end, we observe that d(p, q) is a rational function with positive
denominator on Uϕ. The numerator of d(p, q) is a polynomial of degree 8 in p and q.
Moreover, we can show that the numerator is nonnegative on Uϕ if λc2 ≥ −6Dgσ

is satisfied.
Hence, ∂xp̃(x) is concave and the trapezoidal rule yields by Corollary 2.13 lower

bounds if the step size h satisfies

0 < h ≤ λc2 + 2Dgσ

−λgσ

45

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

and by Lemma 2.14 the input-output function is convex. Moreover, since d(p, q) ≥ 0

is true, Corollary 2.11 holds with b′ = 0 and thus the second-order Taylor methods
produces upper bounds if the step size h satisfies

0 < h ≤ λc2 + 2Dgσ

−3λgσ
.

To see that P ta is convex too, note that the increment function ϕtah (p, q) is convex
for step size h ≤ 1

b−
; see Lemma 2.25. However, to determine b− we have used

that the pressure is bounded below by p ≥ c q
νcA

. But by assumption pr(q, σ) ≥ c q
νcA

holds. Hence, using p ≥ pr(q, σ) instead yields that ϕtah (p, q) is convex under the
bound above. Thus, by Lemma 2.12 the second-order Taylor produces a convex
input-output function P ta, too.

Remark 2.29. In Corollary 2.9 and Lemma 2.26 we could show that there ex-
ist solutions to the implicit trapezoidal rule. However, in Lemmas 2.27 and 2.28
we assumed that solutions ptri with ptri ≤ pr(q, σ), respectively, ptri ≥ pr(q, σ) for
all i ∈ [N] exist. The reason for that is the following. Each step of the implicit
trapezoidal rule is given by

R(h, ptri−1, p
tr
i , q) = ptri − ptri−1 + h

2

[
ϕσ
(
ptri−1, q

)
+ ϕσ

(
ptri , q

)]
= 0.

However, if σ < 0 and ptri−1− h
2 ϕσ(ptri−1, q) is greater, respectively, less than pr(q, σ),

there exist no ptri with the properties above. Nevertheless, in both cases pr(q, σ) is
an upper, respectively, lower bound on the analytical solution p(0).

Note that, in case 3, i.e., σ < 0 and p0 ≥ pr(q, σ), we could avoid this problem
by considering p(0) = p0 and computing bounds on p(L). But in case 2 we cannot
avoid this problem, since p(L) has to satisfy the inequality c q

A p(L) ≤ νc.

Lemmas 2.26 to 2.28 show that we can compute lower and upper bounds on the
solution of the stationary isothermal Euler equations even in the case with height
differences. We remark that the assumption of λc2 ≥ 6Dg|σ| poses only a restriction
on very small friction coefficients λ, since we typically have c2 � 6Dg|σ|.

In Chapter 4, we develop a spatial branch-and-bound algorithm to solve opti-
mization problems for stationary gas transport which is based on the relaxations
produced by the explicit midpoint method, second-order Taylor method and the
trapezoidal rule. Therefore, we distinguish between σ = 0 and σ 6= 0 again. At
first, we develop the algorithm for the case σ = 0 and then discuss how to adapt the
algorithm to cope with slope σ 6= 0; see Section 4.4 and Section 4.5.

46

2.5. Outlook

2.5 Outlook

The results in this chapter leave a lot of open questions and possibilities for future
research. First of all, the conditions stated in Corollaries 2.9, 2.11 and 2.13 are
rather strict, since they require the derivative of the solution of the scalar differen-
tial equation to be convex or concave and in Corollary 2.9 also the solution itself.
Moreover, there is the obvious question if these results can be generalized to systems
of ODEs.

Concerning the latter question, we can present the following analogue of
Lemma 2.3 which provides a sufficient condition for one-step methods to produce
lower or upper bounds on the solution of an ODE system.

Lemma 2.30. Consider a method of the form (2.3) for a system of ODEs with
continuously differentiable f : R×Rk ×Rn → Rn. Let the local discretization error
of the method be nonnegative, i.e., the inequality

y(s+ h)− y(s)− h fh
(
s, h, x, y(s), y(s+ h)

)
≥ 0

holds for all s ∈ [0, S] and h ≥ 0 with s+ h ≤ S. Define the mean value derivatives

D̂yfh(s, h, x, y, ỹ, z, z̃) :=

∫ 1

0

∂yfh(s, h, x, y + µ(z − y), ỹ + µ(z̃ − ỹ)) dµ,

D̂ỹfh(s, h, x, y, ỹ, z, z̃) :=

∫ 1

0

∂ỹfh(s, h, x, y + µ(z − y), ỹ + µ(z̃ − ỹ)) dµ.

Suppose there are hmax > 0 and dmax > 0 such that(
I − h D̂ỹfh(s, h, x, y(s), y(s+ h), z, z̃)

)−1 (
I + h D̂yfh(s, h, x, y(s), y(s+ h), z, z̃)

)
has nonnegative entries for all 0 < h ≤ hmax, s ∈ [0, S − h], ‖z − y(s)‖ ≤ dmax,
and ‖z̃ − y(s + h)‖ ≤ dmax. Then for all 0 < h ≤ hmax such that the solution
of the method (2.3) satisfies ‖yi − y(si)‖ ≤ dmax, i ∈ [N], one has yi ≤ y(si) for
all i ∈ [N].

Otherwise, if the local discretization error is nonpositive, then we obtain yi ≥ y(si)

for all i ∈ [N], under the same assumptions.

Note that this result has already been given in [56] and can be proven in a similar
way to Lemma 2.3.

In Section 2.3, we have seen that we can successfully apply Corollaries 2.9 and 2.13
to the stationary isothermal Euler equations without height differences even though

47

Chapter 2. Bounding the Solutions of Ordinary Differential Equations

their requirements are rather strict. However, it seems that this particular differen-
tial equation has several favorable properties, i.e., concavity of the solution and its
derivatives. Nevertheless, the more complicated case of nonzero slope in Section 2.4
shows that it is still possible to derive lower and upper bounds by analyzing the
properties of the right-hand side of the ODE and the properties of the solution if
these requirements are not fulfilled for all initial values and parameter.
Furthermore, for the context of bound propagation this example yields another

idea. Consider the case depicted on the left-hand side of Figure 2.2, i.e., positive
slope σ and positive mass flow q. In this case, there exists p∗ with ∂pϕσ(p∗, q) = 0

and x∗ ∈ [0, L] with p(x∗) = p∗. Moreover, the solution p(x) is convex for x ≤ x∗

and concave for x ≥ x∗.
Given a discretization 0 = xN < . . . < x1 < x0 = L, we can analogously to

Corollary 2.18 show that the explicit midpoint method produces lower bounds p`i
on p(xi) for all i ∈ [N] with p`i ≤ p∗. Suppose that there is an index j ∈ [N − 1]

with p`j < p∗ but p`j+1 ≥ p∗. Then we can (numerically) compute a new step
size h∗j+1 ≤ hj+1 such that

p`,∗j+1 = pem(p`j , q, h
∗
j+1) = p∗ ≤ p(xj − h∗j+1)

holds. If we additionally have a method which provides lower bounds in the re-
maining part of the pipeline, for example, the second-order Taylor method, we can
concatenate these two methods and thus compute a lower bound on p(0).
Next, we consider a general autonomous ODE. Then the second derivative of the

solution is ∂ssy(s) = ∂yf
(
x, y(s)

)
f
(
x, y(s)

)
. If bounds on the possible solutions are

known, we can check whether the right-hand side and its derivatives change their
signs in this interval. Note that such bounds are often known, e.g., bounds on the
amount of substances in a chemical reaction. Therefore, the set of possible solution
values can be partitioned in such a way that the solution is either convex or concave
on each part. Constructing under- and overestimators for every part provides lower
and upper bounds on the whole solution.
We point out that even if it may not be possible to prove convexity of the input-

output functions for the concatenation of different methods, the lower and upper
bounds can be used to check δ-feasibility as we will do in the next chapter and
for bound propagation. Moreover, bound propagation can be used to construct a
finitely consistent bounding operation such that spatial branch-and-bound termi-
nates finitely; see Horst and Tuy [73, Theorem IV.1].

48

CHA PTER 3
Spatial Branch-and-Bound for
ODE Constrained Problems

In this chapter, we develop a spatial branch-and-bound algorithm to globally solve
mixed-integer nonlinear optimization problems with parameter-dependent ordinary
differential equation constraints of the form

min C(x, y0, yS , z)

s.t. G(x, y0, yS , z) ≤ 0,

∂sy(s) = f
(
s, x, y(s)

)
, s ∈ [0, S],

y0 = y(0), yS = y(S),

x ∈ X, y0 ∈ Y 0, yS ∈ Y S , z ∈ Z,

(3.1)

where X ⊂ Rk and Y 0, Y S ⊂ Rn are polytopes and Z ⊂ Zm is bounded. The
objective function C : X ×Y 0×Y S ×Z → R as well as the constraints given by the
function G : X×Y 0×Y S×Z → Rl can be nonlinear, but we assume that C, G, and
the function f : R×Rk×Rn → Rn are continuously differentiable. The variables y(s)

are functions that solve the ODEs specified by ∂sy(s) = f(s, x, y(s)) for s ∈ [0, S].
Note that we assume that y(s) can be the solution of a single ODE system, of a
collection of (independent) ODE systems or even n scalar differential equations.
Moreover, continuous variables x, y0, yS and integer variables z are present.

The particular structure of (3.1) is motivated by the application of stationary gas
networks which will be the topic of the subsequent chapter. This class of optimization
problems has clear connections to mixed-integer optimal control problems and global
optimization of dynamical systems, however, the distinguishing feature of (3.1) is

49

Chapter 3. Spatial Branch-and-Bound for ODE Constrained Problems

that the solution(s) y(s) of the differential equations only need to be known at a finite
number of positions, namely 0 and S. The objective function and further constraints
of (3.1) only depend on the corresponding values y0, yS and the parameters x,
but not on the ODE solution y(s) at some intermediate point s ∈ (0, S). Note
that for notational simplicity, we assume that the ODEs are defined on the same
interval [0, S]; this can be assured by reparametrization.

A natural approach for optimization problems like (3.1) is the first-discretize-then-
optimize approach. That is, after discretizing the differential equations in (3.1) the
resulting mixed-integer nonlinear problem is solved. However, in this approach one
has only an a priori guarantee on the distance of a feasible solution of the discretized
problem to a feasible solution of the original problem. Furthermore, one has no guar-
antee that the original problem is infeasible if the discretized problem is infeasible,
since discretization does not yield a relaxation of the feasible set. Moreover, using
fine discretizations to compute accurate solutions leads to eventually huge MINLPs
which can then be hard to solve due to their size. Instead, we define relaxations of
the original problem. Hence, infeasibility of the relaxations certifies infeasibility of
the original problem.

The main ideas of this chapter are based on the assumption that functions F `

and Fu : X × Y 0 × Nn → Rn exist which are under- and overestimators for the
input-output function of the differential equation in (3.1), that is, the function

F : X × Y 0 → Rn,
(
x, y0

)
7→ y(S)

which maps the parameters x and the initial values y0 = y(0) to the solution y(S)

at the second boundary. Moreover, we assume that F ` and Fu converge to F

for N → ∞. This assumption is clearly motivated by the results of the previous
chapter, where we have seen that in particular cases one-step methods for scalar
ODEs can be used to define such functions F ` and Fu. Then with these functions
we define a relaxation of (3.1) by replacing the differential equations with

F `(x, y0, N) ≤ yS ≤ Fu(x, y0, N).

We start this chapter with a short literature review. Afterwards, in Section 3.2
we present an equivalent reformulation of problem (3.1). We then introduce the
required assumptions on the functions F ` and Fu mentioned above which are used
to relax the reformulation and then show how (ε, δ)-optimal solutions of the refor-
mulation and the relaxation are related. In Section 3.3 we show that spatial branch-
and-bound can be applied to the relaxation under some standard assumptions and
discuss two approaches how to compute (ε, δ)-optimal solutions for the reformulation
of (3.1). These approaches are similar to first-discretize-then-optimize approaches in

50

3.1. Literature Review

the sense that the parameter N of the relaxation either has to be chosen up front or
iteratively refined to achieve a desired accuracy. Finally, in Section 3.4 we develop
an algorithm which incorporates adaptively changing the parameter N in a single
spatial branch-and-bound tree.
We remark that the results of this chapter have been presented in [56] which is joint

work with Marc E. Pfetsch and Stefan Ulbrich. This chapter has been supplemented
with a discussion of how to extend Algorithm 3.3 such that the parameter N can be
chosen more freely during the course of the algorithm and how to define a consistent
feasibility notion in Section 3.4.

3.1 Literature Review

In this chapter, we develop a method to globally solve a class of optimization prob-
lems of the form (3.1). The general approach is to use branch-and-bound to handle
the integer variables z and spatial branching for handling nonlinearities. Both ap-
proaches are standard in mixed-integer nonlinear programming, see, for example,
the books by Horst and Tuy [73], by Lee and Leyffer [87], and by Locatelli and
Schoen [93] or the overview articles of Floudas and Gounaris [38], Hemmecke et
al. [66], Belotti et al. [10], and more recently by Kılınç and Sahinidis [79]. The
basic idea of branch-and-bound methods is to recursively divide the feasible set into
smaller parts, i.e., nodes, (branching) and solve convex relaxations of the original
problem on these parts to derive lower bounds on the optimal solution value. If the
solution of the convex relaxation is a feasible solution of the original problem, the so-
lution also defines an upper bound on the optimal solution value (bounding). Based
on lower and upper bounds on the optimal solution value, a node can be fathomed if
the lower bound on this part is greater than the currently best known upper bound.
In this process, spatial branching refers to the technique in which the domain of a
continuous variable is split into (usually two) nonempty parts and thereby creating
(two) new child nodes in the so-called branch-and-bound tree. Since the bounds
on the variable are tighter in each child node, the hope is that this can be used by
other solver components to further tighten bounds. This process produces tighter
relaxations in the child nodes and results in a convergent solution algorithm under
appropriate conditions.
For nonlinear optimization problems the convex relaxations are usually based on

convex underestimators and concave overestimators of the constraints and it seems
that the first time the convex envelope, i.e., the largest convex underestimator, has
appeared in the literature is in Kleibohm [81]. Some further early articles which use
convex envelopes or underestimators for global optimization are the ones by Falk [33],
Falk and Soland [35], Falk and Hoffman [34] and Horst [72]. Since then some well-

51

Chapter 3. Spatial Branch-and-Bound for ODE Constrained Problems

known techniques have been established to derive convex, concave or even linear
under- and overestimators for large classes of functions, e.g., McCormick inequal-
ities [99], outer-approximation by Duran and Grossmann [30], the reformulation-
linearization technique by Sherali and coworkers [137, 138, 139], or the αBB method
by Adjiman and coworkers [3, 4]. Moreover, the McCormick inequalities have been
generalized by Scott et al. [136, 145]. Other articles often deal with underestimators
for particular functions or with specific properties; e.g., see Rikun [113], Liberti and
Pantelides [89], Tardella [147], Meyer and Floudas [101], or Tawarmalani et al. [149].

The class of optimization problems (3.1) has clear connections to mixed-integer
optimal control problems with ordinary differential equation as well as partial dif-
ferential equation constraints and global optimization of dynamical systems. Since
the focus of this thesis lies on ODE constrained problems, we only review articles
that deal with such problems here. For a starting point on optimization with PDE
constraints, see, for example, Hinze et al. [70] or the articles mentioned in Sec-
tion 1.4. Approaches to solve ODE constrained problems are often based on the
first-discretize-then-optimize approach and a partial list of articles which use this
approach for ODE constrained problems is as follows. Čižniar et al. [24] proposed
a method that uses a time discretization and a polynomial basis to represent the
solutions between the time points. Sager et al. [120] developed a convexification
method to handle specific discrete decisions over time that switch the right-hand
sides of the differential equations (e.g., gear shifting) and show how to efficiently
compute feasible solutions; if the corresponding continuous relaxation is solved to
global optimality, then such solutions converge to a global optimal solution while
refining the discretization. Extending this approach, Sager and coworkers [119, 121],
and Jung et al. [76] developed a solution algorithm for the so-called combinato-
rial integral approximation problem. Zeile and coworkers [122, 156, 157] further
investigated combinatorial integral approximation decompositions and constraints
to avoid unrealistic frequent switching of integer decision. Furthermore, Kirches et
al. [80] extended the partial outer convexification approach to include additional
constraints on the solutions of the ODEs and the integer decisions. Bock et al. [15]
considered problems with implicit and explicit switches. Based on first-discretize-
then-optimize, they provided a reformulation as a nonlinear program with vanishing
constraints, which they solve numerically. Using the αBB approach, Diedam and
Sager [28] developed a method to globally solve the nonlinear programs arising from
a multiple-shooting discretization for optimal control problems without integer deci-
sions. Wilhelm et al. [155] presented a spatial branch-and-bound approach for global
optimization of stiff dynamical systems. After discretizing the differential equations
they apply the convexification methods of Stuber et al. [145] and solve the result-
ing problem by spatial branch-and-bound. All these first-discretize-then-optimize

52

3.1. Literature Review

approaches use a fixed discretization, i.e., the solutions only provide an approxima-
tion of the solutions of the ODEs with respect to an a priori fixed accuracy. Thus,
the discretization error is ignored or it is implicitly assumed that the discretization
is refined if an a posteriori accuracy check fails. Hante and Schmidt [60] provide
sufficient conditions such that the optimal value converges if the discretization is
iteratively refined.

Global optimization approaches for problems with ODE constraints have been
proposed in the following articles. Esposito and Floudas [31] developed an ap-
proach based on a fixed discretization of the control and αBB relaxations of the
solution operator which maps the control to the ODE solution. Papamichail and
Adjiman [109, 110] considered parametric ODEs and construct approximations via
the αBB approach. They proposed a spatial branch-and-bound algorithm based on
solving nonlinear programs (NLPs) in which ODEs have to be solved within the
solution of the NLPs. Lin and Stadtherr [91] used a time-discretization technique
to enclose ODE solutions in a branch-and-bound algorithm; see also Section 2.1.
Moreover, continuous-time enclosure techniques, see Section 2.1, have been used or
studied for the use in branch-and-bound methods by Chachuat et al. [21, 22], Barton
and Singer [141], Scott et al. [135], and Scott and Barton [133]. One further deter-
ministic global optimization approach has been developed by Bajaj and Hasan [6].
In [64] Hasan presented a method to construct edge-concave underestimators for
functions over rectangles which is similar to the αBB method. Then these under-
estimators can be linearly underestimated to define convex relaxations for spatial
branch-and-bound. This method has been extended by Bajaj and Hasan [6] to con-
struct edge-concave underestimators for functions depending on parametric ODE
solutions.

The two articles by Gugat et al. [53] and Schmidt et al. [128] present global
optimization approaches based on decomposition which are related to our approach.
Since they apply their methods to a stationary gas transport problem similar to
ours, these articles are discussed in more detail in Section 4.1.

The spatial branch-and-bound algorithm that we present in this chapter is distinct
from the approaches mentioned above in the following way. We adaptively refine the
discretization, i.e., the parameter N , which is not done in the approaches based on
first-discreteize-then-optimize. Moreover, we exploit the particular assumption that
the ODE solutions only needs to be known at a finite number of points to derive lower
and upper bounds on the ODE solutions which is different from the general-purpose
approximations for ODEs and the convexifications mentioned above.

53

Chapter 3. Spatial Branch-and-Bound for ODE Constrained Problems

3.2 Relaxation Hierarchy

In this section, we introduce the basic assumptions needed for our approach, an
equivalent reformulation of optimization problem (3.1) and relaxations of this refor-
mulation which will be the actual problems solved in the spatial branch-and-bound
algorithm we develop. Moreover, we show how we can use the relaxations to compute
so-called (ε, δ)-optimal solutions for the equivalent reformulation of (3.1).
We begin with a natural assumption on the existence of solutions of the differential

equations which we assume to hold throughout this chapter.

Assumption 1. The initial value problem

y(0) = y0, ∂sy(s) = f
(
s, x, y(s)

)
, s ∈ [0, S] (3.2)

is uniquely solvable for all x ∈ X and y0 ∈ Y 0.

This assumption is guaranteed, for example, if f is Lipschitz continuous w.r.t. y
for all parameters x. We then denote by

F : X × Y 0 → Rn,
(
x, y0

)
7→ y(S),

the solution operator/input-output function of the initial value problem (3.2) which
maps the parameters x ∈ X and initial values y0 ∈ Y 0 to the corresponding unique
solution y(S) at the boundary. Replacing the ODE constraints in (3.1) by

yS − F (x, y0) = 0

yields the equivalent problem

min C(x, y0, yS , z)

s.t. G(x, y0, yS , z) ≤ 0,

yS − F
(
x, y0

)
= 0,

x ∈ X, y0 ∈ Y 0, yS ∈ Y S , z ∈ Z.

(3.3)

The problems (3.1) and (3.3) are equivalent in the sense that every feasible or optimal
solution (x, y0, yS , y(s), z) of the former problem defines a feasible or optimal solution
(x, y0, yS , z) of the latter problem. Moreover, for every feasible or optimal solution
(x, y0, yS , z) of problem (3.3) there exists by construction a solution y(s) of the ODE
system (3.2) such that (x, y0, yS , y(s), z) is a feasible or optimal solution of (3.1).
Note that by Assumption 1 and the assumption that f is continuously differen-

tiable we can derive that F depends continuously on x and y0; e.g., see Hartman [61].

54

3.2. Relaxation Hierarchy

Thus, since X, Y 0, Y S are polytopes, Z is bounded and C, G are continuous as well,
the problem has an optimal solution if the feasible set is nonempty. Furthermore,
if there is an algebraic formula for F , then we could in principle use a black-box
spatial branch-and-bound solver to solve (3.3). Our approach is motivated by the
assumption that either such a formula is not known or the formula is (too) hard to
evaluate. For example, Gugat et al. [54] have shown that the stationary isothermal
Euler equation (1.8) with σ = 0 admits an analytical solution, however, the solution
has to be evaluated numerically, e.g., by Newton’s method, and thus is not suited
for standard MINLP techniques.

Our idea is to construct under- and overestimators of F (x, y0) by the right choice
of suitable numerical methods. Motivated by the results in the previous chapter we
make the following assumption.

Assumption 2. There exist continuous functions F ` : X × Y 0 × Nn → Rn

and Fu : X × Y 0 ×Nn → Rn which fulfill the inequality

F `
(
x, y0, N

)
≤ F

(
x, y0

)
≤ Fu

(
x, y0, N

)
for all x ∈ X, y0 ∈ Y 0 and N ≥ N0 ∈ Nn. Furthermore, we assume that the
functions F `i and Fui converge uniformly to Fi for all i ∈ [n] = {1, . . . , n} if Ni →∞.

For the example of stationary gas transport the functions F ` and Fu can for every
pipeline be defined by P ` and Pu given by the evaluation of the explicit midpoint
method and the trapezoidal rule. Thereby, N denotes the number of grid points
in an equidistant discretization and since the methods are convergent P ` and Pu

converge to the solution P for N →∞; see Lemma 2.23.

We then relax the constraint yS = F (x, y0) of the problem (3.3) by means of the
functions F ` and Fu. In this way we derive the problem

min C(x, y0, yS , z)

s.t. G(x, y0, yS , z) ≤ 0,

F `
(
x, y0, N

)
≤ yS ≤ Fu

(
x, y0, N

)
,

x ∈ X, y0 ∈ Y 0, yS ∈ Y S , z ∈ Z.

(3.4)

For N ≥ N0 this is a relaxation of (3.3), since every feasible point of (3.3) is feasible
for the new constraint

F `
(
x, y0, N

)
≤ yS ≤ Fu

(
x, y0, N

)
,

55

Chapter 3. Spatial Branch-and-Bound for ODE Constrained Problems

and the objective function is the same. Note that this constraint and thus (3.4) de-
pends on N ∈ Nn, yet we assume that N is not an optimization variable. Again, the
optimal value of this problem is bounded from below if the feasible set is nonempty,
because X, Y 0, Y S are polytopes, Z is bounded, and C, G, F ` and Fu are contin-
uous.
One of the main steps in (spatial) branch-and-bound algorithms is to compute

lower bounds on the optimal value; see, for example, Horst and Tuy [73], Locatelli
and Schoen [93], or Kılınç and Sahinidis [79]. Therefore, usually convex relaxations
of the original problem are solved, that is, a so-called convex underestimator of the
objective function is minimized on a convexification of the feasible set. Thereby, a
convex underestimator is defined as follows.

Definition 3.1. Let W ⊆ Rd and consider a function g : W → R. We say that a
function ǧ : conv(W)→ R is a convex underestimator of g if ǧ is convex and ǧ ≤ g
holds on W . Analogously, a concave function ĝ : conv(W)→ R with ĝ ≥ g on W is
called a concave overestimator of g.
Moreover, we call ǧ : conv(W) → Rl a convex underestimator or concave over-

estimator of a vector-valued function g : W → Rl if ǧi is a convex underestimator,
respectively, concave overestimator of gi for all i ∈ [l].

Assumption 3. We assume that we can construct convex underestimators Ǧ and Č
of G and C and in particular a convex underestimator F̌ ` and a concave overesti-
mator F̂u of F ` and Fu for all N ≥ N0 ∈ Nn on all subsets X̃ × Ỹ 0 × Ỹ S × Z̃
of X × Y 0 × Y S × Z which result from X × Y 0 × Y S × Z, e.g., via branching.

To derive convex, concave or even linear under- and overestimators there exist
well-known techniques in the literature, e.g., McCormick inequalities [99], outer-
approximation by Duran and Grossmann [30], the reformulation-linearization tech-
nique by Sherali and coworkers [137, 138, 139], or the αBB method by Adjiman and
coworkers [3, 4]. Other articles often deal with the construction of underestimators
based specific properties or with underestimators for particular functions; e.g., see
Meyer and Floudas [101] or Tardella [147] who deal with edge-concave functions
or Liberti and Pantelides [89] who construct underestimators for monomials of odd
degrees.
Usually these techniques are automatically applied by state-of-the-art solvers for

mixed-integer nonlinear programming, for example, ANTIGONE [102], BARON [123],
COUENNE [11], or SCIP [40] which are all based on spatial branch-and-bound. How-
ever, they cannot be used as black-box solvers for problems containing the func-
tions F ` and Fu defined by one-step methods for initial value problems as discussed
in the previous chapter. Nevertheless, it is still possible to derive under- and overes-

56

3.2. Relaxation Hierarchy

timators for these functions. If F ` and Fu are defined by explicit one-step methods,
then under- and overestimators can be derived by iteratively under- and overesti-
mating each step. Otherwise, if they are based on implicit methods, then under-
and overestimators can be derived by generalized McCormick relaxations for implicit
functions, see Scott et al. [136, 145]. Furthermore, if the input-output functions are
already convex, then linear underestimators for F ` are given by gradient cuts and the
concave envelope, i.e., the tightest concave overestimator, is a piecewise linear func-
tion whose construction only requires the evaluation of F ` at the vertices of X×Y 0;
see Horst and Tuy [73, Theorem IV.6] or Section 4.3 where we construct such under-
and overestimators for the example of stationary gas transport.

Based on the assumption above, we obtain the following convex relaxation of (3.4):

min α

s.t. Č(x, y0, yS , z)− α ≤ 0,

Ǧ(x, y0, yS , z) ≤ 0,

F̌ `
(
x, y0, N

)
≤ yS ≤ F̂u

(
x, y0, N

)
,

x ∈ X, y0 ∈ Y 0, yS ∈ Y S , z ∈ conv(Z).

(3.5)

Since (3.5) is a relaxation of optimization problem (3.3) which is a reformulation
of (3.1), this problem can be seen as a convex relaxation of our original problem (3.1).
Moreover, we assume that this problem can actually be solved by MINLP solvers
like the ones mentioned above. For example, SCIP solves relaxations of the MINLP
where Č, Ǧ, F̌ ` and F̂u are all given by linear functions.

Remark 3.2. Another possibility to derive a relaxation of (3.1) is to use the
continuous-time enclosure techniques by Singer and Barton [140], Scott and Bar-
ton [134], Scott et al. [135, 136] and Harwood and Barton [62, 63]; see Section 2.1.
These articles consider parametric ODEs of the form

∂sy(s, x) = f
(
s, x, y(s, x)

)
, y(0, x) = y0(x),

where the initial value is given by a continuous function y0(x) depending on the
parameter x. The authors derive auxiliary ODE systems

∂sc(s, x) = u
(
s, x, c(s, x), C(s, x)

)
, c(0, x) = c0(x),

∂sC(s, x) = o
(
s, x, c(s, x), C(s, x)

)
, C(0, x) = C0(x),

such that the solutions satisfy c(s, x) ≤ y(s, x) ≤ C(s, x). Furthermore, the solu-
tions c and C are convex, respectively, concave w.r.t. the parameter x. Moreover,

57

Chapter 3. Spatial Branch-and-Bound for ODE Constrained Problems

these systems can be used in a spatial branch-and-bound algorithm; for example,
see Chachuat et al. [21, 22].
These relaxations may also be used to define the functions F ` and Fu. However,

then the ODE system still either has to be solved with arbitrary precision, i.e., we
loose the desired adaptivity of our approach, or additionally has to be discretized
by bound preserving methods as introduced in the previous chapter.

Spatial branch-and-bound will enable us to compute so-called (ε, δ)-optimal so-
lutions of the relaxation (3.4). In the following we show how these are related to
(ε, δ)-optimal solutions of (3.3). This will then give rise to a first idea how to com-
pute such solutions. To this end, for a vector y ∈ Rn we denote with (y)+ the vector
of the componentwise maxima of yi and 0 and we define (ε, δ)-optimal solutions as
follows.

Definition 3.3. Let ε > 0 and δ > 0. We say that (x, y0, yS , z) ∈ X ×Y 0×Y S ×Z
is a δ-feasible solution of (3.3) if the following condition holds:

max
{∥∥(G(x, y0, yS , z

))
+

∥∥
∞,
∥∥ yS − F (x, y0

)∥∥
∞

}
≤ δ.

Analogously, we call (x, y0, yS , z) ∈ X × Y 0 × Y S × Z a δ-feasible solution of (3.4)
if instead

max
{∥∥(G (x, y0, yS , z

))
+

∥∥
∞,
∥∥(F `(x, y0, N

)
− yS

)
+

∥∥
∞,∥∥(yS − Fu (x, y0, N
))

+

∥∥
∞

}
≤ δ.

holds. Furthermore, we call (x, y0, yS , z) ∈ X × Y 0 × Y S × Z an (ε, δ)-optimal
solution of (3.3) or (3.4) if it is δ-feasible and the objective function satisfies

C(x, y0, yS , z) ≤ C∗ + ε,

where C∗ > −∞ is the optimal value of (3.3) or (3.4), or C∗ =∞ if their respective
feasible set is empty.

Note that this definition is consistent with the definition in the literature, e.g., in
Locatelli and Schoen [93]. Since our goal is to find (ε, δ)-optimal solutions of (3.3)
by approximatively solving (3.4), we now show how their respective (ε, δ)-optimal
solutions are related.

Lemma 3.4. Let δ1, δ2 > 0. Let (x, y0, yS , z) ∈ X × Y 0 × Y S × Z be an (ε, δ1)-
optimal solution of (3.4) for some N ≥ N0 ∈ Nn. Additionally, suppose that the

58

3.2. Relaxation Hierarchy

condition ∥∥Fu(x, y0, N
)
− F `

(
x, y0, N

)∥∥
∞ ≤ δ2 (3.6)

is satisfied. Then (x, y0, yS , z) is an (ε, δ)-optimal solution of (3.3) for all δ ≥ δ1+δ2.

Proof. First, we prove that (x, y0, yS , z) is δ-feasible of problem (3.3). Because of
the δ1-feasibility for (3.4), we know that

∥∥(G(x, y0, yS , z)
)
+

∥∥
∞ ≤ δ1 ≤ δ as well as(

yS − Fu
(
x, y0, N

))
+

+
(
F `
(
x, y0, N

)
− yS

)
+
≤ δ1

is true. Here, we used that Fu ≥ F ` holds and for all i ∈ [n] either ySi −Fui (x, y0, N)

or F `i (x, y0, N)− ySi can be positive. Thus, we can derive∣∣ySi − Fi(x, y0
)∣∣ =

(
ySi − Fi

(
x, y0

))
+

+
(
Fi
(
x, y0

)
− ySi

)
+

≤
(
ySi − Fui

(
x, y0, N

))
+

+
(
Fui
(
x, y0, N

)
− Fi

(
x, y0

))
+

+
(
Fi
(
x, y0

)
− F `i

(
x, y0, N

))
+

+
(
F `i
(
x, y0, N

)
− ySi

)
+

=
(
ySi − Fui

(
x, y0, N

))
+

+ Fui
(
x, y0, N

)
− F `i

(
x, y0, N

)
+
(
F `i
(
x, y0, N

)
− ySi

)
+
≤ δ1 + δ2 ≤ δ.

That is, (x, y0, yS , z) is a δ-feasible solution of (3.3).

Let (x̄, ȳ0, ȳS , z̄) be an optimal solution of (3.3). Since problem (3.4) is a relaxation
of (3.3), the solution (x̄, ȳ0, ȳS , z̄) is a feasible solution of (3.4). Hence, the feasible
set is nonempty and there exists an optimal solution (x̃, ỹ0, ỹS , z̃) of (3.4) with
C(x̃, ỹ0, ỹS , z̃) ≤ C(x̄, ȳ0, ȳS , z̄). Since (x, y0, yS , z) is an (ε, δ1)-optimal solution of
the relaxation (3.4), we can derive

C(x, y0, yS , z) ≤ C(x̃, ỹ0, ỹS , z̃) + ε ≤ C(x̄, ȳ0, ȳS , z̄) + ε,

that is, (x, y0, yS , z) is an (ε, δ)-optimal solution of (3.3). Otherwise, if (3.3) is
infeasible, the condition C(x, y0, yS , z) ≤ C∗ + ε =∞ is obviously satisfied.

Lemma 3.4 immediately shows how to generate an (ε, δ)-optimal solution of (3.3).
If the under- and overestimators fulfill certain technical conditions, we can compute
an (ε, δ1)-optimal solution of (3.4) by spatial branch-and-bound. Then if the solution
satisfies (3.6), the solution is an (ε, δ)-optimal solution of (3.3).

59

Chapter 3. Spatial Branch-and-Bound for ODE Constrained Problems

3.3 Basic Spatial Branch-and-Bound Approach

In this section, we will see that spatial branch-and-bound can be used to approx-
imatively solve problem (3.4) for fixed N ≥ N0 ∈ Nn under mild assumptions on
the under- and overestimators. That is, spatial branch-and-bound applied to (3.4)
produces (ε, δ)-optimal solutions or returns that the problem is infeasible in finite
time. Thus, we can use spatial branch-and-bound to compute (ε, δ1 + δ2)-optimal
solutions of (3.3) in the following two ways. Since F ` and Fu converge to F by As-
sumption 2, one possibility is to choose N sufficiently big such that condition (3.6)
holds for all (x, y0) ∈ X × Y 0. Then solving (3.4) with tolerances δ1 > 0 and ε > 0

yields an (ε, δ1 + δ2)-optimal solution of problem (3.3). The second possibility is to
start with some N ≥ N0 ∈ Nn, solve (3.4) and check if condition (3.6) is satisfied in
the solution. If the condition does not hold, we can increase N and solve (3.4) again.
Repeating this process until the solution finally satisfies (3.6) yields an (ε, δ1 + δ2)-
optimal solution of (3.3) again, since by Assumption 2 the functions F ` and Fu

converge to F .
Applying the basic principle of spatial branch-and-bound to problem (3.4) yields

Algorithm 3.1. We remark that we assume that in practice further techniques to
enhance the performance of spatial branch-and-bound are used, however, we only
consider the basic principle to show that the ideas above actually work. For example,
see Puranik and Sahinidis [112] for a survey of domain reduction techniques, Belotti
et al. [11] for branching and bound tightening techniques, or Section 6.2 for the
bound tightening we implemented for the example of stationary gas transport.
We initialize Algorithm 3.1 with feasibility tolerance δ > 0, tolerance ε > 0,

and N ≥ N0 ∈ Nn sufficiently big, such that Assumptions 2 and 3 are satisfied. Note
that the lower bound N0 can for example be given by the necessary condition on the
step sizes in Lemma 2.23. Furthermore, we start with the initial upper bound U =∞
and initialize the branch-and-bound tree with root node X×Y 0×Y S ×Z. In every
node X̃ × Ỹ 0 × Ỹ S × Z̃ of the branch-and-bound tree, we first update or construct
the convex relaxation of (3.4) which is then solved. If the relaxation is infeasible on
node X̃ × Ỹ 0× Ỹ S × Z̃, we can cut off the node. Otherwise, we check if the solution
is a δ-feasible solution of (3.4) and update the upper bound U if the current solution
provides a better upper bound; see Lines 9 and 10. Afterwards, if α̃ < U − ε, i.e.,
the solution of the relaxation does not exclude the existence of a solution with an
optimal value which is at least ε less than U , we perform branching. Thereto, we can
choose either an integer variable zi whose solution z̃i is not integer, a variable xi,
y0
i , or ySi appearing in a constraint which is δ-violated in the current solution, or a
variable xi, y0

i , or ySi appearing in the objective function C if the underestimator Č
is not accurate enough, that is, C(x̃, ỹ0, ỹS , z̃) − Č(x̃, ỹ0, ỹS , z̃) > ε. We point out
that the choice of the branching variable is not only crucial for the performance of

60

3.3. Basic Spatial Branch-and-Bound Approach

Algorithm 3.1 Spatial branch-and-bound for (3.4)
Input: Problem (3.4), N ≥ N0 ∈ Nn, δ > 0 and ε > 0.
Output: (ε, δ)-optimal solution (x̄, ȳ0, ȳS , z̄) of (3.4) or “infeasible”.
1: Upper bound U ← ∞
2: List of active nodes L ←

{
X × Y 0 × Y S × Z

}
3: While L 6= ∅ do
4: choose a node X̃ × Ỹ 0 × Ỹ S × Z̃ ∈ L and set L ← L \ {X̃ × Ỹ 0 × Ỹ S × Z̃}.
5: Build and solve the convex relaxation (3.5) w.r.t. X̃ × Ỹ 0 × Ỹ S × Z̃.
6: If (3.5) is feasible then
7: let (α̃, x̃, ỹ0, ỹS , z̃) be an optimal solution of (3.5).
8: If z̃ ∈ Zm then
9: If (x̃, ỹ0, ỹS , z̃) is δ-feasible for (3.4) and C(x̃, ỹ0, ỹS , z̃) < U then

10: set U ← C(x̃, ỹ0, ỹS , z̃) and (x̄, ȳ0, ȳS , z̄)← (x̃, ỹ0, ỹS , z̃).
11: If α̃ < U − ε then
12: choose a branching variable according to one of the following cases:
13: • An integer variable zi with z̃i 6∈ Z.
14: • A variable xi, y0

i or ySi in a δ-violated constraint G(x̃, ỹ0, ỹS , z̃) ≤ 0,
F `(x̃, ỹ0, N) ≤ ỹS , or ỹS ≤ Fu(x̃, ỹ0, N).

15: • A variable xi, y0
i or ySi in the objective if C(x̃, ỹ0, ỹS , z̃) < α̃− ε.

16: Branch w.r.t. the chosen variable and add nodes to L.
17: If U <∞ then
18: return (ε, δ)-optimal solution (x̄, ȳ0, ȳS , z̄)

19: else
20: return “infeasible”.

61

Chapter 3. Spatial Branch-and-Bound for ODE Constrained Problems

spatial branch-and-bound, but also has to satisfy conditions necessary for the conver-
gence of spatial branch-and-bound; see Theorem 3.5 and, for example, Achterberg et
al. [2]. Finally, at the end of the algorithm we either return the best found solution
or that the problem is infeasible.

To show that Algorithm 3.1 terminates finitely, we have to require the following
conditions. We remark that these are standard assumptions for (spatial) branch-
and-bound methods. Suppose the algorithm produces through branching an infinite
nested sequence of nodes

Fk := Xk × Y 0
k × Y Sk × Zk

with Fk+1 ⊆ Fk for all k ∈ N0. Then the branching rules have to satisfy the
condition

lim
k→∞

diam(Fk) = 0, (3.7)

where diam(W) := maxw,w′∈W ‖w−w′‖2 is the diameter of a bounded set W ⊂ Rd.
Moreover, Assumption 3 has to hold true, i.e., for every node Fk we need to be able
to construct convex underestimators Č, Ǧ, F̌ ` and the concave overestimator F̂u.
In the following, we denote the dependency on Fk by index k, e.g., Čk is a convex
underestimator of C on node Fk. Furthermore, if (3.7) holds, then for k → ∞ the
under- and overestimators have to satisfy

max
(x,y0,yS ,z)∈Fk

{∥∥G(x, y0, yS , z)− Ǧk(x, y0, yS , z)
∥∥
∞,∥∥F `(x, y0, N)− F̌ `k(x, y0, N)

∥∥
∞,
∥∥F̂uk (x, y0, N)− Fu(x, y0, N)

∥∥
∞,∣∣C(x, y0, yS , z)− Čk(x, y0, yS , z)
∣∣ }→ 0.

(3.8)

That is, the under- and overestimators become arbitrarily close to the approximated
functions over small sets. The conditions (3.7) and (3.8) are sometimes called the
property of exhaustiveness and the property of exactness in the limit.

If Assumptions 1, 2 and 3, and conditions (3.7) and (3.8) hold, then Algo-
rithm 3.1 terminates finitely, which follows directly from Theorem 5.26 in Locatelli
and Schoen [93]. Thereby we assume for simplicity that the relaxations can be eval-
uated exactly, i.e., without rounding errors, otherwise a further approximation error
would have to be handled.

Theorem 3.5. Let ε > 0, δ > 0 and N ≥ N0 ∈ Nn. Suppose that Assumptions 1, 2
and 3, and conditions (3.7) and (3.8) are satisfied. Then Algorithm 3.1 termi-
nates after a finite number of iterations and either returns an (ε, δ)-optimal solution
of (3.4) or that problem (3.4) is infeasible.

62

3.3. Basic Spatial Branch-and-Bound Approach

Note that there can exist (ε, δ)-optimal solutions of (3.3) even if (3.4) is infeasible.
In this case, both results are possible. It can happen that Algorithm 3.1 finds
an (ε, δ)-optimal solution or that δ-feasible solutions of (3.4) are infeasible for (3.5)
and the algorithm returns “infeasible”. This is due to the fact that under- and
overestimators are usually tight at some points and thus cut off δ-feasible solutions.
For example, the McCormick estimators for the product of two variables over a
square are exact in the corners.

Theorem 3.5 shows that both ideas for the computation of (ε, δ)-optimal solutions
of (3.3) sketched in the beginning can be applied separately. That is, either by
choosingN sufficiently big and then solving (3.4) with Algorithm 3.1 or by repeatedly
solving the relaxation and increasing N we can derive the following result.

Corollary 3.6. Let ε > 0 and feasibility tolerances δ1, δ2 > 0. Suppose that
Assumptions 1, 2 and 3 are satisfied, and conditions (3.7) as well as (3.8) hold
for N ≥ N0 ∈ Nn. Then we can compute an (ε, δ1 + δ2)-optimal solution of (3.3)
in finite time, or establish the infeasibility of (3.3).

Proof. On the one hand, by Assumption 2 we know that F ` and Fu converge uni-
formly to F for Ni →∞ for all i ∈ [n]. Therefore, we can choose N sufficiently big
such that ∥∥∥Fu(x, y0, N

)
− F `

(
x, y0, N

)∥∥∥
∞
≤ δ2

holds for all (x, y0) ∈ X × Y 0. Then by Theorem 3.5 the spatial branch-and-bound
algorithm with parameters δ1 > 0, ε > 0 and N returns an (ε, δ1)-optimal solution
of (3.4) or that it is infeasible in finite time.

Since (3.4) is a relaxation of (3.3), there is no feasible solution of (3.3) if the Al-
gorithm 3.1 returns “infeasible”. Otherwise, the algorithm returns an (ε, δ1)-optimal
solution of (3.4) and Lemma 3.4 states that this solution is an (ε, δ1 + δ2)-optimal
solution of (3.3).

On the other hand, we can run Algorithm 3.1 with parameters δ1 > 0, ε > 0 and
an initial N1 ≥ N0. Then either the algorithm proves that problem (3.3) is infeasible
or returns an (ε, δ1)-optimal solution of (3.4) for N1. If the algorithm returns an
optimal solution (x̄, ȳ0, ȳS , z̄), we can check if this solution satisfies (3.6). If not,
then we can choose a vector N2 ≥ N1 with N2

i > N1
i for all i ∈ [n] with∣∣Fui (x̄, ȳ0, N1

i

)
− F `i

(
x̄, ȳ0, N1

i

)∣∣ > δ2

and run Algorithm 3.1 again with N2 instead of N1. Afterwards, we repeat this
process until a solution satisfies (3.6) or the relaxation is infeasible.

63

Chapter 3. Spatial Branch-and-Bound for ODE Constrained Problems

Since F ` and Fu converge uniformly to F by Assumption 2, each Ni has to be
increased only a finite number of times until condition (3.6) holds. This shows, that
repeatedly solving (3.4) with increased N either stops with an (ε, δ1 + δ2)-optimal
solution of (3.3) or with an infeasible problem (3.4) for some Nk.

3.4 Adaptive Spatial Branch-and-Bound

Both approaches to compute (ε, δ)-optimal solutions of (3.3) described in the pre-
vious sections are similar to first-discretize-then-optimize approaches in the follow-
ing sense. Either we use large values for N or we have to repeatedly apply the
spatial branch-and-bound Algorithm 3.1 to achieve the desired accuracy. In the first
case, we possibly choose N much larger than it has to be. This can lead to an
increased computational effort, for example, if N corresponds to the number of grid
points of a discretization. In the second case, we possibly perform a whole branch-
and-bound process several times in vain. To circumvent these problems we propose
an algorithm which incorporates changing N in a single spatial branch-and-bound
algorithm.

Therefore, consider Line 5 of Algorithm 3.1. Instead of “simply” constructing the
convex relaxation and then performing the δ-feasibility check for problem (3.4), we
replace Line 5 with the following adaptive procedure, see Algorithm 3.2.

In a node X̃×Ỹ 0×Ỹ S×Z̃ of the branch-and-bound tree we start with constructing
the underestimators Č and Ǧ on the current node and then run Algorithm 3.2 with
feasibility tolerances δ1, δ2 and the current (global) parameter N . Again, we suppose
that this can be done by standard methods such as McCormick inequalities [99] or the
α-BB method of Adjiman and coworkers [3, 4]; see also Section 3.2. In Algorithm 3.2
we first choose an initial relaxation of inequality

F `
(
x, y0, N

)
≤ yS ≤ Fu

(
x, y0, N

)
. (3.9)

For example, we can relax this inequality by using F̌ ` and F̂u from the parent node
(if we are not in the root node) or we can completely relax this constraint and just use
the variable bounds given by X̃×Ỹ 0×Ỹ S . Then we solve the convex relaxation (3.5)
on the current node. If the relaxation is infeasible, so is the corresponding original
problem and we return “infeasible” to the branch-and-bound process. Otherwise, let
(α̃, x̃, ỹ0, ỹS , z̃) be an optimal solution of the relaxation. For this solution we check
if condition (3.6) holds in (x̃, ỹ0) and possibly increase N until it does. Note that at
this point we do not need to solve the relaxation again, since we do not update the
relaxation when increasing N . Afterwards, if (x̃, ỹ0, ỹS , z̃) is a δ1-feasible solution
of constraint (3.9), we stop the algorithm and return the current solution to the

64

3.4. Adaptive Spatial Branch-and-Bound

Algorithm 3.2 Adaptive convex relaxation
Input: Node of the branch-and-bound tree X̃× Ỹ 0× Ỹ S× Z̃, tolerances δ1, δ2 > 0,

parameter N ∈ Nn, and convex underestimators Č, Ǧ.
Output: A δ1-feasible solution of (3.9) satisfying (3.6), “infeasible” or “branch”.
1: Choose relaxation of (3.9), e.g., X̃ × Ỹ 0 × Ỹ S or relaxation of parent node.
2: For k = 1, 2, . . . do
3: Solve the convex relaxation (3.5) on node X̃ × Ỹ 0 × Ỹ S × Z̃.
4: If the relaxation is feasible then
5: let (α̃, x̃, ỹ0, ỹS , z̃) be the solution of (3.5).
6: For all i ∈ [n] do
7: While |Fui (x̃, ỹ0, Ni)− F `i (x̃, ỹ0, Ni)| > δ2 do
8: increase Ni.
9: If (x̃, ỹ0, ỹS , z̃) is δ1-feasible for (3.9) then

10: return solution (α̃, x̃, ỹ0, ỹS , z̃).
11: Choose the “most violated” constraint i, i.e.,

i ∈ arg max
j∈[n]

max
{
F `j
(
x̃, ỹ0, Nj

)
− ỹSj , ỹSj − Fuj

(
x̃, ỹ0, Nj

)}
.

12: If ỹSi > Fui
(
x̃, ỹ0, Ni

)
+ δ1 then

13: • either “improve the overestimator” or
14: • suggest branching w.r.t. constraint ySi ≤ Fui

(
x, y0, Ni

)
and

return “branch”,
15: else if ỹSi < F `i

(
x̃, ỹ0, Ni

)
− δ1 then

16: • either “improve the underestimator” or
17: • suggest branching w.r.t. constraint F `i

(
x, y0, Ni

)
≤ ySi and

return “branch”.
18: else
19: return “infeasible”.

65

Chapter 3. Spatial Branch-and-Bound for ODE Constrained Problems

branch-and-bound process. Otherwise, if the solution is not δ1-feasible, we choose
the “most violated constraint” i ∈ [n] of (3.9); see Line 11. For this constraint either

ỹSi > Fui (x̃, ỹ0, Ni) + δ1 or ỹSi < F `i (x̃, ỹ0, Ni)− δ1

holds. Subsequently, in Lines 13 and 16 we try to improve the overestimator F̂ui or
the underestimator F̌ `i and thereby cut off the current solution. If we can successfully
cut off the solution, then we solve the convex relaxation again and repeat the process.
Otherwise, if this is not possible, we stop with the current solution and suggest to
perform branching w.r.t. to this constraint to resolve the δ1-infeasibility.

Note that in Lines 13 and 16 we can just require to improve the over- and underes-
timator, because the construction of F̌ `i and F̂ui depends on the particular problem.
For example, if F `i is convex or Fui is concave, then we can add a gradient cut to
cut off the current solution. Another possibility is to add an estimator dynamically,
instead of adding all inequalities at once, i.e., if an under- or overestimator consists
of multiple inequalities, we can add all inequalities at once or only one inequality
which separates the current solution. Again, this is, for example, possible in outer-
approximation if F `i is convex or Fui is concave; see Duran and Grossmann [30].
Furthermore, we point out that the relaxation might already contain an underesti-
mator of F `i or overestimator of Fui , but that it does not cut off the current solution
since it has been constructed before Ni was increased.

Incorporating Algorithm 3.2 into the spatial branch-and-bound algorithm results
in Algorithm 3.3. The main change is of course thatN need not be constant anymore.
Instead we use N as a global parameter for all nodes. That is, once N is increased
in Algorithm 3.2, we use the increased parameter N in all nodes of the branch-
and-bound tree which are processed afterwards. Moreover, Note that a δ1-feasible
solution of (3.4) for N might not be a δ1-feasible solution of (3.4) for N ′ ≥ N , but is
still a (δ1 + δ2)-feasible solution of (3.3) if it fulfills condition (3.6) for N . Therefore,
Algorithm 3.3 solves problem (3.3) and not (3.4). Another big difference is that we
do not have to (re-)construct F̌ ` and F̂u in every node, but instead refine them only
if needed. Except for this, the algorithm is almost the same as Algorithm 3.1.

Note that Line 10 contains a hidden integrality check for z̃, since by Definition 3.3
the solution of the relaxation is δ1-feasible for (3.4) if and only if z̃ is integral.
Furthermore, if Algorithm 3.2 cannot resolve infeasibility by improving an under-
or overestimator and returns “branch,” we can still choose to first perform branch-
ing with respect to some integral variable or due to another violated constraint in
Lines 17 and following.

The crucial point for proving that Algorithm 3.3 terminates finitely, is that Algo-
rithm 3.2 terminates after a finite number of iterations. As this cannot be proven

66

3.4. Adaptive Spatial Branch-and-Bound

Algorithm 3.3 Adaptive spatial branch-and-bound for (3.3)
Input: Problem (3.3), N0 ≥ N0 ∈ Nn, tolerances δ1, δ2 > 0 and ε > 0.
Output: (ε, δ1 + δ2)-optimal solution (x̄, ȳ0, ȳS , z̄) or “infeasible”.
1: Upper bound U ← ∞
2: List of active nodes L ←

{
X × Y 0 × Y S × Z

}
3: While L 6= ∅ do
4: choose a node X̃ × Ỹ 0 × Ỹ S × Z̃ ∈ L and set L ← L \ {X̃ × Ỹ 0 × Ỹ S × Z̃}.
5: Construct underestimators Č and Ǧ.
6: Run Algorithm 3.2.
7: If Algorithm 3.2 stops with a solution or “branch” then
8: let (α̃, x̃, ỹ0, ỹS , z̃) be the last solution found in Algorithm 3.2.
9: If the solution is δ1-feasible for (3.9) then

10: If (x̃, ỹ0, ỹS , z̃) is δ1-feasible for (3.4) and C(x̃, ỹ0, ỹS , z̃) < U holds then
11: set U ← C(x̃, ỹ0, ỹS , z̃) and (x̄, ȳ0, ȳS , z̄)← (x̃, ỹ0, ỹS , z̃).
12: If α̃ < U − ε then
13: choose a branching variable according to one of the following cases:
14: • An integer variable zi with z̃i 6∈ Z.
15: • A variable xi, y0

i or ySi in a δ-violated constraint G(x̃, ỹ0, ỹS , z̃) ≤ 0.
16: • A variable xi, y0

i or ySi in the objective if C(x̃, ỹ0, ỹS , z̃) < α̃− ε.
17: • A variable xj , y0

j or ySi in the “most violated” constraint

F `i
(
x̃, ỹ0, N

)
≤ ỹSi or ỹSi ≤ Fui

(
x̃, ỹ0, N

)
if Algorithm 3.2 suggested to “branch”.

18: Branch w.r.t. the chosen variable and add nodes to L.
19: If U <∞ then
20: return (ε, δ1 + δ2)-optimal solution (x̄, ȳ0, ȳS , z̄)

21: else
22: return “infeasible”.

67

Chapter 3. Spatial Branch-and-Bound for ODE Constrained Problems

in general, but only for a given construction method of F̌ ` and F̂u, we require the
following assumption.

Assumption 4. If Algorithm 3.2 keeps N fixed, then it terminates after finitely
many iterations.

Note that we do not suppose that the algorithm stops with a δ1-feasible solution,
it only has to stop with either a δ1-feasible solution, “infeasible” or “branch.” The
next Lemma shows that this assumption is enough to ensure that Algorithm 3.2
terminates after finitely many iterations.

Lemma 3.7. If Assumptions 1, 2, 3 and 4 hold, then Algorithm 3.2 terminates
finitely.

Proof. Assume that the algorithm does not terminate. Then it produces a sequence
of points which are feasible solutions of the convex relaxation but not δ1-feasible for
constraint (3.9). We denote by K ⊂ N the iterations where N is increased.
Since by Assumption 2 the functions F ` and Fu converge uniformly to F w.r.t. N

and X̃ × Ỹ 0 is bounded, there exists N0 ∈ Nn such that∥∥Fu(x, y0, N
)
− F `

(
x, y0, N

)∥∥
∞ ≤ δ2

is satisfied for all (x, y0) ∈ X̃ × Ỹ 0 and all N ≥ N0. That is, each Ni can only be
increased a finite number of times until Ni ≥ N0

i holds. Hence, K is either empty or
a finite set. Thus N is fixed either from the beginning of the algorithm or after the
last iteration k ∈ K. Then due to Assumption 4 the algorithm stops after another
finite number of iterations.

Using this lemma we will show in Section 4.3 that Algorithm 3.2 applied to the
example of gas transport, where F ` and Fu are given by Lemma 2.23, terminates
finitely.
In the following we state sufficient conditions such that Algorithm 3.3 terminates

finitely. Again, we consider an infinite nested sequence of nodes

Fk = Xk × Y 0
k × Y Sk × Zk

with Fk+1 ⊆ Fk produced by Algorithm 3.3 and corresponding vectors Nk produced
by Algorithm 3.2 for all k ≥ 0. The branching rules still have to satisfy the property
of exhaustiveness (3.7), i.e.,

lim
k→∞

diam(Fk) = 0.

68

3.4. Adaptive Spatial Branch-and-Bound

Since Algorithm 3.2 only improves the estimators if (3.9) is δ1-violated in the current
solution of the relaxation, it might happen that an estimator F̌ ` or F̂u does not
change although

max
(x,y0,yS ,z)∈Fk

{∥∥F `(x, y0, Nk)− F̌ `k(x, y0, Nk)
∥∥
∞,∥∥F̂uk (x, y0, Nk)− Fu(x, y0, Nk)
∥∥
∞

}
> δ1

holds true. Thus, (3.8) cannot hold either. Instead, if (3.7) holds, we require that
only the convex underestimators of C and G satisfy (3.8), i.e., for k →∞ we assume

max
(x,y0,yS ,z)∈Fk

{∥∥G(x, y0, yS , z)− Ǧk(x, y0, yS , z)
∥∥
∞,∣∣C(x, y0, yS , z)− Čk(x, y0, yS , z)
∣∣}→ 0.

(3.10)

We replace the assumption on F̌ ` and F̂u with the condition that at some point
Algorithm 3.2 does not return “branch” anymore. That is, δ1-infeasible solutions
of (3.9) observed during Algorithm 3.2 can be cut off by improving F̌ ` or F̂u.
Therefore, for each node Fk denote the last solution found in Algorithm 3.2 by
(α̃k, x̃k, ỹ0,k, ỹS,k, z̃k). We then assume that for every sequence of nodes, which
satisfies (3.7), there exists an iteration k0 ∈ N such that the condition

max
{∥∥(F `(x̃k, ỹ0,k, Nk)− ỹS,k

)
+

∥∥
∞,

∥∥(ỹS,k − Fu(x̃k, ỹ0,k, Nk)
)
+

∥∥
∞

}
≤ δ1
(3.11)

is satisfied for all k ≥ k0. Under these conditions we can now show that Algorithm 3.3
terminates finitely.

Theorem 3.8. Suppose that the conditions (3.7), (3.10) and (3.11), and Assump-
tions 1, 2, 3 and 4 are satisfied. Then Algorithm 3.3 terminates with an (ε, δ1 + δ2)-
optimal solution of (3.3) or “infeasible” after a finite number of nodes.

Proof. First of all note that under the assumptions of Theorem 3.8 the assumptions
of Lemma 3.7 are satisfied, i.e., Algorithm 3.2 terminates finitely. Suppose that Algo-
rithm 3.3 does not terminate. Then it produces at least one infinite nested sequence
of nodes Fk = Xk × Y 0

k × Y Sk × Zk, a sequence of solutions (α̃k, x̃k, ỹ0,k, ỹS,k, z̃k)

of (3.5) over Fk found during the last iterations of Algorithm 3.2, and a sequence of
parameters Nk. Note that the relaxation has to be feasible for every node, otherwise
the node would be pruned and the sequence Fk ends finitely.
We show that there exists an iteration K ∈ N such that (α̃K , x̃K , ỹ0,K , ỹS,K , z̃K)

is a (δ1 +δ2)-feasible solution of (3.3). By the conditions (3.7) and (3.10) there exists

69

Chapter 3. Spatial Branch-and-Bound for ODE Constrained Problems

an iteration k0 ∈ N such that for all iterations k ≥ k0 the strict inequalities

|C(x, y0, yS , z)− Čk(x, y0, yS , z)| < ε

and

‖G(x, y0, yS , z)− Ǧk(x, y0, yS , z)‖∞ < δ1

hold for all (x, y0, yS , z) ∈ Fk. Then after k0 nodes the only constraint which can
be violated is

F `
(
x, y0, N

)
− δ1 ≤ yS ≤ Fu

(
x, y0, N

)
+ δ1.

However, by condition (3.11), there is an iteration k1 ∈ N such that this condition
holds for all solutions (α̃k, x̃k, ỹ0,k, ỹS,k, z̃k) of (3.5) with k ≥ k1 produced by Al-
gorithm 3.2. Moreover, Algorithm 3.2 increases N until the condition (3.6) holds
with Nk at the solution. Hence, solution (x̃K , ỹ0,K , ỹS,K , z̃K) with K = max{k0, k1}
is a (δ1 + δ2)-feasible solution of (3.3). Thus, the upper bound U will be updated
if C(x̃K , ỹ0,K , ỹS,K , z̃K) < U holds and the node FK will be fathomed, because

α̃K ≥ C
(
x̃K , ỹ0,K , ỹS,K , z̃K

)
− ε ≥ U − ε

is satisfied for K ≥ k0. That is, no further branching occurs and the algorithm does
not produce an infinite sequence of nodes and therefore terminates finitely.

It remains to show that the output of the algorithm is correct. Suppose Algo-
rithm 3.3 terminates with upper bound U = ∞. This only happens if every leaf
of the branch-and-bound tree was fathomed, because the relaxations are infeasible.
Since the leaf nodes define a partition of the feasible set and the relaxations are
infeasible, the original problem has to be as well.

Suppose the algorithm terminates with an optimal solution (x̄, ȳ0, ȳS , z̄). By con-
struction of the algorithm and Lemma 3.4, it is clear that the solution is (δ1 + δ2)-
feasible for (3.3). We distinguish two cases:

1. The feasible set of (3.3) is empty, i.e., C∗ =∞.

2. There is an optimal solution of (3.3) with optimal value C∗ <∞.

In the first case, clearly C(x̄, ȳ0, ȳS , z̄)− ε ≤ C∗ holds and (x̄, ȳ0, ȳS , z̄) is ε-optimal.
In the second case, let Fk = Xk×Y 0

k ×Y Sk ×Zk denote all nodes of the branch-and-
bound tree which are fathomed due to αk ≥ Uk − ε with optimal solution value αk

of the relaxation and current upper bound Uk. Then
⋃
k Fk defines a partition of

the feasible set and mink α
k is a lower bound for C∗. With C(x̄, ȳ0, ȳS , z̄) ≤ Uk we

can derive
C(x̄, ȳ0, ȳS , z̄)− ε ≤ Uk − ε ≤ αk

70

3.4. Adaptive Spatial Branch-and-Bound

and therefore the inequality

C(x̄, ȳ0, ȳS , z̄)− ε ≤ min
k

αk ≤ C∗,

is true, i.e., (x̄, ȳ0, ȳS , z̄) is ε-optimal.

Theorem 3.8 shows that Algorithm 3.3 works. On this basis, we apply Algo-
rithms 3.2 and 3.3 to the example of stationary gas transport, which will yield
Algorithms 4.1 and 4.2, in the next chapter. Moreover, we present first numerical
results on a small network at the end of the next chapter. Finally, in Chapter 6 we
present our implementation and more numerical results on a larger network.

Adaptivity and Feasibility

Algorithm 3.3 has the desired advantages over the two approaches discussed in Sec-
tion 3.3. That is, it incorporates choosing N only as big as necessary in a single
branch-and-bound tree. However, to be really able to call it adaptive in the choice
of N the algorithm should also feature the possibility to decrease N . Especially if
the functions F ` and Fu are based on one-step methods as discussed in Chapter 2,
we can reduce the computational time through using larger step sizes if possible.
Therefore, we discuss how we can include decreasing N in Algorithms 3.2 and 3.3
in this section. Moreover, as mentioned before, changing N directly influences the
feasibility notion in our algorithm. Thus, we address this topic here too.
First of all note that it is not just a mere theoretical observation that the

(δ-)feasibility of solutions depends on N and thus at which point in time the solution
is found. Our implementation for the example of stationary gas transport is based
on Lemma 2.23 and currently uses (for technical reasons) a global discretization
for each pipeline. That is, once the discretization is refined this finer discretization
is used in every node of the branch-and-bound tree which is processed afterwards.
There we can actually observe solutions which are not δ1-feasible when feasibility is
checked with the final discretization, although they were once declared δ1-feasible
(with respect to a coarser discretization) and stored as best solution; see Line 11 of
Algorithm 3.3. For the test set of 4227 instances and our default parameters as will
be described in Section 6.3 this happened 25 times.
The logical consequence is to use N only locally and also allow to decrease N in

Algorithm 3.2. That is, to choose the least N necessary such that the bound condi-
tion (3.6) holds; see Lines 6 to 8. However, this entails several consequences. First
and foremost, the proof of Lemma 3.7 and thus also the proof of Theorem 3.8 is based
on the property that N only has to be increased finitely often until condition (3.6) is
satisfied for all (x, y0) ∈ X̃k × Ỹ 0

k on all nodes Fk. Moreover, decreasing N can lead

71

Chapter 3. Spatial Branch-and-Bound for ODE Constrained Problems

to an inconsistent feasibility notion, too, that is, previously δ1-infeasible solutions
can be δ1-feasible after decreasing N .
Furthermore, we remark that we have to keep cuts which were added prior to

decreasing N even if they cut off solutions which would be δ-feasible with respect to
the decreased parameter N , otherwise this might lead to cycling of Algorithm 3.2.
Suppose that we decrease N1 to N2 and would remove cuts which we previously
added with respect to N1. Then it might happen that we find a solution again which
was previously cut off and requires to increase N2 back to N1. Removing cuts again,
could then lead to cycling of Algorithm 3.2. We can obviously avoid this problem
by not removing any cut which is not redundant. However, note that we actually
could remove previous under- and overestimators F̌ ` and Fu after changing N if we
only increase N .
Next, we consider the example of stationary gas transport again. Recall

that Lemma 2.23 provides lower bounds on the step sizes such that the ex-
plicit midpoint method and the trapezoidal rule provide convex lower and up-
per bounds P `(pout, q,N) and Pu(pout, q,N). Thus, we have to start the
spatial branch-and-bound algorithm with a discretization which satisfies the bounds
on the step sizes. Since these bounds depend on the maximal ratio νc = c q

A p and
thus the lower bound of pout, we can use a coarser discretization if the lower bound
of pout has been increased, e.g., via branching. Though then a feasible solution
found after decreasing N , might have been infeasible with respect to the initial dis-
cretization. Therefore, to define a consistent δ1-feasibility check in Algorithm 3.2
the least N ≥ N0 such that∥∥Fu(x̃, ỹ0, N)− F `(x̃, ỹ0, N)

∥∥
∞ ≤ δ2

holds should be used for the feasibility check, but with N ≥ N0 where N0 is the
initial parameter N0 the algorithm was started with. However, note that we can use
smaller values of N for separating infeasible solutions than for testing feasibility. If
we combine increasing N with the feasibility check in Algorithm 3.2 (Lines 6 and
following), then we need not increase N until (3.6) is satisfied, if we can already
detect infeasibility of the solution before.
As mentioned above, if we allow to decrease N in Algorithm 3.2 then the proof of

Lemma 3.7 does not hold any more. Thus, we have to assume that Algorithm 3.2
terminates finitely to show that Algorithm 3.3 terminates finitely. That is, if we
replace Assumption 4 with the assumption that Algorithm 3.2 terminates finitely,
then Theorem 3.8 still holds.
To summarize the discussion in this section: We can extend our approach to

choose N adaptively by allowing N to be decreased in Algorithm 3.2. But to define
a consistent feasibility check, we cannot use N smaller than the initial parameter N0

72

3.4. Adaptive Spatial Branch-and-Bound

when testing feasibility. However, for the separation of infeasible solutions we do
not have to use the same parameter N as for testing feasibility. That is, we can also
use smaller values of N for separation than N0. Moreover, the construction of F `

and Fu has to be designed in a way such that Algorithm 3.2 always terminates
finitely not only under the assumption that N is kept fixed.

73

CHA PTER 4
Stationary Gas Transport

The aim of this chapter is to apply the generic spatial branch-and-bound algorithm
for solving mixed-integer ODE constrained optimization problems, which we devel-
oped in the previous chapter, to our recurring example – stationary gas transport.
The particular differential equation we consider is given by the stationary isothermal
Euler equation (1.8), which was introduced in Section 1.1.
We will start this chapter with a short literature review and then introduce the

components of gas networks and the models we use for them in Section 4.2. Af-
terwards in Section 4.3, we study the relaxation for the differential equations based
on Lemma 2.23 and adjust Algorithm 3.2 to the setting of this chapter. In Sec-
tion 4.4, we finally apply our spatial branch-and-bound Algorithm 3.3 and show
that the assumptions of Theorem 3.8 are satisfied, which proves that the algorithm
can be applied to the example of stationary gas transport and terminates after a
finite number of iterations. After discussing some possible changes to model and
how to adapt the spatial branch-and-bound algorithm to them in Section 4.5, we
conclude this chapter with some preliminary numerical results in Section 4.6.
Parts of this chapter have been published in the article [56] which is joint work

with Marc E. Pfetsch and Stefan Ulbrich. In particular, Algorithm 4.1 and the
Propositions 4.5 and 4.6 already appeared in similar form there.

4.1 Literature Review

Gas transport in general is an example for a class of flow problems in networks for
which many open questions and mathematical challenges exist; see Hante et al. [58].
Thus, gas transport, stationary as well as instationary, is a very active field of
research and one can easily fill surveys about gas transport longer than this chapter,

75

Chapter 4. Stationary Gas Transport

see Ríos-Mercado and Borraz-Sánchez [114], and also books about stationary gas
transport, see Koch et al. [82]. Hence, we mainly refer to these publications and the
references therein.

One commonly used idea for the optimization of gas transport problems involv-
ing discrete variables is to rely on state-of-the-art solvers for mixed integer linear
problems (MIP). Therefore, nonlinear models respectively functions are often trans-
formed into MIPs by either piecewise linearization or piecewise linear relaxation.
This idea is applied to the stationary case, for example, by Martin et al. [96], and
Geißler and coworkers [44, 45]. Articles that use this idea for the instationary case
are, for example, Mahlke et al. [94], Domschke et al. [29], and Gugat et al. [52].
Thereby, the MIPs are usually constructed with a priori error tolerances or refined a
posteriori, which leads to multi-tree approaches. Moreover, solving the MIPs is often
part of some higher level algorithm, e.g., in [29] MIPs and nonlinear problems are
solved alternatingly, in [44] MIPs are solved repeatedly in an alternating direction
method, and in [52] a MIP is solved for each time step of an instantaneous control
approach.

This idea is also applied in two further articles by Gugat et al. [53] and Schmidt
et al. [128]. In both articles, global decomposition approaches for mixed-integer
nonlinear problems are described. In the master problems of the decomposition
methods a MIP relaxation of the original MINLP is solved and the subproblem
computes a feasible solution of the nonlinear equality constraints which is close
to the optimal MIP solution. The solutions of the subproblems are then used to
iteratively refine the MIP relaxations. In the first article relaxations are constructed
for functions f : R → R which are strictly monotonic, strictly concave or convex,
and have a bounded first derivative. In the second article equality constraints with
univariate Lipschitz continuous functions are considered and the relaxations are
constructed using either known or approximated Lipschitz constants. Moreover, the
function evaluations in the subproblems may be only approximate.

These two articles are related to our approach as follows. The properties which are
used to construct the relaxations of the functions f in the first article, are similar to
the properties which we exploit to construct relaxations of the gas flow in Section 4.3.
Furthermore, both articles apply their method to a stationary ODE constrained gas
transport problem very similar to ours. Since in every iteration of the decomposition
methods a MIP is solved to global optimality, these aremulti-tree methods, while our
spatial branch-and-bound Algorithm 3.3 works as a single-tree method. However,
both approaches are more limited than ours in the sense that they can only be
applied to gas networks which are trees, while our method can be applied to general
gas networks involving cycles. This is because their relaxations only work for one
dimensional functions. To the best of our knowledge there are only some ideas using

76

4.2. Modeling Stationary Gas Networks

triangulations in the PhD thesis of Mathias Sirvent [142] and very preliminary results
in Schmidt et al. [127], which do not yet overcome this problem successfully.
The existence of solutions of the stationary Euler equations for an ideal gas, i.e.,

compressibility factor z ≡ 1, on networks has been studied by Gugat et al. [51].
Schmidt et al. [129] present solutions for specific cases on single pipelines. More-
over, Gugat et al. [54] show the existence of stationary states on networks for real
gases. Additionally, they provide a comparison of the analytical solution with the
Weymouth equation (1.9).

4.2 Modeling Stationary Gas Networks

Gas networks mainly consist of pipelines for the transport of gas, but also include
a variety of additional components. Most important are compressor stations to
compensate for the pressure loss induced by the transport, valves to route the gas
through the network, and control valves to reduce the pressure for the transition
from a high-pressure transport network to a low-pressure distribution network. For
example, the German high-pressure gas transport network comprises almost 40 000

kilometers of pipelines and a compressor station every 100 to 200 kilometers; see the
web page gas network operators [150].
As it is usually done in the literature, we model a gas transport network as a

directed graph D = (V,A). The nodes V are entries, exits and junctions of the
network. The entries and exits, hereinafter also called sources and sinks, are points
where gas can be fed into or withdrawn from the network. In practice, entries and
exits can be producers and customers of gas as well as gas storages, interconnections
with other networks or connections across borders. Note that over time the dis-
tinction between entries and exits is not fixed, e.g., a storage has to be filled before
one can withdraw gas from the storage. Nevertheless, for the stationary setting,
which we consider here, this cannot occur. Thus, the distinction between entries,
exits and junctions yields a partition of the nodes into the entries V+, exits V− and
the remaining nodes V0. The arcs A represent the different network components.
Apart from the previously mentioned pipelines, compressor stations and (control)
valves our model includes short cuts and resistors. Short cuts are essentially very
short pipelines where the pressure drop is assumed to be negligible. Short cuts are
sometimes part compressor stations, where they are used to connect different com-
ponents. Resistors form a surrogate model for pressure loss which one does not want
to or cannot model in detail. An example for the former are gas preheaters, which
sometimes appear in a compressor station, because their behavior is highly nonlin-
ear. Examples for the latter are dirt in the pipelines, strong curvature of pipelines,
or filtering devices.

77

Chapter 4. Stationary Gas Transport

Table 4.1. Overview on arc types, their respective subsets of the arcs
A and their symbol in figures.

Arc type Set Symbol in figures

pipeline Api

short cut Asc

valve Ava

resistor Are

control valve Acv

compressor station Acs

We will now introduce the variables and constraints of the model. We start with
those which are common for all arc types and then the specific constraints for dif-
ferent arc types. Thereby, we use indices to denote which variables are associated
with nodes or arcs as well as the dependency of parameters.

Note. The formulas presented in the following use the International System of
Units (SI). Our implementation does not use these units for all variables, but using
them renders the formulas more readable.

The main variables in our model are pressure variables pv measured in Pa for all
nodes v ∈ V and mass flow variables qa in kg/s for all arcs a ∈ A. These variables
have lower and upper bounds pv, pv and qa, qa, respectively. Note that qa < 0 is
possible and denotes flow in the opposite direction of the arc a. Furthermore, we
consider a vector q± ∈ RV of inflows and outflows of gas into and out of the network.
The in- and outflows have to be balanced and determine the partition into entries,
exits, and junctions, i.e., q± has to satisfy

∑
v∈V q

±
v = 0, inflow is given by q±v > 0

at the entries v ∈ V+, outflow is q±v < 0 at the exits v ∈ V−, and q±v = 0 for the
remaining nodes v ∈ V0. Then the basic constraints of our model are given by the
flow conservation constraints on the network and the variable bounds∑

a∈δ+(v)

qa −
∑

a∈δ−(v)

qa = q±v ∀v ∈ V,

pv ≤ pv ≤ pv ∀v ∈ V,
qa ≤ qa ≤ qa ∀a ∈ A.

(4.1)

78

4.2. Modeling Stationary Gas Networks

Thereby, δ+(v) denotes the outgoing arcs of node v and δ−(v) denotes the incoming
arcs of v, i.e.,

δ+(v) := {a ∈ A : a = (v, u) for some u ∈ V},
δ−(v) := {a ∈ A : a = (u, v) for some u ∈ V}.

We will now go through the arc types in the order of Table 4.1 and introduce
the corresponding models. The model for pipelines is given by the differential equa-
tion (1.8), which we derived in Section 1.1. For compressor stations we are us-
ing an idealized model in pressure and mass flow variables derived by Hiller and
Walther [69]. The remaining models are taken from Chapter 6 of the book by Koch
et al. [82].

4.2.1 Pipelines

Consider a pipeline a = (u, v) ∈ Api, in the following also called pipe for short.
Recall from Section 1.1 the stationary isothermal Euler equation

∂xpa(x)

(
1− c2q2

a

A2
apa(x)2

)
= − λac

2

2DaA2
a

qa|qa|
pa(x)

− g

c2
σa pa(x), x ∈ [0, La], (1.8)

which describes the pressure of gas flowing through a pipeline, and the short notation

∂xpa(x) = ϕσa,a

(
pa(x), qa

)
, x ∈ [0, La]. (1.11)

As in Section 2.3 we mainly consider pipelines without height differences, i.e., σa = 0,
and require that

c|qa|
Aapa(x)

≤ νc (4.2)

holds with νc ∈ (0, 1), such that ∂pϕ is bounded. In Section 4.5 we discuss how
to adapt our algorithmic approach to cope with height differences. Due to the
assumption σa = 0, we omit the index and use ϕa = ϕ0,a.

We couple the differential equation with the pressure variables at the nodes by

pu = pa(0), pv = pa(La)

and enforce condition (4.2) via the linear inequalities

0 ≤ νcAa pu + c qa, 0 ≤ νcAa pv − c qa. (4.3)

79

Chapter 4. Stationary Gas Transport

Table 4.2. Variables and parameters of a pipeline a = (u, v) ∈ Api.

Symbol Description Unit

pu, pv pressure variables at the nodes u and v Pa
qa flow variable for pipeline a kg s−1

pa(x) pressure at state x; solves ODE (1.8) Pa
Aa cross-sectional area of the pipeline m2

Da diameter of the pipeline m
λa friction coefficient of the pipeline 1
La length of the pipeline m
σa slope of the pipeline 1

Note that these two inequalities are sufficient to represent condition (4.2), since the
pressure is decreasing in the direction of the flow. That is, we only have to require
that the condition is satisfied at the end of the pipeline where the flow leaves the
pipeline; see also Corollary 2.17.
Table 4.2 shows the variables and parameters associated with a pipeline. The

complete set of constraints for each pipeline a = (u, v) ∈ Api is

∂xpa(x) = ϕa
(
pa(x), qa

)
, x ∈ [0, La],

pu = pa(0), pv = pa(La),

0 ≤ νcAa pu + c qa,

0 ≤ νcAa pv − c qa.

(4.4)

4.2.2 Short Cuts

Short cuts a = (u, v) ∈ Asc have no other variables or parameters than the pressure
variables pu, pv associated with the incident nodes and the mass flow qa. The mass
flow is only constrained by its lower and upper bounds and the pressure variables
have to be equal

pu = pv. (4.5)

4.2.3 Valves

As mentioned before, valves are used for routing the gas flow through the network
and through compressor stations. They are also used to detach parts of the network,
e.g., for maintenance. A valve can be open or closed. If it is closed, there can be
no gas flow and the pressures variables at both ends of the valve are decoupled. If

80

4.2. Modeling Stationary Gas Networks

Table 4.3. Variables of a valve a = (u, v) ∈ Ava.

Symbol Description Unit

pu, pv pressure variables at the nodes u and v Pa
qa flow variable for valve a kg s−1

za binary variable; represents state of the valve 1

the valve is open, gas can flow in both directions within the given flow bounds and
the pressure loss is negligible, i.e., it acts as a short cut and the pressure variables
at both ends have to be equal.
For a valve a = (u, v) ∈ Ava we introduce a binary variable za ∈ {0, 1}, where

za = 1 represents an open valve and za = 0 represents a closed valve. With this
binary variable we can model the flow constraint and enforce the equality pu = pv
for an open valve by the following inequalities

qa za ≤ qa ≤ qa za,
(pu − pv)(1− za) ≤ pu − pv,
pu − pv ≤ (pu − pv)(1− za).

(4.6)

4.2.4 Resistors

We distinguish two types of resistors: Linear resistors, where the pressure loss only
depends on the flow direction, and nonlinear resistors, where the pressure loss also
depends on the amount of flow.
For a linear resistor a = (u, v) the pressure loss is given by the discontinuous

function

pu − pv =

ξa if qa > 0,

0 if qa = 0,

−ξa if qa < 0,

(4.7)

with a fixed pressure drop ξa > 0. We approximate this discontinuous function by
the piecewise linear function

pu − pv =

ξa if qa > qε,

ξa
qa
qε

if − qε ≤ qa ≤ qε,
−ξa if qa < −qε,

(4.8)

where we use the constant qε = 1
3600 m3 s−1ρ0 as suggested by Geißler et al. [45].

Thereby ρ0 is the density of the gas under normal conditions. To model this function

81

Chapter 4. Stationary Gas Transport

Table 4.4. Variables and parameters of a linear resistor a = (u, v) ∈ Are.

Symbol Description Unit

pu, pv pressure variables at the nodes u and v Pa
qa flow variable for resistor a kg s−1

zε−a binary indicator variable for qa ≤ −qε 1
zε+a binary indicator variable for qa ≥ qε 1
q0
a additional variable used for representation of (4.8) 1
ξa fixed pressure loss Pa
qε constant flow threshold; qε = 1

3600 m3 s−1ρ0 kg s−1

with linear constraints we introduce three additional variables; two binary variables
zε−a , zε+a ∈ {0, 1} and a continuous variable q0

a ∈ [−1, 1]; see also Table 4.4. We
couple these variables with the mass flow by the inequalities

zε−a + zε+a + q0
a ≤ 1,

zε−a + zε+a − q0
a ≤ 1,

qaz
ε−
a + qεz

ε+
a + qεq

0
a − qa ≤ 0,

qεz
ε−
a − qazε+a − qεq0

a + qa ≤ 0.

(4.9)

That is, zε−a and zε+a are indicator variables whether the flow is less than −qε
or greater than qε, respectively. If zε−a = 1, we obtain zε+a = 0, q0

a = 0 and
qa ≤ qa ≤ −qε. Analogously, if zε+a = 1, then zε−a = 0, q0

a = 0 and qε ≤ qa ≤ qa
holds true. Otherwise, if zε−a = zε+a = 0, the equality qεq0

a = qa holds. Then (4.8)
can be expressed by the equality

pu − pv = −ξazε−a + ξaz
ε+
a + ξaq

0
a. (4.10)

Next, we present the model for nonlinear resistors a = (u, v) ∈ Are. A nonlinear
resistor is uniquely determined by its diameter Da and the drag factor ζa. Unlike
before, the pressure decrease not only depends on the direction of the flow, but also

Table 4.5. Variables and parameters of a nonlinear resistor a = (u, v) ∈ Are.

Symbol Description Unit

pu, pv pressure variables at the nodes u and v Pa
qa flow variable for resistor a kg s−1

ζa drag factor of the resistors 1
Da diameter of the resistors m

82

4.2. Modeling Stationary Gas Networks

on the amount of the flow. The change in pressure is described by

pu − pv =

βaq

2
a p
−1
u if qa > 0,

0 if qa = 0,

−βaq2
a p
−1
v if qa < 0,

(4.11)

where the coefficient βa is given by

βa =
8

π2D4
a

ζaRs Tm zm.

Here, we use again the specific gas constant Rs, the constant mean gas temper-
ature Tm, the formula (1.6) for the mean pressure pm, and the formula (1.4) to
compute the mean compressibility factor zm = z(pm, Tm).

Finally, the dependency of the pressure difference with the flow direction can be
expressed by the nonlinear equation

p2
u − p2

v + |pu − pv|(pu − pv) = 2βa|qa|qa. (4.12)

To see this observe that (4.11) implies sgn(pu − pv) = sgn(qa). Consider the case
pv = pu first. This obviously implies 2βa|qa|qa = 0, i.e., qa = 0. Otherwise, if
inequality pu > pv holds, then by (4.12) we get

2βa|qa|qa = p2
u − p2

v + |pu − pv|(pu − pv) = 2pu(pu − pv) > 0.

That is, we have qa > 0 and the first case of (4.11) holds. Analogously we can see
that the third case of (4.11) is satisfied if pu < pv.

4.2.5 Control Valves

A control valve cv = (u, v) ∈ Acv is an unidirectional network element used to
reduce the pressure from node u to v. A control valve can be active or closed. If
it is closed, then the control valve acts like a normal valve, i.e., there is no gas flow
and the pressure variables are decoupled. If the control valve is active, then only
nonnegative flow is possible and the pressure is reduced from node u to v; thereby
the possible pressure reduction is bounded by

0 ≤ ∆cv ≤ pu − pv ≤ ∆cv.

Furthermore, if the control valve is active, the inlet and outlet pressures have to
satisfy technical limits pcv ≤ pu and pv ≤ pcv.

83

Chapter 4. Stationary Gas Transport

pu pvqcv, zcv

qva, zva

Figure 4.1. Schematic plot of a control valve station with a bypass and
two resistors.

Analogously to valves, we model the state of the control valve by introducing a
binary variable zcv ∈ {0, 1} with zcv = 1 representing the active state and zcv = 0

representing the closed state. With this variable, the complete model for a control
valve is

0 ≤ qcv ≤ qcv zcv,
(pu − pv)(1− zcv) + ∆cv zcv ≤ pu − pv,
pu − pv ≤ (pu − pv)(1− zcv) + ∆cv zcv,

pcv zcv ≤ pu,
pv ≤ pcv zcv + pv(1− zcv),

(4.13)

and a summary of variables and parameters of a control valve can be seen in Ta-
ble 4.6. Note that the last two constraints only have to be added to the model if
the technical limits pcv, pcv are tighter than the corresponding variable bounds at
nodes u and v.

Typically control valves are combined with other elements as follows; see Figure 4.1
for a schematic plot of a so-called control valve station. Due to the Joule-Thomson
effect the gas temperature decreases, when the gas expands while passing through a
control valve. To avoid big changes in temperature and even damage of the valve, gas
heaters are installed before the actual control valve. Moreover, they are sometimes
combined with measurement devices which can cause additional pressure loss. If
necessary, these effects are modeled by resistors before and after the control valve.
Furthermore, since control valves have a fixed working direction, there is often an
additional bypass valve to make flow in the reverse direction possible. A bypass
valve va ∈ Ava is just a usual valve with the additional constraint that the bypass
cannot be open if the control valve is active

zcv + zva ≤ 1. (4.14)

84

4.2. Modeling Stationary Gas Networks

Table 4.6. Variables and parameters of a control valve cv = (u, v) ∈ Acv.

Symbol Description Unit

pu, pv pressure variables at the nodes u and v Pa
qcv flow variable for control valve cv kg s−1

zcv binary variable; represents state of the control valve 1
∆cv, ∆cv minimal/maximal pressure decrease in active state Pa
pcv, pcv technical pressure limits for the active state Pa

4.2.6 Compressor Stations

Compressor stations are the most complicated network elements. They are used to
increase the pressure level, such that the gas can be transported through the network.
They usually comprise several compressor machines, drives, filtering devices, and gas
coolers. These elements are often combined by complex variable routing of the gas
flow such that compressor machines can be used in so-called configurations. For
example, if there are two compressor machines, they can (sometimes) be used in
parallel or in serial. Moreover, also only one compressor machine or none might be
used.

Detailed physical models of compressor stations and machines feature several non-
linear equations; e.g., see Schmidt et al. [129] or Chapter 2 in [82]. In particular,
the operating ranges of turbo compressors are usually described by characteristic
diagrams in terms of adiabatic head and volumetric flow. Thereby, the adiabatic
head depends nonlinearly on the ratio of input and output pressure. Furthermore,
detailed models also have to take changes in temperature due to compression and
cooling into account. Since the focus of this thesis is not on detailed compressor
models, we use a simplified model computed by Hiller and coworkers [69, 154].

The model bounds the mass flow, input and output pressure by a polyhedron
and is available for compressor machines as well as configurations. The polyhedron
combines lower and upper bounds on the variables, minimal and maximal pressure
increase, and minimal and maximal relative pressure increase. These bounds only
have to hold if the compressor machine is running and are derived in the following
way. After sampling the characteristic diagram of a compressor machine, the samples
are transformed into a cloud of points in the (q, pin, pout)-space (by sampling pin).
Afterwards, points which violate technical limits, e.g., if the drive cannot deliver
the required power, are discarded. Then the bounds on the variables and (relative)
pressure increase are defined by the remaining points. The polyhedra for compressor
machines can then be combined into polyhedra for configurations. The constraints

85

Chapter 4. Stationary Gas Transport

Table 4.7. Variables and parameters of a compressor station cs = (u, v) ∈ Acs.

Symbol Description Unit

pu, pv pressure variables at the nodes u and v Pa
qcs flow variable for compressor station cs kg s−1

zcs binary variable; represents state of the compressor station 1
pinc , poutc pressure variables for configuration c ∈ Ccfcs Pa
qc flow variable for configuration c ∈ Ccfcs kg s−1

zc binary variable; represents if configuration c ∈ Ccfcs is active 1
∆c, ∆c minimal/maximal pressure increase of c ∈ Ccfcs Pa
εc, εc minimal/maximal relative pressure increase of c ∈ Ccfcs 1

for this model (for both compressor machines and configurations) are given by

q ≤ q ≤ q,
pin ≤ pin ≤ pin,
pin ≤ pout ≤ pout,
∆ ≤ pout − pin ≤ ∆,

ε pin ≤ pout ≤ ε pin,

(4.15)

with ∆ ≥ 0, ε ≥ 1 and q > 0.

A more detailed model would be given by the convex hull of the points in the
(q, pin, pout)-space. However, in general the convex hull has many facets. Hence,
Walther et al. [154] propose an algorithm to choose a small number of the facets
such that they define a polyhedron which is close to the convex hull w.r.t. the
volumes of the polyhedra. Relying on the precomputed inequalities by Walther et
al., we have implemented both versions of this model, i.e., with and without the
additional facets, and will investigate their influence on computational results in
Section 6.3.3.

Consider a compressor station cs = (u, v) ∈ Acs and let Ccfcs be the set of its
configurations. Besides the usual variables pu, pv and qcs, we use a binary variable zcs
to represent if the compressor station is active or inactive. Furthermore, we introduce
additional variables pinc , poutc , qc and zc ∈ {0, 1} for all configurations c ∈ Ccfcs ,
because we want to avoid turning the constraints (4.15) and, in particular, the
additional facets on and off by using Big Ms; see Table 4.7 for an overview on
variables and parameters of a compressor station. With the binary variables zc we
represent which configuration is used, if the compressor station is active. If zc = 1,
we couple the pressure and mass flow variables, that is, pinc = pu, poutc = pv and
qc = qcs. Otherwise, if zc = 0, the variables are decoupled. If the station is inactive,

86

4.2. Modeling Stationary Gas Networks

i.e., zcs = 0, we set qcs = 0 and zc = 0 for all configurations c ∈ Ccfcs . Then the set
of constraints for the compressor station is

0 ≤ qcs ≤ qcs zcs,∑
c∈Ccfcs

zc = zcs,

− qc (1− zc) ≤ qcs − qc ≤ (qcs − qc) (1− zc) ∀c ∈ Ccfcs ,
(pu − pinc) (1− zc) ≤ pu − pinc ≤ (pu − pinc) (1− zc) ∀c ∈ Ccfcs ,
(pv − poutc) (1− zc) ≤ pv − poutc ≤ (pv − poutc) (1− zc) ∀c ∈ Ccfcs ,
(qc, p

in
c , p

out
c) satisfy (4.15) and additional facets ∀c ∈ Ccfcs .

(4.16)

Note that the mass flow variables for the configurations are not directly part of the
flow conservation in (4.1), but indirectly through the coupling of qcs and qc if the
corresponding configuration is active.

Similar to control valves the induced pressure decrease due to further elements in
the compressor station is represented by resistors. Furthermore, also compressor sta-
tions can often be bypassed, which is again modeled by an additional valve va ∈ Ava
with

zcs + zva ≤ 1. (4.17)

Figure 4.2 shows a schematic of a compressor station model with two configura-
tions c1 and c2, and an inlet and outlet resistor.

pu pvqcs

qva, zva

qc1 , zc1pinc1 poutc1

qc2 , zc2pinc2 poutc2

Figure 4.2. Schematic plot of a compressor station with configurations
c1 and c2, a bypass, and two resistors.

87

Chapter 4. Stationary Gas Transport

4.2.7 Optimization Model for Stationary Gas Transport

Now that we have introduced the models of the network elements, we can summarize
the model in the following optimization problem:

min C(p, q, z)

s.t. G(p, q, z) ≤ 0,

∂xpa(x) = ϕa
(
pa(x), qa

)
x ∈ [0, La], ∀ a ∈ Api ⊆ A,

pu = pa(0), pv = pa(La) ∀ a = (u, v) ∈ Api,
p ∈ P, q ∈ Q, z ∈ Z.

(4.18)

The variables p ∈ P comprise the pressure variables pv for all nodes v ∈ V and
the pressure variables pin, pout for the compressor station configurations. The flow
variables q ∈ Q include the mass flow variables qa for all arcs a ∈ A, the auxil-
iary variables q0

a for linear resistors, and the additional mass flow variables for the
compressor station configurations. The variables z ∈ Z ⊆ {0, 1}m are the binary
variables for valves, linear resistors, control valves, and compressor stations. Finally,
we have the function variables pa(x) for each pipe a ∈ Api ⊆ A which have to satisfy
the stationary isothermal Euler equation. The sets P and Q are given by the variable
bounds in (4.1) and the bounds of the auxiliary variables as discussed where they
were introduced. Except for the differential equations the constraint G(p, q, z) ≤ 0

represents the models for the different network elements, which we introduced above.

Note that (4.18) is a special case of the abstract problem (3.1). Here, the flow
variables q correspond to the variables x in the abstract setting. The pressure
variables at the end of pipelines correspond to y0 and yS , and the binary variables z,
here, are integer or binary variables in (3.1). We have constraints G ≤ 0 in both
problems and, moreover, the differential equations in (4.18) only define a coupling
between the pressure and flow variables for a single pipe.

There are plenty options for the objective function C(p, q, z). One possibility is
C ≡ 0 which turns problem (4.18) into a feasibility problem to identify whether
there is a feasible solution at all. Another possible objective is to find an energy
efficient solution. Since we cannot compute the power consumption of the com-
pressor stations with the model we use, we can instead minimize the number of
running compressors. A third possible objective is to minimize the power lost due
to transportation; therefore, consider a certain amount of gas which is transported
through a pipeline a = (u, v). In a stationary isothermal process the energy required
to transport the gas from u to v is given by pu Vu − pv Vv, where Vu and Vv are
the volume of the gas at u and v. Thus, the power required to transport the mass
flow q through the network is given by taking the difference of the pressure times

88

4.3. LP-Relaxation for Gas Flow on Pipelines

volumetric flow at the sources and sinks. Since the mass flow is proportional to the
volumetric flow, we can minimize the pressure times the mass flow at the sources
and sinks as a proxy for the power loss, i.e., we minimize the linear function

C(p, q, z) =
∑

a=(u,v)∈A

(pu−pv) qa =
∑
v∈V

(∑
a=(v,w)∈A

qa−
∑

a=(u,v)∈A

qa

)
pv =

∑
v∈V

q±v pv.

Remark 4.1. Except for the differential equations, the models presented in this sec-
tion can directly be treated by state-of-the-art MINLP solvers like ANTIGONE [102],
BARON [123], COUENNE [11], or SCIP [40]. These solvers are based on spa-
tial branch-and-bound to ensure global optimality and rely on well-known tech-
niques, such as McCormick inequalities [99], outer-approximation by Duran and
Grossmann [30], the reformulation-linearization technique by Sherali and cowork-
ers [137, 138, 139], or the αBB method by Adjiman and coworkers [3, 4] to derive
convex or even linear relaxations of the original problem. Moreover, often polyhe-
dral convex envelopes for edge-convex or edge-concave functions are constructed,
see for example Meyer and Floudas [101] or Tardella [147], and underestimators for
specific terms are used, e.g., see Liberti and Pantelides [89] for convex envelopes of
monomials of odd degrees, or Tawarmalani et al. [149].

Remark 4.2. Note that Gugat et al. [54] showed the existence of stationary states
in passive, connected networks, i.e., connected networks of pipelines only. They
prove that in the absence of variable bounds there is a unique solution if the pres-
sure at one source is fixed and the inflows are sufficiently small. Furthermore, they
provide analytical solutions for the stationary isothermal Euler equations (1.8) with
slope σ = 0. Thus, we could replace the ODE constraints (4.4) by using the analyti-
cal solution P (p(0), q) = p(L). Note that this step is analogous to the reformulation
of problem (3.1) to problem (3.3). However, evaluating this analytical solution re-
quires numerically solving the inverse of some function, e.g., by Newton’s method.
For example, in the case of an ideal gas one has to evaluate the Lambert-W func-
tion; see Gugat et al. [51]. Hence, the analytical solution is not suited for standard
MINLP techniques.

4.3 LP-Relaxation for Gas Flow on Pipelines

In order to apply the adaptive spatial branch-and-bound framework from Chapter 3
to problem (4.18), we have to define relaxations of (4.18) equivalently to the re-
laxations (3.4) and (3.5) of problem (3.1). Since state-of-the-art MINLP solvers
can treat all models presented in the previous section except for the differential

89

Chapter 4. Stationary Gas Transport

equations by well-known techniques, we only discuss how to compute valid linear
relaxations of (4.4) for a linear programming (LP) based branch-and-bound method
in this section. Furthermore, we derive a problem specific version of Algorithm 3.2
for constructing the relaxations of the gas flow.
Recall from Chapter 2 the definition of P `(p, q,N) = p`N and Pu(p, q,N) = puN

through the evaluation of the explicit midpoint

p`0 = p, p`i = p`i−1 − hϕ
(
p`i−1 − h

2ϕ(p`i−1, q), q
)

∀i ∈ [N], (2.18)

and the implicit trapezoidal rule

pu0 = p, pui = pui−1 − h
2

[
ϕ(pui−1, q) + ϕ(pui , q)

]
∀i ∈ [N], (2.19)

with initial values p`0 = pu0 = p, mass flow q ≥ 0, andN discretization steps. Consider
a pipeline a = (u, v) ∈ Api. Due to Lemma 2.23 we can utilize the functions P `

and Pu to define a relaxation of

∂xpa(x) = ϕa
(
pa(x), qa

)
, x ∈ [0, La],

pu = pa(0), pv = pa(La)

as a special case of (3.4) as follows. If the direction of the flow qa is fixed, that is,
variable qa is either nonnegative or nonpositive, and N sufficiently big, then

P `a(pout, |qa|, Na) ≤ pin ≤ Pua (pout, |qa|, Na) (4.19)

defines a relaxation for a single pipeline, where pin and pout are chosen such that
they coincide with the nodes where the gas enters and leaves the pipeline. That
is, if qa ≥ 0, we have pin = pu and pout = pv. Note, that we use P `a and Pua with
index a, since the right-hand sides ϕa of the ODEs can differ in length, diameter,
and so forth. Otherwise, if the flow direction is not fixed, we ignore the differential
equations. Once all flow directions are fixed, for example, through branching on
the flows w.r.t. qa = 0, the relaxation defined this way, satisfies Assumption 2, in
particular, the functions P `a and Pua converge to the exact solution of the differential
equation for Na →∞; see Lemma 2.23.
We point out that P ` and Pu are given by an iterative scheme instead of a sin-

gle explicit formula. Hence, standard techniques to derive convex relaxations are
not directly applicable. Instead we designed an adaptive approach analogously to
Algorithm 3.2, which incorporates branching on the flow directions and has the ad-
vantage that the evaluation of P ` and Pu is only needed “on demand”. Furthermore,
the number of discretization steps need not satisfy condition (3.6) up front for the
whole domain, but the condition is enforced in the course of the branch-and-bound

90

4.3. LP-Relaxation for Gas Flow on Pipelines

process for specific points. To construct linear under- and overestimators of P `

and Pu, we use step sizes satisfying the requirement of Lemma 2.23, such that P `

and Pu are convex. Thus, we can underestimate P ` by outer-approximation and Pu

admits a vertex polyhedral concave envelope.

4.3.1 Linear Underestimators

In Section 2.3, we have seen that P ` : U × N → R is convex and continuously
differentiable on the domain

U = {(p, q) ∈ R2 : p ≤ p ≤ p, 0 ≤ q ≤ q ≤ q, 0 ≤ νcAp− c q}

if N is sufficiently big. Thus, for (p̃, q̃) ∈ U the inequality

P `(p̃, q̃, N) +∇P `(p̃, q̃, N)>
(
p− p̃
q − q̃

)
≤ P `(p, q,N)

holds for all (p, q) ∈ U . Hence, once the flow direction of a pipe is fixed, we can
approximate the lower bound P `a(pout, qa, Na) ≤ pin arbitrarily well by iteratively
adding gradient cuts

P `a(p̃out, q̃a, Na) +∇P `a(p̃out, q̃a, Na)>
(
pout − p̃out
qa − q̃a

)
≤ pin (4.20)

for different pairs (p̃out, q̃a); see Duran and Grossmann [30].

Note that although gradient cuts w.r.t. Na discretization steps, might not be a
valid underestimator for P `a(p, q,N ′a) with another number of discretization steps N ′a,
it still is a valid underestimator for the exact ODE solution. This implies that we
can keep gradient cuts added to the relaxation, when changing the discretization.

Since P ` is given by (2.18), we cannot directly compute its partial derivatives ∂pP `

and ∂qP
`. Instead consider the function pem(p, q, h), which performs one step

of (2.18), as defined in the proof of Lemma 2.23. Then with the approximations p`i
interpreted as functions of (p, q) for i ∈ [N] and p`0(p, q) = p, we get

p`i(p, q) = pem
(
p`i−1(p, q), q, h

)
= p`i−1(p, q)− hϕ

(
p`i−1(p, q)− h

2ϕ(p`i−1(p, q), q), q
)

for i ∈ [N]. Again, differentiating p`i(p, q) yields ∂p p`0(p, q) = 1, ∂q p`0(p, q) = 0 and

∂p p
`
i(p, q) = ∂pp

em
(
p`i−1(p, q), q, h

)
∂p p

`
i−1(p, q),

∂q p
`
i(p, q) = ∂pp

em
(
p`i−1(p, q), q, h

)
∂q p

`
i−1(p, q) + ∂qp

em
(
p`i−1(p, q), q, h

)

91

Chapter 4. Stationary Gas Transport

for i ∈ [N]. That is, we can iteratively evaluate the derivatives of P ` and thus
construct linear underestimators.

4.3.2 Linear Overestimators

While in general the so-called concave envelope, i.e., the smallest concave overesti-
mator, of a function is neither linear nor easy to construct, in our case Pu admits
a vertex polyhedral concave envelope on U , i.e., the concave envelope of Pu is affine
linear and determined by Pu evaluated at the vertices of U . In the following, we
will first collect some known results from the literature and then apply these to Pu

to show how we can construct its concave envelope.
It seems that the notion of convex/concave envelopes was first introduced by Klei-

bohm [81], who defined a “konvexe Unterfunktion” as the greatest convex function,
which is smaller than the function at hand. There are several well-known equiva-
lent definitions by Falk [33], Falk and Soland [35], and in particular the following
definition due to Rockafellar [116].

Definition 4.3. Let X ⊆ Rd and consider a function f : X → R. The convex
envelope of f is the function vexX [f] : conv(X)→ R defined by

vexX [f](x) := inf
{d+1∑
i=1

λif(xi) :

d+1∑
i=1

λixi = x, 1>λ = 1, λ ≥ 0, x1, . . . , xd+1 ∈ X
}
,

where 1 is the vector of ones with appropriate dimension. Analogously, the concave
envelope caveX [f] : conv(X)→ R of f is given by

caveX [f](x) := sup
{d+1∑
i=1

λif(xi) :

d+1∑
i=1

λixi = x, 1>λ = 1, λ ≥ 0, x1, . . . , xd+1 ∈ X
}
.

Furthermore, a subset G ⊆ X is called generating set of the convex or concave
envelope of f if vexG[f] = vexX [f] or caveG[f] = caveX [f] holds, respectively.

Note that since we want to apply the following results to construct the concave
envelope of Pu, we restrict the presentation to concave envelopes. However, because
caveX [f] = − vexX [−f] holds, the results also apply to the convex envelope.
For general functions it is a NP-hard problem to construct the concave enve-

lope; for example, see the complexity results by Crama [27] or by Kalantari and
Rosen [77]. In fact, it is even NP-hard to evaluate the concave envelope at a sin-
gle point: Tardella [147] showed that evaluating the concave envelope of a function
f : {0, 1}d → R with the property f(x) = f(1−x) for all x at the point 1

21 is as hard

92

4.3. LP-Relaxation for Gas Flow on Pipelines

as maximizing f over {0, 1}d. Moreover, for every function g : {0, 1}d−1 → R we can
define a function f : {0, 1}d → R satisfying condition f(x) = f(1− x) through

f(y, 1) = f(1− y, 0) = g(y)

for all y ∈ {0, 1}d−1. Since maximizing g over {0, 1}d−1 is NP-hard, evaluating
concave envelopes is NP-hard in general.

However, in particular cases it is both easy to construct and evaluate the concave
envelope. The concave envelope of f : X → R has a finite generating set G, if and
only if it is polyhedral (e.g., see Rockafellar [116]), i.e., there exists a finite set of
indices I and pairs (αi, βi) ∈ Rd ×R for i ∈ I, such that the concave envelope of f
is

caveX [f](x) = min
i∈I

α>i x+ βi.

Rikun [113] showed that for the special case of continuously differentiable functions
on a polytope X, the concave envelope is polyhedral if and only if it is vertex polyhe-
dral, i.e., the vertices vert(X) are a generating set. Note that there are different terms
for this property, e.g., Tawarmalani et al. [149] call a function concave-extendable
from the vertices if the vertices are a generating set. Several conditions for this prop-
erty are known, e.g., Rikun [113] showed that the vertices of a box are a generating
set for multilinear functions, whereas Falk and Hoffman [34] showed that the ver-
tices of a polytope are a generating set for the concave envelope if f is convex. More
general, Tardella [147] showed that vert(X) is a generating set if f is edge-convex,
i.e., f is convex on all line segments which are parallel to some edge of X. Note that
if X is a box, f is edge-convex, if it is convex w.r.t. every single variable.

Let X ⊂ Rd be a full-dimensional polytope and consider a function f : X → R

with the generating set vert(X). Let ∆ ⊆ X be a d-simplex with vert(∆) ⊆ vert(X),
i.e., the set ∆ is the convex hull of d + 1 affine independent vertices of X. We
denote the affine linear function defined through interpolating f at the vertices of ∆

with L∆,f : Rd → R, that is, L∆,f (x̄) = f(x̄) for all x̄ ∈ vert(∆). The following
result shows how to determine whether L∆,f coincides with caveX [f] on ∆. Note
that similar results can be found in Tardella [147], Meyer and Floudas [101], and
Tawarmalani et al. [149].

Proposition 4.4. Let X ⊂ Rd be a full-dimensional polytope and let vert(X) be a
generating set for the concave envelope of f : X → R. Consider a d-simplex ∆ ⊆ X
with vert(∆) ⊆ vert(X). Then L∆,f : Rd → R defines a facet of the concave envelope
of f over X, i.e., L∆,f (x) = caveX [f](x) for all x ∈ ∆, if and only if the inequality
f(xi) ≤ L∆,f (xi) is satisfied for all vertices xi ∈ vert(X) = {x1, . . . , xk}.

93

Chapter 4. Stationary Gas Transport

Proof. By assumption vert(X) is a generating set of the concave envelope, that is,
by definition we have

caveX [f](x) = max

{
k∑
i=1

λif(xi) :

k∑
i=1

λixi = x, 1>λ = 1, λi ≥ 0

}
.

The dual problem of this is

min x>α+ β

s.t. f(xi) ≤ x>i α+ β, ∀i ∈ [k]

α ∈ Rd, β ∈ R.

The dual problem shows that all affine linear functions which define a facet of the
concave envelope have to majorize f at the vertices.

For the reverse direction, assume that L∆,f satisfies f(xi) ≤ L∆,f (xi) for all
vertices xi ∈ vert(X). Then obviously caveX [f] ≤ L∆,f holds on X. Suppose
that L∆,f does not define a facet of the concave envelope. Hence, there exists x ∈ ∆

with caveX [f](x) < L∆,f (x). But, since f(xi) = caveX [f](xi) = L∆,f (xi) for all
vertices xi ∈ vert(∆), this contradicts caveX [f] being concave. Thus L∆,f defines a
facet of the concave envelope.

Moreover, Tawarmalani et al. [149] derived a complete characterization for vertex
polyhedral concave envelopes through triangulations. A triangulation T of a full-
dimensional polytope X is a set of d-simplices such that the vertices of the simplices
are vertices of X, the intersection of two simplices is either empty or a face of both
simplices, the intersection of two simplices has no interior point, and the union of the
simplices is the polytope X. Again, consider a function f : X → R. Tawarmalani et
al. have proven that there exists a triangulation T of a full-dimensional polytope X
such that

caveX [f](x) = min
∆∈T

L∆,f (x)

if and only if vert(X) is a generating set of the concave envelope.

Finally, we apply these results to construct the concave envelope of Pu on U .
Suppose that U ⊂ R2 is not empty or a singleton. Then the intersection of the
half space defined by 0 ≤ νcAp− c q with the box [p, p]× [q, q] given by the variable
bounds has five possible shapes, which are depicted in Figure 4.3. Using a sufficiently
large number of discretization steps N , such that Lemma 2.23 holds, Pu is convex
on U . Hence, vert(U) is a generating set of the concave envelope and there exists a

94

4.3. LP-Relaxation for Gas Flow on Pipelines

0
≤
νc
A
p
−
c q

U

(p, q) (p, q)

(p, q) (p, q)

Figure 4.3. If the domain U of P ` and Pu is not empty or a singleton,
it has five possible shapes depicted in this figure.

triangulation T of U such that

caveU [Pu](p, q) = min
∆∈T

L∆,Pu(p, q) (4.21)

holds. Since U has 3, 4, or 5 vertices, the triangulation consists of 1 to 3 simplices
and we can represent the concave envelope by at most three inequalities of the type

pin ≤ L∆,Pu(pout, q)

with ∆ ∈ T . For example, consider ∆ = {(p, q), (p, q), (p, q)}. In this case we have

L∆,Pu(p, q) = Pu(p, q,N) +
[
Pu(p, q,N)− Pu(p, q,N)

] p− p
p− p

+
[
Pu(p, q,N)− Pu(p, q,N)

] q − q
q − q

.

4.3.3 Relaxation Algorithm

In this section, we adjust Algorithm 3.2 to the adaptive construction of the relaxation
for P ` and Pu. Therefore, in Algorithm 4.1 we proceed similar to Algorithm 3.2.

We initialize the branch-and-bound algorithm with the minimal number of dis-
cretization steps Na, such that the conditions of Lemma 2.23 are satisfied for
all pipes a ∈ Api. For instance, with νc = 0.4 we use Na discretization steps
such that inequality La

Na
≤ 4.925Da

λa
holds. Then when called in a node of the

branch-and-bound tree, we choose an LP-relaxation of the ODE constraints. In the
root node, we ignore the ODE constraints and use the variable bounds as initial
relaxation. In every other node, we use the relaxation of the parent node. Next,
we solve the convex or LP-relaxation equivalent to problem (3.5). Recall, in the
relaxation we replace the constraints G(p, q, z) ≤ 0 by Ǧ(p, q, z) ≤ 0, and if C is

95

Chapter 4. Stationary Gas Transport

nonconvex we add an auxiliary variable α, the constraint Č(p, q, z) ≤ α and mini-
mize α. Therefore, we assume that the convex underestimators Ǧ and Č of G and C
(if the objective function is nonconvex) are given. If the relaxation is infeasible, then
the node of the branch-and-bound tree can be cut off. Otherwise, if the relaxation
is feasible, then we get a solution (p̃u, p̃v, q̃a) for each pipe a ∈ Api. For the ease
of presentation, let these solutions be given as triples (p̃in, p̃out, q̃a), where p̃in is
the pressure at the node where gas flows into the pipe, p̃out accordingly the other
pressure value, and q̃a ≥ 0.

As the next step, we compute P `a(p̃out, q̃a, Na) and Pua (p̃out, q̃a, Na) for all a ∈ Api.
If the differences do not satisfy (3.6), we increase the number of discretization
steps Na, and recompute P `a and Pua until they do; see Lines 7 and 8. Afterwards,
we check whether the inequality

P `a(p̃out, q̃a, Na) ≤ p̃in ≤ Pua (p̃out, q̃a, Na) (4.22)

is satisfied with feasibility tolerance δ1 for all pipes. If all triples are δ1-feasible,
Algorithm 4.1 returns the current solution to the branch-and-bound process. In
the case that at least one triple is not feasible, we pick the pipe a with the largest
deviation of p̃in from the closest bound P `a(p̃out, q̃a, Na), or Pua (p̃out, q̃a, Na); see
Line 11. If the flow direction of this pipe is not fixed, we return qa as branching
candidate w.r.t. qa = 0 to the branch-and-bound process; see Line 13. Note that
this step is particular to our context here, since the construction of under- and
overestimators for P ` and Pu, which was described above, requires a fixed flow
direction. Hence, this step is an addition to Algorithm 3.2. Otherwise, if the flow
direction is already fixed, we try to cut off the solution as discussed above. To this
end, we distinguish three different cases of infeasibility, as shown in Figure 4.4.

Let (p̃in, p̃out, q̃a) be a δ1-infeasible solution of (4.22). In the first case, p̃in
is larger than the concave envelope of Pua over the domain Ũa given by the
variable bounds in the current node of the branch-and-bound tree, and the con-
straint 0 ≤ νcApout − c q; see Line 15. In this case, we can choose if we either add
all of the linear inequalities (4.21), which define the concave envelope, or choose
at least one of them, which cuts off the current solution; see Section 4.3.2. In the
second case, we have

Pua (p̃out, q̃a, Na) ≤ p̃in ≤ caveŨa
[Pua](p̃out, q̃a, Na),

i.e., we cannot cut off the current solution with the concave envelope; see Line 17.
Instead, we have to resolve the infeasibility by branching w.r.t. to either pin, pout
or qa. In the last case (Line 20), when p̃in is less than P `a(p̃out, q̃a, Na), we can use

96

4.3. LP-Relaxation for Gas Flow on Pipelines

Algorithm 4.1 Adaptive convex relaxation of gas flow

Input: Node of branch-and-bound tree P̃ × Q̃× Z̃, δ1, δ2 > 0 and N ∈ NApi

.
Output: δ1-feasible solution of (4.19), “infeasible” or “branch”.
1: Choose LP-relaxation of ODE constraints:

In the root node take the box P ×Q, else use the relaxation of the parent node.

2: For k = 1, 2, . . . do
3: Solve the convex relaxation of (4.18) on node P̃ × Q̃× Z̃.
4: If the relaxation is feasible then
5: let

(
α̃k, p̃k, q̃k, z̃k

)
be the solution and for each pipe a ∈ Api denote the

solution with
(
p̃kin, p̃

k
out, q̃

k
a

)
a
.

6: For all a ∈ Api do
7: While

∣∣Pua (p̃kout, q̃ka , Na)− P `a(p̃kout, q̃ka , Na)∣∣ > δ2 do
8: increase Na.
9: If all

(
p̃kin, p̃

k
out, q̃

k
a

)
a
are δ1-feasible for (4.22) then

10: return the solution
(
α̃k, p̃k, q̃k, z̃k

)
.

11: Choose “most violated” pipe a ∈ Api, i.e.,
a ∈ arg max

a∈Api

max
{
p̃kin − Pua

(
p̃kout, q̃

k
a , Na

)
, P `a

(
p̃kout, q̃

k
a , Na

)
− p̃kin

}
.

12: If qa < 0 < qa then
13: suggest branching w.r.t. qa = 0 to fix orientation of flow on pipe a and
14: return “branch”.
15: If p̃kin > caveŨa

[Pua]
(
p̃kout, q̃

k
a , Na

)
then

16: add (at least one separating inequality of) the concave envelope of Pua
to the relaxation,

17: else if p̃kin > Pua
(
p̃kout, q̃

k
a , Na

)
then

18: suggest branching w.r.t. to either pin, pout, or qa and
19: return “branch”,
20: else if p̃kin < P `a

(
p̃kout, q̃

k
a , Na

)
then

21: add a gradient cut of the form (4.20) to the relaxation,
22: else
23: return “infeasible”.

97

Chapter 4. Stationary Gas Transport

pin

pout
I

pin

pout
II

pin

pout
III

Figure 4.4. For a pair (pin, pout) and fixed mass flow rate q there are
the three different cases of infeasibility of constraint (4.22). The fea-
sible region is hatched and the three cases (from left to right) are as
follows: pin is greater than the concave envelope of Pu; pin is greater
than Pu, but cannot be cut off by the concave envelope; pin is less
than the lower bound and infeasibility can be resolved by adding a
gradient cut.

the convexity of P `a and cut off the solution with a gradient cut

P `a(p̃out, q̃, Na) +∇P `a(p̃out, q̃a, Na)>
(
pout − p̃out
qa − q̃a

)
≤ pin,

see Section 4.3.1.

In the first and last case, we then iterate and solve the relaxation again. In the
second case, Algorithm 4.1 stops and instructs the branch-and-bound process to
branch. After the convex relaxation algorithm terminates with a solution, we carry
on like in the spatial branch-and-bound Algorithm 3.3.

In order to apply Theorem 3.8, which shows that our spatial branch-and-bound
algorithm terminates finitely, we have to show that Algorithm 4.1 satisfies Assump-
tion 4.

Proposition 4.5. Algorithm 4.1 terminates after a finite number of iterations.

Proof. We show that Assumption 4 holds for Algorithm 4.1, that is, that the al-
gorithm terminates finitely if it keeps N fixed. If this assumption holds, then by
Lemma 3.7 shows the statement. Thus, suppose that the vector of the numbers of
discretization steps N ∈ NApi

stays constant during the execution of Algorithm 4.1,
i.e., the condition ∣∣Pua (pkout, qka , Na)− P `a(pkout, qka , Na)∣∣ < δ2

98

4.3. LP-Relaxation for Gas Flow on Pipelines

is satisfied for all produced solutions (pkin, p
k
out, q

k
a)a for all pipes a ∈ Api and all

iterations k. Moreover, note that it suffices to only consider a single pipe. One can
straightforwardly extend this proof to an arbitrary number of pipes.
Suppose that the algorithm does not terminate, that is, it produces an infinite

sequence of points which are feasible for the convex relaxation but not δ1-feasible
for (4.22). Since the algorithm does not terminate, the orientation of flow already has
been fixed. Hence, we can distinguish between input and output pressure. Moreover,
the second case of infeasibility can not occur since the algorithm would also terminate
in this case; see Figure 4.4 and Line 17 of the algorithm.
Let (pkin, p

k
out, q

k
a)k∈N denote the sequence of solutions produced by the algo-

rithm. We divide the iterations into sets corresponding to the two possible cases
of infeasibility. That is, we denote with O ⊆ N the set of iterations with
pkin > caveU [Pua](pkout, q

k
a , Na) and with L = N \ O the set of iterations with

pkin < P `(pkout, q
k
a , Na); see Lines 15 and 20. We will show that both sets have to be

finite and therefore the algorithm terminates after a finite number of iterations.
We first consider the subsequence O. Let Ũa denote the domain of Pua given by

the variable bounds of pout and q in the current node of the branch-and-bound tree,
and the constraint 0 ≤ νcApout − c q. Obviously, Ũa still has one of the five shapes
depicted in Figure 4.3. Hence, as discussed above in Section 4.3.2 the concave
envelope of Pua on Ũa is given by at most three linear inequalities. Thus, even if
we choose to add only one of the defining inequalities at each iteration k ∈ O, it
only takes up to three iterations to fully add the concave envelope to the relaxation.
Furthermore, since neither branching occurs (and thus Ũa does not change) nor Na
is increased, the concave envelope of Pua does not change during the course of the
algorithm. That is, O contains at most three iterations (in general, at most three
times the number of pipes).
Next, we show that the sequence L is finite, too. In every iteration k ∈ L we

add an inequality of the form (4.20) to the relaxation. Since P `a is convex and
continuously differentiable, it is Lipschitz continuous on the compact set Ũa. Hence,
there is a radius r such that the inequality

0 ≤ P `a
(
pout, qa, Na

)
− P `a

(
pkout, q

k
a , Na

)
−∇P `a

(
pkout, q

k
a , Na

)>(pout − pkout
qa − qka

)
< δ1

holds for all k ∈ L and for all points (pout, qa) ∈ Br(pkout, qka)∩Ũa, where Br(pkout, qka)

is the open ball around (pkout, q
k) with radius r. That is, any point (pin, pout, qa)

with (pout, qa) ∈ Br(pkout, qka)∩ Ũa, which satisfies the gradient cut for iteration k, is
a δ1-feasible solution for the lower bound in (4.22).
Now, suppose that L is not finite. Then since Ũa is compact, there exists a

subset (ki)i∈N ⊂ L such that the sequence (pkiout, q
ki
a)i∈N converges to (p∗out, q

∗
a) ∈ Ũa.

99

Chapter 4. Stationary Gas Transport

pin

poutI

pin

poutII

pin

poutIII
pin

poutIV

pin

poutV

pin

poutVI

Figure 4.5. The figure shows an exemplary progression of the relax-
ation produced by repeatedly calling Algorithm 4.1. The feasible set
defined by Pu and P ` is hatched (with north west lines) and the re-
laxation is shaded gray. Thereby, the development of the relaxation is
as follows: We start with the box defined by the variable bounds (I).
Then after tightening the variable bounds (II), the concave overesti-
mator is added (III). The bounds are tightened again after branching
w.r.t. pout (IV). Finally, the new overestimator and a gradient cut
are added in the right node (V) and also in the left node (VI).

Let kj be an element of the sequence, such that (p∗out, q
∗
a) ∈ Br(p

kj
out, q

kj
a) holds.

Then, since the sequence converges to (p∗out, q
∗
a), there exists an index n > j such

that also (pknout, q
kn
a) ∈ Br(p

kj
out, q

kj
a) holds. By the above argument this implies that

(pknin , p
kn
out, q

kn
a) is a δ1-feasible solution of P `a(pout, qa, Na) ≤ pin, i.e., the algorithm

stops. Thus, L has to be finite.

4.4 Spatial Branch-and-Bound Algorithm for
Stationary Gas Transport

We are now ready to apply the adaptive spatial branch-and-bound Algorithm 3.3 to
problem (4.18) which yields Algorithm 4.2. We proceed analogously to the general
framework. Given νc ∈ (0, 1), we initialize the algorithm with the minimal number
of discretization steps N0 ∈ NA

pi

such that the conditions of Lemma 2.23 are met.
The only differences are that we call Algorithm 4.1 instead of Algorithm 3.2 and

100

4.4. Spatial Branch-and-Bound Algorithm for Stationary Gas Transport

the particular case of choosing the mass flow as branching variable in order to fix
the flow direction; see Line 17. Note that we do not specify an order to choose
the branching variables from the cases in Lines 14 to 18. In our implementation
with the branch-and-bound framework SCIP [40, 132], we leave the choice of the
branching variable to SCIP, because it includes various branching rules. However,
note that SCIP itself branches on fractional binary oder integer variables first. For
an overview and the importance of branching rules see, for example, Achterberg et
al. [2] or Bonami et al. [16].

Theorem 3.8 shows that Algorithm 3.3 terminates after a finite number of itera-
tions. To see that this also applies to Algorithm 4.2, we have to prove that condi-
tion (3.11) holds. That is, if the algorithm produces an infinite nested sequence of
nodes and solutions (α̃k, p̃k, q̃k, x̃k)k∈N of the relaxation, then there has to exist an
iteration k0 ∈ N such that

max
{
pkin − Pua (pkout, q

k
a , Na), P `a(pkout, q

k
a , Na)− pkin

}
≤ δ1

holds for all pipes a ∈ Api and k ≥ k0. Figure 4.5 shows the exemplary develop-
ment of the relaxation for a single pipe, which is produced by repeatedly calling
Algorithm 4.1.

Proposition 4.6. Let conditions (3.7) and (3.10) be true. Suppose that Algo-
rithm 4.2 produces an infinite nested sequence of nodes. Then the solutions of the
convex relaxation produced by Algorithm 4.1 satisfy condition (3.11).

Proof. Again, it suffices to only consider a single pipe a ∈ Api. Suppose that Algo-
rithm 4.2 produces an infinite nested sequence of nodes. Since our first priority is
to fix the direction of the flow, we can assume that qa is restricted to nonnegative
values. We denote the sequence of bounding boxes on pipe a with

Fk =
[
pkin, p

k
in

]
×
[
pkout, p

k
out

]
×
[
qka, q

k
a

]
.

Further, let Uka denote the domain of Pu and P ` in node k, and let (pkin, p
k
out, q

k
a) be

the last solution of the relaxation produced by Algorithm 4.1 for node k.

Note that the algorithm only returns (pkin, p
k
out, q

k
a) with P `a(pkout, q

k
a , Na)−pkin > δ1

if there is another pipe with δ1-infeasible solution which cannot be separated by a
cut. Otherwise, by construction of Algorithm 4.1, a gradient cut, which cuts off the
current solution, would be added. Hence, it suffices to show that there exists k0 ∈ N
with pkin − Pua (pkout, q

k
a , Na) ≤ δ1 for all k ≥ k0.

We will show that k0 ∈ N exists such that the concave envelope of Pua cuts off
all δ1-infeasible points. Since (4.18) contains the constraint 0 ≤ νcApout − c qa, we

101

Chapter 4. Stationary Gas Transport

Algorithm 4.2 Adaptive spatial branch-and-bound for stationary gas transport

Input: Problem (4.18), νc ∈ (0, 1), N = N0 ∈ NA
pi

, δ1, δ2 > 0 and ε > 0.
Output: (ε, δ1 + δ2)-optimal solution (p∗, q∗, z∗) or “infeasible”.
1: Upper bound U ← ∞
2: List of active nodes L ← {P ×Q× Z}
3: While L 6= ∅ do
4: choose a node P̃ × Q̃× Z̃ ∈ L and set L ← L \ {P̃ × Q̃× Z̃}.
5: Construct underestimators Č and Ǧ.
6: Run Algorithm 4.1.
7: If Algorithm 4.1 stops with a solution or “branch” then
8: let

(
α̃, p̃, q̃, z̃

)
be the last solution found in Algorithm 4.1.

9: If the solution is δ1-feasible for (4.22) then
10: If (p̃, q̃, z̃) is δ1-feasible for G(p, q, z) ≤ 0 and C(p̃, q̃, z̃) < U holds then
11: set U ← C(p̃, q̃, z̃) and (p∗, q∗, z∗)← (p̃, q̃, z̃).
12: If α̃ < U − ε then
13: choose a branching variable according to one of the following cases:
14: • A binary variable zi with z̃i 6∈ {0, 1}.
15: • A variable pu or qa in a δ1-violated constraint G(p̃, q̃, z̃) ≤ 0.
16: • A variable pu or qa in the objective if C(p̃, q̃, z̃) < α̃− ε.
17: • The flow variable qa if Algorithm 4.1 suggested to branch w.r.t. qa = 0.

18: • A variable pu, pv, or qa if Algorithm 4.1 suggested to branch w.r.t.
the

“most violated” pipe a = (u, v).
19: Branch w.r.t. the chosen variable and add nodes to L.
20: If U <∞ then
21: return (ε, δ1 + δ2)-optimal solution (p∗, q∗, z∗)

22: else
23: return “infeasible”.

102

4.5. Possible Extensions to the Model

assume for ease of notation that 0 ≤ νcAp
k
out − c qka and 0 ≤ νcAp

k
out − c qka is true

for all nodes Fk. Note that in practice this can be assured by bound propagation.
Then due to monotonicity, the inequality

Pua
(
pkout, q

k
a, Na

)
≤ Pua

(
pout, qa, Na

)
≤ Pua

(
pkv , q

k
a, Na

)
is fulfilled for all nodes k and all (pout, qa) ∈ Uka . Therefore, the concave enve-
lope caveUk

a
[Pua] of Pua satisfies the inequality caveUk

a
[Pua](pout, qa) ≤ Pua (pkv , q

k
a, Na).

Hence, if
Pua
(
pkv , q

k
a, Na

)
− Pua

(
pkv , q

k
a, Na

)
≤ δ1 (4.23)

holds, δ1-infeasible points can be cut off by the concave envelope, i.e., (pkin, p
k
out, q

k
a)

is δ1-feasible.
By construction of Pua it is continuous and converges to the solution of the ODE

for Na →∞, therefore Na is only increased a finite number of times. Thus, by the
continuity of Pua and condition (3.7), i.e., limk→∞ diamFk = 0, we can derive that
an index k0 ∈ N exists such that inequality (4.23) holds for all k ≥ k0. Therefore,
condition (3.11) holds for all k ≥ k0.

Proposition 4.5 and Proposition 4.6 show that our construction of under- and
overestimators for the Euler equation satisfies the necessary requirements of Theo-
rem 3.8.

Corollary 4.7. Suppose that conditions (3.7) and (3.10) hold. Then for ε > 0,
δ1 > 0, δ2 > 0, νc ∈ (0, 1) and N0 chosen appropriately Algorithm 4.2 terminates
after a finite number of iterations with an (ε, δ1 + δ2)-optimal solution of (4.18) or
the conclusion that the problem is infeasible.

This corollary shows that our approach and Algorithm 4.2 works for the example
of stationary gas transport.

4.5 Possible Extensions to the Model

In this section, we discuss two changes to our model and how we can handle these
in the Algorithms 4.1 and 4.2. In Section 1.1, and Section 4.2 we assumed that the
friction coefficient λ is constant and that the pipes are horizontal, i.e., the slope sat-
isfies σ = 0. However, for the friction coefficient there are several flow dependent ap-
proximations and formulas other than the formula of Nikuradse [106, 107] known in
the literature; for example, see Koch et al. [82] and the references therein. Moreover,
in the real world of course not all pipes are horizontal. In the following, we show how

103

Chapter 4. Stationary Gas Transport

pin

pout

P u(p̃out, q̃, λ,N)

P u(p̃out, q̃, λ
b, N)

P u(p̃out, q̃, λ̃, N)

I

pin

pout

P `(p̃out, q̃, λ̃, N)

P `(p̃out, q̃, λ
b, N)

P `(p̃out, q̃, λ,N)

II

Figure 4.6. Resolving infeasibility for a solution (p̃in, p̃out, q̃, λ̃) of the
relaxation is more involved with nonconstant friction coefficient, since
under- and overestimators have to be constructed w.r.t. λ and λ. The
left-hand side depicts Case I, where p̃in is too large, and the right-
hand side depicts Case II with p̃in too small.

to reflect the corresponding changes to the model in our spatial branch-and-bound
approach. However, note that these changes have not been implemented.

4.5.1 Nonconstant Friction Coefficient

The formula of Hagen-Poisseuille [37], the equation of Hofer [71] and the equation of
Prandtl and Colebrook [25] are alternatives to using the formula of Nikuradse (1.3).
In particular, the equation of Prandtl and Colebrook is considered to be the most
accurate approximation for the friction coefficient. In these models, the friction
coefficient λ depends on the mass flow q.

To include a variable friction coefficient in our model, we assume that the friction
coefficient is bounded by λ ≤ λ ≤ λ and add the corresponding formula/equation to
the constraints. We remark that the friction coefficients named above can be treated
by standard MINLP techniques.

By choosing the number of discretization steps sufficiently big, we can still use Pu

and P ` to compute lower and upper bounds. If we interpret these also as func-
tions in λ, then we can show that both are nondecreasing w.r.t. λ. Unfortunately
though, ϕ, Pu and P ` are not convex in (p, q, λ). Hence, we cannot simply extend
the lower and upper bounding procedure of Algorithm 4.1. However, it is still pos-
sible to cut off infeasible solutions by combining branching w.r.t. λ and the cut off
procedure used in Algorithm 4.1 as follows.

Using the monotonicity of Pu and P `, we can derive the inequality

P `(pout, q, λ,N) ≤ P `(pout, q, λ,N) ≤ pin ≤ P `(pout, q, λ,N) ≤ Pu(pout, q, λ,N)

104

4.5. Possible Extensions to the Model

for all feasible (pin, pout, q, λ) with q ≥ 0. Since Pu and P ` are still convex
w.r.t. (p, q), this shows that we can construct under- and overestimators as before,
but now w.r.t. the minimal and maximal friction coefficient, respectively. However,
it is now more complicated to cut off infeasible solutions. For example, consider a
point (p̃in, p̃out, q̃, λ̃) with

P `(p̃out, q̃, λ̃, N) > p̃in ≥ P `(p̃out, q̃, λ,N).

In this case, we cannot separate the solution by adding a gradient cut w.r.t. (p̃out, q̃).
Even if we perform branching w.r.t. λ = λ̃, then we can separate the solution in the
node corresponding to the variable bounds [λ̃, λ], but not in the the node given by
the variable bounds [λ, λ̃]. Similar problems arise for solutions (p̃in, p̃out, q̃, λ̃) with

Pu(p̃out, q̃, λ̃, N) < p̃in ≤ Pu(p̃out, q̃, λ,N).

We can solve this problem by including an additional branching step in Algo-
rithm 4.1. Therefore, we consider the cases depicted in Figure 4.6, i.e., the cases
p̃in > Pu(p̃out, q̃, λ̃, N) and P `(p̃out, q̃, λ̃, N) > p̃in. Then infeasibility can be re-
solved as follows.

Case I We choose λb with λ > λb > λ̃ and p̃in > Pu(p̃out, q̃, λ
b, N). After branching

w.r.t. λ = λb, the current solution is not feasible in the node corresponding to
variable bounds [λb, λ] any more. Furthermore, in the second node given by [λ, λb],
we can proceed as in Algorithm 4.1, i.e., either add the concave envelope of Pu

w.r.t. λb or perform spatial-branching w.r.t. pin, pout or q and then add a cut to
separate the infeasible solution (p̃in, p̃out, q̃, λ̃).

Case II We choose λb with λ̃ > λb > λ and Pu(p̃out, q̃, λ
b, N) > p̃in. After

branching w.r.t. λ = λb, we can separate the solution in the node [λb, λ] by adding
a gradient cut. Moreover, in the node [λ, λb], the solution is not feasible any more.

By integrating these two branching steps w.r.t. λ directly before Line 15 in Algo-
rithm 4.1, we can then also handle models with nonconstant friction coefficient.

4.5.2 Pipelines with Height Differences

Recall from Section 2.4 that we studied the application of the second order Taylor
method (2.12) and the trapezoidal rule (2.14) to the stationary isothermal Euler
equation with height differences

∂xp(x) = ϕσ
(
p(x), q

)
, x ∈ [0, L], ϕσ(p, q) := −1

2

p

c2D

2DgσA2p2 + λc4q2

A2p2 − c2q2
.

105

Chapter 4. Stationary Gas Transport

Like before, we denote with P ta, P tr : U × N → R the functions defined through
evaluating (2.22) and (2.23). We note that we do not use Pu and P ` here, since not
always the same scheme defines the lower or upper bound.
Assuming λ c2 ≥ 6Dg|σ|, we can choose the number of discretization steps N

such that the conditions of Lemmas 2.26 to 2.28 are satisfied. We remark that this
assumption is not very restrictive, because we typically have c2 � 6Dg|σ|. Then for
a pipe with q ≥ 0 the functions P ta and P tr define lower and upper bounds on p(0)

in the following cases:
1. If σ > 0, then P ta defines a convex lower bound and P tr defines a convex

upper bound.
2. If σ < 0 and p(L) ≤ pr(q, σ) or σ = 0, then P ta defines a convex lower bound

and P tr defines a convex upper bound.
3. If σ < 0 and p(L) ≥ pr(q, σ), then P ta defines a convex upper bound and P tr

defines a convex lower bound.
That is, in the first two cases we have

P ta
(
p(L), q,N

)
≤ p(0) ≤ P tr

(
p(L), q,N

)
,

while in the third case the roles of the Taylor method and the trapezoidal rule are
reversed, i.e.,

P tr
(
p(L), q,N

)
≤ p(0) ≤ P ta

(
p(L), q,N

)
.

To handle pipelines with height differences in our model, we can construct the
linear under- and overestimators similar to before in each of these cases. Therefore,
we have to differentiate the three cases in Algorithm 4.1. This can be done as follows.
If, after fixing the flow direction, either q ≥ 0 and σ ≥ 0 or q ≤ 0 and σ ≤ 0 holds,
then we are in case 1. Otherwise, we are either in case 2 or 3. If either pout ≤ pr(q, σ)

or pout ≥ pr(q, σ) holds, then either case two or three applies. If neither the lower
or upper pressure bound satisfies these conditions, then we have to perform an
additional branching step before we can compute under- and overestimators. Note
that unlike before it does not suffice to perform branching w.r.t. a fixed pressure
value. Instead we have to perform so-called constraint branching, i.e., we create two
new nodes and add the constraints

pout ≤ pr(q, σ) =

(
c2

A

√
−λ

2Dg σ

)
q,

and

pout ≥ pr(q, σ) =

(
c2

A

√
−λ

2Dg σ

)
q,

106

4.6. First Numerical Results

respectively. Afterwards, we can construct the linear under- and overestimators.
However, in case 2 and 3 we have to take the additional constraints into account when
constructing the concave envelope of the upper bound. That is, we have to consider
other domains U than those depicted in Figure 4.3. Moreover, to add gradient cuts
in case 3 we have to compute the derivatives ∂pP tr and ∂qP tr of the lower bound,
which is given by evaluating the implicit trapezoidal rule. To avoid this, we can
consider an initial value problem instead of the end value problem (2.21) in case 3
and compute bounds on the output pressure; see also Section 2.4 and Remark 2.29.

4.6 First Numerical Results

We have implemented the models presented in Section 4.2 and Algorithm 4.2 using
Algorithm 4.1 to construct the relaxations for the ODE constraints (4.4) with the
branch-and-bound framework SCIP [40, 132] using CPLEX as LP-solver. At this point
we refer to Chapter 6 for details on the implementation and the computational setup.
Among other instances, we use instance GasLib-40 from GasLib [41, 126], which

is a library of gas network instances. The network has 40 nodes, 39 pipes, and 6
compressor stations. There is one load scenario, that is, in- and outflows, available
online at [41], which has 3 entries and 29 exits. With the first running version
of our implementation we were able to solve problem (4.18) with the objective to
maximize the sum of pressures within one hour. On the one hand, this proved that
our approach also works in practice, on the other hand, the running times were not
satisfactory. Moreover, we were not able to solve any bigger instances.
Note that although we could not recreate similar running times with the current

version of our implementation, the following results have been achieved with the
current version of our code. A partial explanation for the faster running times is that
we now use SCIP version 7.0.0 and CPLEX version 12.10.0 instead of version 3.2.1
and version 12.6.1, respectively, and of course there have been major improvements
of the code. Nevertheless, using the basic algorithmics presented in this chapter
and, in particular, not using the flow tightening techniques which will be discussed
in Section 6.2, the solving process with the current version of our implementation
shows similar characteristics.
We solved instance GasLib-40 with νc = 0.8 and with feasibility tolerances 10−6

(SCIP default value) for solving the LP-relaxations and δ1 = δ2 = 10−4 for the ODE
constraints, see Corollary 4.7. The computation took 972.90 seconds and 24 138

nodes were processed in the branch-and-bound tree. Analyzing the solving process,
we observe that the flow variables of 13 pipes were already fixed after presolving.
However, Figure 4.7 shows that, except for one pipe, these pipes are at tree-like
ends of the network. For the remaining 26 pipelines the mean lower and upper

107

Chapter 4. Stationary Gas Transport

Figure 4.7. The network GasLib-40 after presolving for the scenario
which has 3 sources (diamonds) and 29 sinks (circles). Pipes with
fixed flow are depicted by �, the remaining pipes are dashed.

bounds of the flow variables are −2125.83 kg/s and 2139.25 kg/s, which is almost
no improvement to the initial bounds of ±2180.56 kg/s, and nowhere near to the
mean absolute flow of 62.63 kg/s in the optimal solution. In fact, Figure 4.7 also
shows that even for some bridges in the graph the flow could not be fixed during
presolving, even though it is uniquely defined by flow conservation.
As the main reason for the long running time and the poor performance of the

presolving we identified the fact that the flow direction has to be fixed before we can
construct the LP-relaxation for the gas flow; see Section 4.3. Hence, since the lower
and upper flow bounds provided in the description of the network GasLib-40 are
negative, and positive, respectively, we use the variable bounds as initial relaxation.
Thus, the relaxation does not represent the simplest physical properties of the gas
flow, e.g., that the pressure decreases in the direction of the flow.
As a consequence of this, we implemented problem specific bound tightening for

the flow variables; see Section 6.2. Furthermore, consider a pipe a = (u, v) ∈ Api.
To couple the pressure difference pu−pv with the flow direction, we introduce binary
variables z+

a and z−a to model the flow direction. The binary variables are coupled
with the flow qa through the constraints

z+
a + z−a ≤ 1 and qa z

−
a ≤ qa ≤ qa z+

a .

Then, if the flow is positive, z+
a = 1 holds and if the flow is negative, z−a = 1 holds.

Note that we use two binary variables z+
a and z−a with z+

a + z−a ≤ 1 instead of a
single binary variable z with qa (1 − z) ≤ qa ≤ qa z such that we do not have to
assign a direction to flow qa = 0, see also the next chapter. Hence, by including the
inequality

(pu − pv) z−a ≤ pu − pv ≤ (pu − pv) z+
a (4.24)

108

4.6. First Numerical Results

in our model we can represent the physical property that the pressure is nonincreas-
ing in the direction of the flow and thus strengthen the relaxation. Furthermore,
note that an immediate implication of this property is that gas cannot flow in cy-
cles unless the pressure is increased via a compressor station. To further strengthen
our model, this observation motivated the study of acyclic flows in the subsequent
chapter.

109

CHA PTER 5
Combinatorial Models

for Acyclic Flows

In the previous chapter, we applied the spatial branch-and-bound algorithm which
was developed in Chapter 3 to stationary gas transport and discussed first numerical
results in Section 4.6. There we noticed that stationary gas flow is necessarily acyclic
(unless the pressure is increased in compressor stations). Since the numerical results
and, in particular, the solving times were not convincing, this motivated us to study
acyclic flows.
The observation that the flow is acyclic does not only apply to stationary gas

transport, but also to potential-based flows, which form a basic model for physi-
cal networks. Note that when using the Weymouth equation (1.9) to describe gas
flow in pipelines, stationary gas transport is a special case of potential-based flows.
Moreover, other networks such as water networks and DC power flow networks can
be formulated as potential-based flows. Thus, we study acyclic potential-based flows
in this chapter, instead of directly applying the theory to gas transport.
To introduce the fundamental ideas of this chapter and to show that potential-

based flows are necessarily acyclic, we first present the basic setting of potential-
based flows. Note that we will provide references to corresponding literature later
on. Let D = (V,A) be a simple directed graph without anti-parallel arcs. We
assume that for all arcs a ∈ A, there is a continuous, strictly increasing potential
function ψa : R→ R with ψa(0) = 0 as well as a resistance βa > 0. Each node v ∈ V
has an associated potential πv. Under mild assumptions on the potential functions
and given demand on the nodes, the defining equations

πu − πv = βa ψa(xa) ∀ a = (u, v) ∈ A, (5.1)

111

Chapter 5. Combinatorial Models for Acyclic Flows

induce a unique flow x ∈ RA and unique potential differences. For physical networks,
the potentials πu correspond to quantities like squared pressure or voltage. Note that
a directed instead of undirected graph D is used to define a direction of the flow
and (5.1). Thus, flow values can also be negative, indicating flow in the opposite
direction of the arc.
A flow x ∈ RA defines a directed graph D(x) := (V,A(x)) with

A(x) :=
{

(u, v) ∈ V × V : (u, v) ∈ A with x(u,v) > 0
}

∪
{

(v, u) ∈ V × V : (u, v) ∈ A with x(u,v) < 0
}
.

If x satisfies (5.1), we claim that this graph is always acyclic. To see this, assume
that there would exist a directed cycle C ⊆ A(x). Then by splitting the arcs in C
into forward arcs, i.e., those contained in the original graph, and backward arcs, i.e.,
those which have the opposite direction to the original graph, we obtain∑

(u,v)∈C∩A

β(u,v) ψ(u,v)(x(u,v))−
∑

(u,v)∈C\A

β(v,u) ψ(v,u)(x(v,u))

=
∑

(u,v)∈C∩A

(
πu − πv

)
+

∑
(u,v)∈C\A

(
πu − πv

)
= 0,

where we use that C is a cycle and thus the alternating sum of the potentials vanishes.
However, since the resistances βa are positive and each ψa is strictly increasing with
ψa(0) = 0, we have βa ψa(xa) > 0 if xa > 0 and βa ψa(xa) < 0 if xa < 0. Thus, the
value of the first line is positive, leading to a contradiction. This shows that D(x) is
acyclic, corresponding to the physical property of having a conservative potential.
Uniqueness and acyclicity are two important physical properties that are captured

by potential-based flows. Moreover, this model class is important for handling energy
networks other than gas networks; see Section 5.2 for examples. Such networks often
contain active network elements like switches/valves, allowing to close a connection,
or generators/pumps/compressors, which can increase the potential on certain arcs.
These elements allow to control flow and potentials. Their presence may violate
acyclicity, which provides more freedom to control the network. However, the passive
components remaining after removal of active elements satisfy acyclicity.
Using the degrees of freedom of active elements, several different optimization

problems over such networks are interesting, e.g., energy minimal operation under
the assumption that a given flow demand is satisfied. When solving such optimiza-
tion problems to global optimality, one can exploit the fact that the passive compo-
nents of the network still have an acyclic flow. We will demonstrate how to enhance
existing mixed-integer nonlinear programing formulations using binary variables for
the flow directions and constraints that enforce acyclicity. Therefore, we will use the

112

5.1. Literature Review

example of stationary gas transport introduced in the previous chapter. Yet, we use
the Weymouth equation (1.9) instead of the ordinary differential equations (4.4) to
describe gas flow in pipes.
This chapter is structured as follows. After a short literature review we complete

the setting of potential-based flows and provide examples in Section 5.2. Section 5.3
first introduces a nested sequence of polytopes which provide combinatorial models
for the directions of the flows. Thereby we relax more and more constraints of the
nonlinear model of potential-based flows along the way. Their relation is studied
in Section 5.3.1. In Section 5.3.2 we investigate a model solely based on acyclic
directions and the complexity of optimizing over the corresponding polytope. Sec-
tion 5.3.3 then introduces our main model, exploiting both acyclicity and the fact
that one needs to connect sources and sinks. To see that this model provides a
good compromise between the nonlinear model and the so-called acyclic subgraph
polytope, the particular model is investigated in Sections 5.3.4 and 5.3.5 in more
detail. Then in Section 5.4, we add the corresponding inequalities to problem (4.18)
using the potential-based flow model instead of the ODE model. We demonstrate
that this approach leads to an improvement of the solving time by about a factor
of 3 on average and a significant speed-up for the time to prove optimality by almost
a factor of 5. Furthermore, in Chapter 6 we will use those inequalities to speed-up
our spatial branch-and-bound algorithm for the model with the ODE constraints.
We remark that the contents of this chapter are available in similar form online in

the article [55] which is joint work with Marc E. Pfetsch. Furthermore, this article
is submitted for publication in an international journal. The presentation of the
numerical results in Section 5.4 is adjusted to this thesis and somewhat extended.

5.1 Literature Review

Potential-based flows have been studied repeatedly in the literature and have been
used in many different contexts. Hendrickson and Janson [67] provide an overview.
It seems that the first appearance is in Birkhoff and Diaz [13]. A general treatment
appears in Rockafellar [117]. We will refer to more literature in Section 5.2 and
also discuss examples there. The special case of stationary gas transport, which was
already introduced in Chapter 4, will be used in our computations in Section 5.4.
The topic of acyclic flows for potential-based flow has been investigated by Becker

and Hiller in four articles [7, 8, 9, 68]. Their motivation is similar to ours and
they also test their methods on gas networks. The main combinatorial model of
these articles is based on so-called acyclic source transshipment sink (ASTS) orien-
tations. We will arrive at an equivalent definition through a polyhedral approach in
Section 5.3.3. Their contributions can be briefly summarized as follows. A charac-

113

Chapter 5. Combinatorial Models for Acyclic Flows

terization of the cases in which an ASTS orientation exists is given in [8]. Moreover,
various decomposition results based on 2-connected components of the underlying
graph are presented in [7, 9]. This allows to preprocess the networks [7, Section 3].
The enumeration of ASTS orientations is discussed in [7, 9]. This is used in a
Dantzig-Wolfe type approach to strengthen potential-based flow formulations for
gas networks in [7, 9].

Our results differ from the ones by Becker and Hiller in the following way. We
embed the common combinatorial model in a sequence of polytopes and we investi-
gate their properties. We use a different binary encoding, provide a different setup,
investigate complexity results, and add the inequalities to the model instead of using
enumeration of the possible orientations.

The ideas of this chapter were already used for the computations in [56] and we
provide the background here. Apart from the mentioned literature, we are not aware
of any other works concerning combinatorial models for acyclic flows.

5.2 Potential-based Flows

Before referring to more results in the literature and starting our study of acyclic
flows in the next section, we first complete the setting of potential-based flows.

Recall that we assume that A contains at most one of (u, v) and (v, u) for every
pair of nodes u, v ∈ V. For a subset U ⊆ V we use the shorthand

δ+(U) := {(u,w) ∈ A : u ∈ U, w /∈ U}

for the outgoing arcs and analogously

δ−(U) := {(w, u) ∈ A : u ∈ U, w /∈ U}

for the ingoing arcs. We use the abbreviation δ+(v) := δ+({v}) and δ−(v) := δ−({v})
for v ∈ V.

For every node v ∈ V, there are lower and upper potential bounds πv and πv ∈ R,
respectively, with πv ≤ πv. Additionally, for every arc a ∈ A, there are lower and
upper flow bounds xa and xa ∈ R, respectively, with xa ≤ xa. Let b ∈ RV be
a supply and demand vector that is balanced, i.e.,

∑
v∈V bv = 0. A node v ∈ V

is called source node if bv > 0, sink node if bv < 0, and inner node if bv = 0.
Then (x, π) ∈ RA×RV is a (passive) potential-based flow if it satisfies the following

114

5.2. Potential-based Flows

constraints:∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V, (5.2a)

πu − πv = βa ψa(xa) ∀ a = (u, v) ∈ A, (5.2b)

πv ≤ πv ≤ πv ∀ v ∈ V, (5.2c)

xa ≤ xa ≤ xa ∀ a ∈ A. (5.2d)

We call x ∈ RA a b-flow if it satisfies (5.2a).

Throughout this chapter, we will assume that each potential function ψa : R→ R,
for a ∈ A, is continuous and strictly increasing with ψa(0) = 0. For some results in
the literature, additional requirements needed, e.g., that the potential functions are
odd (i.e., ψa(x) = −ψa(−x)), positively homogeneous (i.e., ψa(λx) = λrψa(x) for
all x ∈ R and λ > 0 with some constant r > 0) or that they are the same for every
arc, see, e.g., Groß et al. [49], but we do not need these assumptions here.

One important result, see Maugis [98], Collins et al. [26], and Ríos-Mercado et
al. [115] is the following: Assume that D is weakly connected, there are no bounds
on the potentials and flows, for a given node s ∈ V the potential πs is fixed, and
the potential functions are continuous and strictly increasing. Then there exists
a unique feasible potential-based flow (x, π). Consequently, System (5.2) with a
fixed potential πs is either infeasible or has a unique solution. One tool for proving
uniqueness is a cost minimal flow problem with a strongly convex objective, whose
dual multipliers provide the potentials, see Maugis [98], Rockafellar [117], and Groß
et al. [49] for more information and a discussion of the corresponding Lagrange dual.

Example 5.1. Several interesting applications can be modeled as potential-based
flows, see, e.g., Hendrickson and Janson [67]. We present three energy network
examples:

1. Stationary Gas Transport Networks: Here arcs correspond to pipelines, the po-
tentials are the squares of pressures, and flows are gas mass flows. One common
approximation of gas flow is (5.1) with ψa(xa) = |xa|xa, which is also called
the Weymouth equation (1.9). The positive arc-specific constant βa depends
on the pipelines diameter, length, and roughness of its inner wall. More details
on stationary gas flow in pipeline networks are given in the previous chapter,
in the book by Koch et al. [82], and the references therein. The above model
assumes constant heights of the network, but one can use scaling to incorporate
different heights, see Groß et al. [49].

The computational results in Section 5.4 are based on gas networks, extended
by active elements like valves and compressors.

115

Chapter 5. Combinatorial Models for Acyclic Flows

s u t

v w

1

1

1 1

1

2

1

Figure 5.1. An s–t-flow which can be decomposed into two paths (in-
dicated by dashed/dotted arcs) each with flow value 1, but that is
not acyclic.

2. Water Networks: Here potentials correspond to hydraulic heads. Common
potential functions are ψa(xa) = sgn(xa) |xa|1.852, see, e.g., Larock et al. [86],
or ψa(xa) = |xa|xa, see, e.g., Burgschweiger et al. [18].

3. Lossless DC Power Flow Networks: In this case, the potentials are voltages
and the potential function is linear ψa(xa) = xa. For more information about
power flow network planning, we refer to Bienstock [12].

5.3 Combinatorial Models for Acyclic Flows

To study acyclic flows, we first introduce some basic notation. Consider a simple
and weakly connected directed graph D without anti-parallel arcs. Note that these
assumptions are for notational convenience: Loops always have a zero flow and can be
removed, anti-parallel arcs can be reoriented to be parallel. Moreover, application
to energy networks motivates to use the same positively homogeneous potential
function for all arcs. Then parallel arcs can be merged into one arc with adapted
β-value; see Groß et al. [49]. Furthermore, each weakly connected component can
be treated separately.
We will use ~a to denote the reverse arc of some arc a ∈ A, i.e., if a = (u, v),

then ~a := (v, u). Furthermore, let ~A := { ~a : a ∈ A} be the set of the reversed arcs.
Note that for a given flow x, we can also write

A(x) = {a ∈ A : xa > 0} ∪ { ~a ∈ ~A : xa < 0},

and the digraph D(x) = (V,A(x)) is a reorientation of the subgraph consisting of
arcs with nonzero flow such that all arcs point in the direction of the flow. We say
that x is an acyclic flow if and only if D(x) is acyclic. An alternative definition for
acyclic flows is given by Hiller and Becker [68, Definition 1].

Remark 5.2. Note that being an acyclic s–t-flow is not related to having a flow
decomposition which only consists of paths and no cycles. On the one hand, the

116

5.3. Combinatorial Models for Acyclic Flows

s

u

v

t

1

2

3

4

5

Figure 5.2. A diamond shaped network with source s and sink t and
arc labels 1 to 5.

sum of flow along paths can contain a cycle. For example, consider the flow network
given in Figure 5.1. The s–t-flow depicted in this figure can be decomposed into
the flows x1 (dashed) and x2 (dotted). Both x1 and x2 are flows along paths and
therefore acyclic, nevertheless their sum is not, since D(x1+x2) contains the directed
cycle C = (u, v, w, u). On the other hand, the sum of flows along paths and cycles
can be acyclic. For example consider flow x3 with value −1 along C. Then, the
digraph D(x1 + x2 + x3) is acyclic.

The following example shows how flow directions can depend on the resistances βa.

Example 5.3. Consider the potential network given in Figure 5.2 with source s and
sink t and bs = −bt > 0. Let bu = bv = 0.

By constraint (5.2a), it is clear that x1+x2 = x4+x5 = bs > 0 has to hold for every
potential-based flow (x, π). Furthermore, x1, x2, x4 and x5 have to be nonnegative
because x is necessarily acyclic: Assume that one of them is negative. We can assume
w.l.o.g. x2 < 0 by symmetry. Then x1 > 0 holds by flow conservation. Having x3 > 0

would close the cycle (s, u, v, s). Thus, x3 ≤ 0 and by flow conservation x5 < 0. Since
also x4 > 0, this closes the cycle (s, u, t, v, s).

Thus, except for arc (u, v), all flow directions for this potential network are fixed,
independent of the potential functions and the β-values. However, the flow direction
of (u, v) depends on the potential functions and the β-values. Indeed, even if we
use the same potential function ψ = ψa for all arcs a, the flow direction is not
uniquely determined: If all β-values are equal, then the corresponding flow is x3 = 0.
Moreover, consider the case β1 > β2 = · · · = β5 and assume x3 ≥ 0. Then πu ≥ πv
holds by (5.2b). Further, β1 > β2 implies x2 > x1. Due to flow conservation
also x5 > x4. This gives

πt = πu − β4 ψ(x4) > πv − β5 ψ(x5) = πt,

117

Chapter 5. Combinatorial Models for Acyclic Flows

which is a contradiction. Hence, x3 < 0. Furthermore, by symmetry using β-values
β1 < β2 = · · · = β5 implies x3 > 0.

To express acyclicity, for each arc a ∈ A, we introduce binary variables z+
a and z−a

that model the flow direction as follows:

sgn(xa) = z+
a − z−a , z+

a + z−a ≤ 1, (5.3)

where sgn(xa) = −1 if xa < 0, sgn(xa) = 0 if xa = 0, and sgn(xa) = 1 if xa > 0.
Thus, these constraints imply that z+

a = 1 holds if xa > 0, z−a = 1 if xa < 0,
and z+

a = z−a = 0 if xa = 0.

The total model for potential-based flows is the following:∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V,

πu − πv = βa ψa(xa) ∀ a = (u, v) ∈ A,
πv ≤ πv ≤ πv ∀ v ∈ V,
xa ≤ xa ≤ xa ∀ a ∈ A,
z+
a − z−a = sgn(xa) ∀ a ∈ A,
z+
a + z−a ≤ 1 ∀ a ∈ A,
z+
a , z

−
a ∈ {0, 1} ∀ a ∈ A.

(5.4)

We define the feasible set of potential-based flows with the corresponding flow di-
rections

X := {(x, π, z+, z−) feasible for (5.4)} ⊂ RA ×RV × {0, 1}2A.

Moreover, for (z+, z−) ∈ {0, 1}2A we define

A(z+, z−) := {a ∈ A : z+
a = 1} ∪ { ~a ∈ ~A : z−a = 1}

and the corresponding subgraph D(z+, z−) :=
(
V,A(z+, z−)

)
of
←→
D := (V,

←→
A), where

we have
←→
A := A∪ ~A. Then we call (z+, z−) acyclic if and only if D(z+, z−) is acyclic

in the directed sense.

In order to exploit acyclicity of potential-based flows, we will investigate purely
combinatorial models of acyclicity, i.e., polytopes that are only based on the vari-
ables z+

a and z−a . There are several possibilities for such models, depending on how
many properties of the potential-based flow are used. We present four polytopes
in the following and one model in Section 5.3.3. The main goal is to derive in-

118

5.3. Combinatorial Models for Acyclic Flows

equalities that can be added to (5.4) in order to improve the computational solving
performance.

Projected Potential-Based Flows The most specific model considers the projection
of feasible points of (5.4) for a given network with given balanced b ∈ RV and yields
the polytope of potential-based flow directions

PPF := conv

{(
z+

z−

)
: ∃ (x, π) ∈ RA ×RV with (x, π, z+, z−) ∈ X

}
.

Note that since the flows are unique, (z+, z−) is also unique. The only possible
variation is whether PPF is empty or not. Since it is an NP-hard problem to decide
whether there exists a potential-based flow for the case of DC-flows, see Lehmann et
al. [88], and for the case of gas networks, see Szabó [146], it is an NP-hard problem
to decide whether PPF is empty.

Projected Universal Potential-Based Flows Example 5.3 shows that the flow di-
rections can depend on the values of β. We therefore investigate a model in which
the resistances β are allowed to vary.

Consider the asymptotic behavior of β−1
a (πu − πv) = ψa(xa) for βa → ∞. For

fixed potentials and βa → ∞ we get xa → 0. Thus, we identify (5.2b) for βa = ∞
with the constraint xa = 0 and decoupled potentials πu, πv. This has the same effect
as if arc a = (u, v) would not exist. In the following we denote the extended real
line with R := R ∪ {−∞,∞}.

Again given a digraph D with balanced b ∈ RV , we define the polytope of universal
potential-based flow directions for (5.4) as

PUPF := conv

{(
z+

z−

)
: ∃β ∈ RA>0, (x, π) ∈ RA ×RV with (x, π, z+, z−) ∈ X

}
.

By allowing the resistances β to vary, PUPF abstracts from the particular network
to some extent. Note that the polytope is universal in the sense that changes in β
allow a corresponding change of direction of some arcs as in Example 5.3.

Acyclic Flows The polytope of acyclic flow directions is

PAF := conv

{(
z+

z−

)
∈ {0, 1}2A : ∃x ∈ RA s.t. (5.2a), (5.2d), (5.3), D(x) acyclic

}
.

119

Chapter 5. Combinatorial Models for Acyclic Flows

That is, PAF is the convex hull of all binary vectors (z+, z−) ∈ {0, 1}2A such that
there exists an acyclic flow x ∈ RA, i.e., D(x) is acyclic, satisfying the constraints∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V,

xa ≤ xa ≤ xa ∀ a ∈ A,
z+
a − z−a = sgn(xa) ∀ a ∈ A,
z+
a + z−a ≤ 1 ∀ a ∈ A.

(5.5)

Note that from PUPF to PAF the potential equation (5.2b) of (5.4) is relaxed. Be-
cause of (5.3), we could replace the requirement that D(x) is acyclic by acyclicity of
D(z+, z−).

Acyclic Subgraphs The polytope that abstracts the most from potential-based
flows is the polytope of acyclic subgraphs

PAS := conv

{(
z+

z−

)
∈ {0, 1}2A : D(z+, z−) is acyclic

}
.

Note that acyclicity of D(z+, z−) implies z+
a + z−a ≤ 1 for each arc a ∈ A. In

Section 5.3.3, we will refine this model by using knowledge of sources, sinks, and
inner nodes.

Remark 5.4. There are two alternatives to using (5.3). The first one is

xa z
−
a ≤ xa ≤ xa z+

a , z+
a + z−a ≤ 1. (5.6)

These constraints form a relaxation of (5.3), since the direction variables z+
a and z−a

can be chosen freely if xa = 0 (as long as z+
a + z−a ≤ 1). For (x, π, z+, z−) ∈ X

this would allow D(z+, z−) to have cycles although D(x) is acyclic. Thus, the poly-
topes PPF and PUPF would contain (z+, z−) that do not correspond to potential-
based flows. Note that this model is only valid if x ≤ 0 ≤ x, because positive
bounds x or negative bounds x would be overruled when setting z+ = 0 or z− = 0.

The second alternative for (5.3) is

xa z
−
a ≤ xa ≤ xa z+

a , z+
a + z−a = 1.

This would require to assign a direction to a 0-flow arc, which would make the
following analysis more difficult.

120

5.3. Combinatorial Models for Acyclic Flows

5.3.1 Relations among Combinatorial Models

We begin with the obvious observation that

PPF ⊆ PUPF ⊆ PAF ⊂ PAS.

In fact, Example 5.3 shows that in general the first inclusion is strict. The last
inclusion is always strict: On the one hand, if b 6= 0, then 0 6∈ PAF, but we always
have 0 ∈ PAS, on the other hand, if b = 0 then PAF = {0}, but we can always set a
single direction to 1 in PAS. Moreover, we have the following special case.

Lemma 5.5. If there are no potential bounds then PUPF = PAF holds.

Proof. If suffices to show PAF ⊆ PUPF. To this end, suppose first that b = 0. Then
the only acyclic flow satisfying (5.2a) is x = 0. Thus, if x = 0 satisfies the flow
bounds (5.2d), z+ = z− = 0 is the only possible solution and PUPF = PAF = {0}
holds.
Otherwise, let b 6= 0 be balanced and consider any (z+, z−) ∈ PAF ∩ {0, 1}2A.

Furthermore, let x ∈ RA be an acyclic flow, such that (x, z+, z−) satisfies the defining
constraints (5.5) of PAF. To show that (z+, z−) ∈ PUPF holds, we have to show that
there exist potentials π ∈ RV which satisfy πu−πv = βa ψa(xa) for all arcs a = (u, v)

with appropriately chosen resistances β ∈ RA>0.
We first compute potentials π such that πu − πv ≥ xa if xa > 0 and πu − πv ≤ xa

if xa < 0 holds for all arcs a = (u, v) ∈ A. To this end, consider the digraph

D′ =
(
V ∪ {r},A(x) ∪ {(r, v) : v ∈ V}

)
.

with an artificial node r and additional arcs (r, v) for all v ∈ V. Furthermore, we
define weights w on this graph as follows. We define wa = −xa for arcs a ∈ A(x)∩A,
wa = xa for arcs a ∈ A(x) ∩ ~A and wa = 0 for the additional arcs a = (r, v). Note
that by construction D′ does not contain any cycles, because x is acyclic. Thus,
the Moore-Bellman-Ford algorithm computes the shortest distances πv from r to
all nodes v ∈ V with πv ≤ πu + wa for all a = (u, v) ∈ A(x), see, e.g., Korte and
Vygen [83]. By definition of the weights w, this implies πu − πv ≥ xa if xa > 0 and
πu− πv ≤ xa if xa < 0 for all arcs a = (u, v) ∈ A. Moreover, note that one can shift
the potentials such that π ≥ 0 holds.
We now choose β-values such that equation πu − πv = βa ψa(xa) holds for each

arc a = (u, v) ∈ A. For an arc a with xa = 0 choosing βa = ∞ obviously works.
Otherwise, let xa 6= 0. If xa > 0, we can choose βa := (πu − πv)/ψa(xa) > 0, since
πu−πv ≥ xa > 0. Analogously, if xa < 0, we can choose βa := (πu−πv)/ψa(xa) > 0

since πu − πv ≤ xa < 0 and ψa(xa) < 0.

121

Chapter 5. Combinatorial Models for Acyclic Flows

This yields the following result.

Corollary 5.6. If no potential bounds are present, PPF ⊆ PUPF = PAF ⊂ PAS and
the two inclusions are strict in general.

The following results justify the choice of βa = ∞ in PUPF. Therefore, given
a weakly connected digraph D = (V,A) and a balanced supply and demand vec-
tor b ∈ RV , we define the set of all potential-based flows

Xx :=
{
x ∈ RA : ∃β ∈ RA>0, π ∈ RV with (x, π) satisfy (5.2a), (5.2b)

}
.

We first show that in the absence of flow and potential bounds the closure of Xx is
given by permitting βa =∞. Note that Xx is never empty.

Proposition 5.7. Consider a weakly connected digraph D = (V,A) and a balanced
supply and demand vector b ∈ RV . The closure of potential-based flows is given by

cl(Xx) =
{
x ∈ RA : ∃β ∈ RA>0, π ∈ RV with (x, π) satisfying (5.2a), (5.2b)

}
. (5.7)

Proof. In the case b = 0, both sets only contain x = 0. Thus, it suffices to consider
the case b 6= 0. In the following, we denote the set on the right-hand side of (5.7)
by X∞.
We first show cl(Xx) ⊆ X∞. We assume there exists x∗ ∈ cl(Xx) \ Xx as oth-

erwise there is nothing to show. To prove x∗ ∈ X∞, we have to construct resis-
tances β ∈ RA>0 and potentials π∗ such that (x∗, π∗) satisfy (5.2a) and (5.2b). If x∗

is acyclic, we can use the procedure in the proof of Lemma 5.5. Thus, we have to
show that A(x∗) is acyclic.
Suppose that A(x∗) contains a directed cycle C and w.l.o.g. assume that x∗a > 0

for all a ∈ C. Let (xk)k∈N ⊂ Xx converge to x∗. Then for some k0, xk0a > 0 holds for
all a ∈ C, which contradicts xk0 being a potential-based flow. Hence, x∗ is acyclic
and we conclude that the inclusion cl(Xx) ⊆ X∞ holds.
We now show the reverse inclusion X∞ ⊆ cl(Xx). Let x∗ ∈ X∞ with corresponding

resistances β∗ ∈ RA>0 and potentials π∗. If β∗ ∈ RA>0, then we are done due to
definition. Therefore, assume that βa = ∞ for at least one arc a ∈ A. We have
to construct a sequence (xk)k∈N ⊂ Xx converging to x∗ to finish the proof. We
construct this sequence as follows:
1. We choose any sequence (αk)k∈N ⊂ R>0 with αk →∞.
2. We define a sequence of resistances (βk)k∈N ⊂ RA>0, by using βka = β∗a for all

arcs a with β∗a <∞ and βka = αk otherwise.
3. Choose a source s ∈ V and fix πks = π∗s for all k ∈ N.

122

5.3. Combinatorial Models for Acyclic Flows

4. Since there are no flow or potential bounds, there exists a unique solution (xk, πk)

of (5.2a) and (5.2b) with resistances βk for every k ∈ N. Note that for this
solution xk satisfies xk ∈ Xx.

We claim that the sequence xk constructed this way converges to x∗. To see this,
consider the subgraph D∞ = (V∞,A∞) of D, which results from removing all arcs
with β∗a =∞ and all resulting isolated nodes.

Due to flow conservation and the acyclicity of potential-based flows, we can derive
lower and upper bounds x∗ and x∗ on the flow on each arc, e.g., the flows are
bounded by the total sum of inflows (bv > 0). We point out that these flow bounds
only depend on the graph D and the vector b, i.e., they are independent of the
iteration k. Since the resistances βa of arcs a ∈ A∞ are independent of the iteration
as well, the flow bounds together with (5.2b), define a lower and an upper bound
on the potential difference between the nodes of each weakly connected component
in D∞, which have to be satisfied for all (xk, πk). The bounds on the potential
differences can, for example, be derived as follows: For every two nodes u and v in
a connected component of D∞ there is – w.l.o.g. due to possible reorientation – a
directed path P ⊂ A∞ from u to v. Then πu − πv is bounded by∑

a∈P
βaψa(x∗a) ≤ πu − πv ≤

∑
a∈P

βaψa(x∗a).

Let a = (u, v) ∈ A \ A∞ and suppose that xka does not converge to 0. Then (a
subsequence of) the sequence βka ψa(xka) converges to ±∞. If u and v are in the
same connected component of D∞, this contradicts the potential differences of each
component being bounded. Otherwise, note that due to flow conservation there
can only be flow from one connected component to another, if there is also flow to
the first component from another component, and vice versa. Thus, there exists a
“cycle” of arcs in A\A∞ connecting different connected components of D∞. Hence,
if the flow on these arcs does not converge to 0, the potential differences of the nodes
where the flow enters and leaves the different components converges to ±∞, which is
a contradiction as before. Therefore, xk → x∗ holds, which concludes the proof.

The previous result can also be extended to the case with flow bounds.

Corollary 5.8. Using the assumptions of Proposition 5.7, the following holds. Given
flow bounds x ≤ x, we define X[x] := Xx∩ [x, x]. If X[x] 6= ∅, then the closure of X[x]

is given by

cl(X[x]) = {x ∈ RA : ∃β ∈ RA>0, π ∈ RV with (x, π) satisfying (5.2a), (5.2b), (5.2d)}.

123

Chapter 5. Combinatorial Models for Acyclic Flows

Proof. The inclusion “⊆” holds by the same arguments as before. To see “⊇”, we
use the same construction to define the sequence (xk, πk)k∈N. After possibly choos-
ing a subsequence, all elements of the sequence either satisfy the flow bounds, or
all violate the flow bounds. That is, the sequence is either contained in cl(X[x])

or cl(Xx) \ cl(X[x]). In the first case, we are done. Otherwise, note that the flow
bounds are satisfied in the limit and thus the limit is not contained in the comple-
ment of cl(X[x]) but in the intersection of the closures.

Remark 5.9.
• Combining Lemma 5.5 and Corollary 5.8 yields that in the absence of potential
bounds, acyclic flows coincide with the closure of potential-based flows.

• Instead of taking the closure of the flows only, we could also consider

X(x,π) := {(x, π) ∈ RA ×RV : ∃β ∈ RA>0 s.t. (x, π) satisfy (5.2a), (5.2b)}.

Then the closure satisfies

cl(X(x,π)) (
{

(x, π) ∈ RA ×RV : ∃β ∈ RA≥0 s.t. (x, π) satisfy (5.2a), (5.2b)
}
,

where additionally βa = 0 is permitted. Here, the reverse inclusion is in general
not true, because when using βa = 0, flow in a cycle is possible, while potential-
based flows are always acyclic.

• Note that taking the closure of potential-based flows together with the corre-
sponding directions defined by (5.3) does not yield the same results as defining
the directions after taking the closure of the flows, e.g., consider Figure 5.2. We
have seen that x1 > 0 for all β1 ∈ R>0, and thus z+

1 = 1. But by taking the
closure of flows with the direction variables x1 = 0 is possible, while still z+

1 = 1

holds for all elements of the closure, that is, (5.3) is violated.
• For energy networks βa =∞ can be interpreted as if the arc is combined with a
switch/valve which is turned off/closed.

5.3.2 Acyclic Subgraphs and Computational Complexity

We next obtain a complete description of PAS if the graph is planar by using known
results from the literature. Indeed, acyclic (z+, z−) ∈ {0, 1}2A correspond to acyclic
subgraphs of the digraph

←→
D = (V,

←→
A). The corresponding acyclic subgraph problem

was investigated by Grötschel et al. [50]. The acyclic subgraph polytope is the
convex hull of incidence vectors of acyclic arc sets in a given digraph. Grötschel
et al. showed that for planar graphs a complete description of the acyclic subgraph
polytope is given by the variable bounds and so-called dicycle inequalities. These

124

5.3. Combinatorial Models for Acyclic Flows

inequalities are based on the set of all dicycles (directed cycles) in
←→
D :

C := {C ⊆
←→
A : C directed cycle}.

Note that the anti-parallel arcs {a, ~a} form a particular dicycle in
←→
D . Thus, trans-

lated to our setting, we obtain the following:

Corollary 5.10 (Grötschel et al. [50]). If
←→
D is planar then

PAS =
{

(z+, z−) ∈ [0, 1]2A :
∑
a∈C

z+
a +

∑
~a∈C

z−a ≤ |C| − 1 ∀C ∈ C
}
. (5.8)

Note that planarity is a reasonable assumption for real world physical networks.
In general networks, however, optimizing over PAS (in fact, over all four polytopes)
is NP-hard.

Lemma 5.11. Linear optimization over PAS is NP-hard.

Proof. Grötschel et al. [50] already observed that linear optimization over the acyclic
subgraph polytope is NP-hard, since finding a maximum acyclic subgraph is NP-hard
– this problem is complementary to the feedback arc set problem, which has been
proven to be NP-hard by Karp [78]. We note the graph in the reduction is simple and
does not contain anti-parallel arcs. When optimizing over PAS and considering

←→
D ,

we can choose the weight to be 0 for either a or ~a, depending on which direction
is present in the original digraph. Thus, optimization over the acyclic subgraph
polytope is equivalent to optimization over PAS.

Lemma 5.12. Given a directed graph with flow bounds, and a supply and demand
vector b, it is NP-complete to decide whether there exists an acyclic b-flow.

Proof. If there exists an acyclic flow, there exists one with polynomial encoding
length in the size of the instance. Moreover, acyclicity can be checked in polynomial
time. Thus, the problem is in NP.
Consider an instance of the independent set problem: Given an undirected

graph G = (V,E) and an integer K, the question is whether there exists an inde-
pendent subset of nodes of size at least K, i.e., no two selected nodes are connected
by an edge. Construct the following directed graph D = (V,A). The node set is

V = {s, t} ∪ {v′ : v ∈ V } ∪ {v′′ : v ∈ V },

where s and t are two new nodes and v′, v′′ are distinct copies of v ∈ V . The arcs
in A are constructed as follows: For each edge {u, v} ∈ E we add two arcs (u′′, v′)

125

Chapter 5. Combinatorial Models for Acyclic Flows

s

u′

v′

w′

u′′

v′′

w′′

t

Figure 5.3. Example of the digraph D = (V,A) constructed in the
proof of Lemma 5.12 for the graph G = ({u, v, w}, {{u, v}, {v, w}}).

and (v′′, u′); the corresponding flow bounds are such that the flow on these arcs is
fixed to 1. See Figure 5.3 for an example of this construction. Moreover, for each
node v ∈ V , we add arcs (v′, v′′) as well as arcs (s, v′) and (v′′, t); the flow on these
arcs is restricted to lie in [0, 1]. Moreover, we set bv′′ = −bv′ = deg(v) for each
original node v ∈ V and bs = −bt = K.

Note that because of the flow bounds, the direction of the flows is fixed. How-
ever, xa can still be 0 on arcs a of type (s, v′), (v′, v′′) or (v′′, t).

Consider an independent set S ⊆ V of size K in G. Then there exists an acyclic
flow in D: For each v ∈ S, the arcs (s, v′), (v′, v′′), and (v′′, t) have a flow value of 1.
The arcs (s, v′), (v′, v′′), and (v′′, t) for v /∈ S have flow 0. The flow on all other
arcs is fixed to 1. It is easy to see that this forms a b-flow. Moreover, it is acyclic.
Indeed, because of the flow bounds, the only directed cycles are (v′1, v

′′
1 , v
′
2, v
′′
2 , v
′
1)

for an edge {v1, v2} ∈ E or (v′1, v
′′
1 , v
′
2, v
′′
2 , . . . , v

′
j , v
′′
j , v
′
1) for a cycle (v1, v2, . . . , vj , v1)

in G = (V,E). Since S is independent, the flow on either (v′1, v
′′
1) or (v′2, v

′′
2) is 0.

Thus, in each cycle there is at least one arc with zero flow.

Conversely, let x ∈ RA be a feasible acyclic b-flow and define the following set of
nodes S := {v ∈ V : x(v′,v′′) > 0}. Because of the demand of −K at t and the flow
bounds, we have |S| ≥ K. Moreover, S is independent. Indeed, if there would exist
an edge {u, v} ⊆ S, then x would contain a cycle (u′, u′′, v′, v′′, u′).

As a consequence, we cannot expect to obtain tractable linear descriptions for PAS

and PAF in general graphs.

Obviously, acyclic subgraphs are not an accurate model for the feasible flow di-
rections, for instance, since proper disconnected subgraphs might not even support
a feasible flow. Nevertheless, the acyclic subgraph polytope is well investigated and
provides a relaxation through the dicycle inequalities. We will test their practical
influence on the optimization of gas networks in Section 5.4.

126

5.3. Combinatorial Models for Acyclic Flows

5.3.3 Acyclic Subgraphs with Sources and Sinks

To obtain a polytope contained in PAS, but closer to PAF, we consider a potential-
based flow x ∈ Xx and derive valid inequalities for PAF by using the knowledge
of sources and sinks in the network. For b ∈ RV , we define the set of sources
V+ := {v ∈ V : bv > 0}, the set of sinks V− := {v ∈ V : bv < 0}, and the inner
nodes V0 := {v ∈ V : bv = 0}. Then V = V+ ∪̇ V− ∪̇ V0. Moreover, for some arc
set S ⊆ A we use the shorthand notation z+(S) =

∑
a∈S z

+
a and z−(S) =

∑
a∈S z

−
a .

For every source s ∈ V+, there has to exist at least one arc with flow away from
the source s. That is, there has to exists an arc a ∈ δ+(s) with xa > 0 or an
arc a′ ∈ δ−(s) with xa′ < 0. Thus, z+

a = 1 or z−a′ = 1 has to hold for at least one
arc a ∈ δ+(s) or a′ ∈ δ−(s). Similarly, for t ∈ V−, there exists at least one arc with
flow towards t. This can be expressed via the valid inequalities

z+
(
δ+(s)

)
+ z−

(
δ−(s)

)
≥ 1, (5.9a)

z−
(
δ+(t)

)
+ z+

(
δ−(t)

)
≥ 1. (5.9b)

Furthermore, for every inner node v ∈ V0 in- and outflow have to be balanced,
because of (5.2a). That is, if there is flow to v, i.e., there is an arc a ∈ δ−(v)

with xa > 0 or an arc a ∈ δ+(v) with xa < 0, there has to exist flow from v to
another node, i.e., there is an arc a′ ∈ δ−(v) with xa′ < 0 or an arc a′ ∈ δ+(v)

with xa′ > 0, and vice versa. Thus, for the binary variables this implies that if there
is an arc (u, v) ∈ A(z+, z−), there has to exist another node w with an incident
arc (v, w) ∈ A(z+, z−), and vice versa. There are several possibilities to represent
this by linear inequalities. We introduce two options, which differ in their strength
and number of added inequalities.

Given a node v ∈ V0, the first option is to add an inequality for both directions
of every arc incident to v. The inequalities are

z+
a ≤ z−

(
δ+(v) \ {a}

)
+ z+

(
δ−(v)

)
∀ v ∈ V0, a ∈ δ+(v), (5.10a)

z−a ≤ z+
(
δ−(v) \ {a}

)
+ z−

(
δ+(v)

)
∀ v ∈ V0, a ∈ δ−(v), (5.10b)

z−a ≤ z+
(
δ+(v) \ {a}

)
+ z−

(
δ−(v)

)
∀ v ∈ V0, a ∈ δ+(v), (5.10c)

z+
a ≤ z−

(
δ−(v) \ {a}

)
+ z+

(
δ+(v)

)
∀ v ∈ V0, a ∈ δ−(v). (5.10d)

Here, the first two inequalities imply that if arc a incident to v is oriented away
from v, then there has to exist another arc that is oriented towards v. The other
two inequalities imply the converse. This discrete representation of flow conservation
requires 2

∑
v∈V0 deg(v) inequalities.

127

Chapter 5. Combinatorial Models for Acyclic Flows

Another option is to aggregate the first two inequalities and the last two inequal-
ities, which yields

z+
(
δ+(v)

)
+ z−

(
δ−(v)

)
≤ (deg(v)− 1)

(
z−
(
δ+(v)

)
+ z+

(
δ−(v)

))
, (5.11a)

z−
(
δ+(v)

)
+ z+

(
δ−(v)

)
≤ (deg(v)− 1)

(
z+
(
δ+(v)

)
+ z−

(
δ−(v)

))
. (5.11b)

Again the first inequality implies that if there is an outgoing arc of node v, there
has to exist an incoming arc, while the second inequality implies the converse. This
representation usually has fewer inequalities: 2 |V0| instead of 2

∑
v∈V0 deg(v). How-

ever, while both variants allow for the same integral points, the following example
shows that they differ in the strength of their LP-relaxations.

Example 5.13. Consider again the graph shown in Figure 5.2. Here, z+
1 = 1,

z+
3 = 1

2 , z
+
5 = 1, and the remaining variables equal to 0 is feasible for the inequal-

ities (5.11). In fact, it is a vertex of the LP-relaxation of (5.8) with the additional
constraints (5.9) and (5.11). However, this solution is not feasible for (5.10). Fur-
thermore, all feasible solutions of (5.10) are feasible for (5.11). This shows that the
first option yields tighter LP-relaxations.

Note that for this and subsequent examples we used polymake [5, 43] to compute
vertices, dimension, affine hull, and facets of polytopes.

In the following we will therefore concentrate on (5.10) and investigate the formu-
lation given by these inequalities as well as the dicycle inequalities∑

a∈C
z+
a +

∑
~a∈C

z−a ≤ |C| − 1 ∀C ∈ C. (5.12)

We define the polytope of acyclic flows with sources and sinks as

PAS± := conv
{

(z+, z−) ∈ {0, 1}2A : (z+, z−) is feasible for (5.9), (5.10), (5.12)
}
.

We will also need the LP-relaxation corresponding to PAS±:

PAS±
LP :=

{
(z+, z−) ∈ [0, 1]2A : (z+, z−) satisfying (5.9), (5.10), (5.12)

}
.

The model derived here turns out to be equivalent to the one investigated by Becker
and Hiller [7, 8, 68], which can be seen using the analysis in the next section.

128

5.3. Combinatorial Models for Acyclic Flows

5.3.4 Analysis of Acyclic Subgraphs with Sources and Sinks

In this section, we analyze the polytope PAS±. We start by proving a key insight,
which helps to derive several results in the following. Note that we define paths
to be simple, i.e., no node appears twice in the path. We call a directed path a
source-sink-path if it starts in V+ and ends in V−.

Proposition 5.14. Let (z+, z−) ∈ PAS± ∩ {0, 1}2A. For every arc in A(z+, z−),
there exists a directed source-sink-path containing this arc. In particular, D(z+, z−)

contains at least one path leaving each node in V+ and at least one path entering
each node of V−. Moreover, if b = 0, then PAS± = {0}.

Proof. Consider an arbitrary arc a = (u, v) ∈ A(z+, z−). To find a source-sink-path
containing a, we construct a path from v to V− if v 6∈ V− and a path from V+ to u
if u 6∈ V+. Together with the arc a, these paths yield the desired source-sink-path.
Note that these two paths and their combination with a are necessarily simple, since
otherwise A(z+, z−) contains a cycle.

Starting at node v 6∈ V−, by the constraints (5.9a) if v ∈ V+, or (5.10c) and (5.10d)
if v ∈ V0, there exists an arc a1 = (v, v1) ∈ A(z+, z−) for some node v1 ∈ V \
{v}. Repeating this argument produces a path (v, v1, v2, . . . , vk) in A(z+, z−) until
it ends with vk ∈ V−. This process terminates, since the graph is finite and we
cannot produce cycles. Similarly, going backwards from u 6∈ V+, by (5.9b), (5.10a)
and (5.10b) there exists an arc (u1, u) ∈ A(z+, z−) for some u1 ∈ V \{u}. Repeating
yields a path (ur, . . . , u1, u) until ur ∈ V+.

If b 6= 0, by (5.9a) there exists at least one path leaving each node in V+ and
by (5.9b) there exists at least one path entering each node in V−.
Finally, let b = 0. Then there are no sources and sinks, i.e., the construction above

would either terminate at a node with degree 1 or produce a cycle, which contradicts
either (5.10) or (5.12). Thus, PAS± = {0} if b = 0.

We obtain the following first consequence:

Corollary 5.15. For every balanced supply and demand vector b the polytopes PAF

and PAS± satisfy the inclusion

PAF ⊆ PAS±.

Proof. In the case b = 0, we have PAS± = PAF = {0}. Hence, we only have to
consider the case b 6= 0. Furthermore, note that it suffices to prove the inclusion for
all integer points.

129

Chapter 5. Combinatorial Models for Acyclic Flows

s1

s2

t1

t2

2

1

−1

−2

Figure 5.4. The graph shows that Theorem 5.16 does not hold in gen-
eral if both |V+| ≥ 2 and |V−| ≥ 2: Suppose that bs2 , bt2 6= 0 and
bs2 < −bt2 , then the flow on at least one of the arcs (s1, s2) and
(t1, t2) has to be positive. Nevertheless, if bt1 6= 0, they need not be
used in PAS±, i.e., PAS± 6⊆ PAF.

Let (z+, z−) ∈ PAF ∩ {0, 1}2A with corresponding acyclic b-flow x ∈ RA. By as-
sumption b 6= 0, flow x is nonzero. This implies that there is at least one path with
nonzero flow leaving each node in V+ and at least one path with nonzero flow entering
each node in V−. Thus, the constraints (5.9) are satisfied. Due to flow conservation,
the inequalities (5.10a) – (5.10d) hold. Moreover, since x is acyclic (5.12) is satisfied.
Hence, we have (z+, z−) ∈ PAS± which concludes the proof.

Figure 5.4 shows that PAF = PAS± does not hold in general since PAS± does not
capture the amount of supply or demand. However, the following result characterizes
a special case such that the equality holds.

Theorem 5.16. Suppose that |V+| = 1 or |V−| = 1 if b 6= 0. Then, if there are no
flow bounds,

PAS± = PAF.

Proof. In the case b = 0, we have PAS± = PAF = {0}. Hence, we only have to
consider the case b 6= 0. By the previous corollary it suffices to prove that the inclu-
sion PAS± ⊆ PAF is true. Note again that it suffices to prove the inclusion for all
integer points. Moreover, we only consider the single sink case V− = {t}, since the
single source case is analogous.
Let (z+, z−) ∈ PAS± ∩ {0, 1}2A and denote the sources with V+ = {s1, . . . , sk}.

We first construct an acyclic flow x ∈ RA with xa < 0 if z−a = 1, xa > 0 if z+
a = 1,

and xa = 0 otherwise. By scaling, we will obtain a b-flow.
We start with the zero-flow x = 0 and define P1 = · · · = Pk = ∅. We then pick an

arc a′ ∈ A with either z+
a′ = 1 or z−a′ = 1 and xa′ = 0. Then by Proposition 5.14 there

exists a path P from a source si to the sink t in D(z+, z−) containing a′ if z+
a′ = 1

or otherwise ~a′ if z−a′ = 1. We add P to the set Pi and augment x along P by one
unit, by increasing xa by 1 for every arc a ∈ A∩P and decreasing xa by 1 for every

130

5.3. Combinatorial Models for Acyclic Flows

arc a ∈ A such that ~a ∈ P . For a ∈ A we define ∆(P)a = 1 if a ∈ P and ∆(P)a = −1

if ~a ∈ P and ∆(P)a = 0 otherwise. Then the new flow is x+ ∆(P). Since A(z+, z−)

does not contain both a′ and ~a′, flow xa′ can only be increased if a′ ∈ A(z+, z−)

or otherwise decreased if ~a′ ∈ A(z+, z−) by augmenting flow along another path,
even for another source-sink pair. Therefore, we can iterate augmenting flow for
the remaining arcs with no flow and thereby construct a flow with the desired flow
directions. Note that

x =

k∑
i=1

∑
P∈Pi

∆(P).

We still have to scale the flow such that it is a b-flow. First note that there might
exist an index i ∈ [k] = {1, . . . , k} with Pi = ∅; for example, if the graph D itself is
a path with the ends s1 and t. Then, if we start the procedure above with a′ incident
to s1, we only augment flow once and Pi = ∅ for all i > 1. Hence, consider i ∈ [k]

with Pi = ∅. By Proposition 5.14 there exists an si–t-path P in D(z+, z−). Then
set Pi = {P}.
We now define the scaled flow

k∑
i=1

bsi
|Pi|

∑
P∈Pi

∆(P).

Since bsi and |Pi| > 0, the scaling is valid, does not change flow directions, and
yields a b-flow.

Proposition 5.14 also helps to determine the structure of integer points in PAS±.
For a subset S ⊆

←→
A, let χ(S) be the incidence vector (χ+, χ−) ∈ {0, 1}2A defined

by χ+
a = 1 if a ∈ S ∩ A, χ−a = 1 if ~a ∈ S ∩ ~A and 0 otherwise.

Corollary 5.17. Each integer point (z+, z−) ∈ PAS± is the incidence vector of a
union of source-sink-paths in

←→
D that does not contain cycles and conversely.

Proof. For each a ∈ A(z+, z−) there exists a source-sink-path Pa in A(z+, z−) that
contains a by Proposition 5.14. Then each arc in A(z+, z−) is covered by ∪aPa and
the union does not contain cycles. Thus (z+, z−) = χ(∪aPa).

Conversely, the incidence vectors of a union of source-sink-paths that does not
contain cycles clearly satisfies (5.9), (5.10) as well as (5.12) and is therefore contained
in PAS±.

Note that the union of source-sink-paths can contain cycles, even in the single
source and sink case, see the example in Figure 5.1.

131

Chapter 5. Combinatorial Models for Acyclic Flows

Another consequence of Proposition 5.14 is that z+
a and z−a can be fixed to 0 or 1

in some cases. We first need the following definition. Recall that we assume that D
is weakly connected and consider two arcs distinct arcs a1, a2 ∈ A such that neither
is a bridge and D − {a1, a2} has exactly two weakly connected components D1 and
D2. Then {a1, a2} is called a cut-pair. Assume that D2 contains neither source nor
sink and that a1 enters and a2 leaves D2 (by reorientation). We call D2 input-output
subgraph. Note that D2 might have no arcs, in which case a1 and a2 form a directed
path.

Lemma 5.18. Let D be the given weakly connected simple digraph with sources V+

and sinks V−. Then the following holds for every (z+, z−) ∈ PAS±.
1. If there is no source-sink-path in

←→
D containing a ∈ A (~a ∈ ~A) then z+

a = 0

(z−a = 0).
2. Let a ∈ A be a bridge, i.e., D − a is not weakly connected, and let the two

connected components of D − a be induced by B1, B2 with V = B1 ∪̇ B2. Then
the following holds for each of the two connected components D[Bi].
a) Assume Bi ∩ V+ = ∅ and Bi ∩ V− = ∅. Then z−a = z+

a = 0. Furthermore,
z−a′ = z+

a′ = 0 holds for all arcs in the induced subgraph a′ ∈ D[Bi].
b) Assume Bi ∩ V+ 6= ∅ and Bi ∩ V− = ∅. If a ∈ δ+(Bi), then z+

a = 1 and
if a ∈ δ−(Bi), then z−a = 1 holds.

c) Assume Bi ∩ V+ = ∅ and Bi ∩ V− 6= ∅. If a ∈ δ+(Bi), then z−a = 1 and
if a ∈ δ−(Bi), then z+

a = 1 holds.
3. Let there exist an input-output subgraph of D with entering arc a and leaving

arc a′. Then z+
a = z+

a′ and z
−
a = z−a′ .

Proof. In all cases, it suffices to consider integer points (z+, z−) ∈ PAS±, since the
statement then holds for the convex hull PAS±.

1. Suppose that there is no source-sink-path in
←→
D containing a (~a). By Proposi-

tion 5.14, A(z+, z−) cannot contain a (~a). Thus, z+
a = 0 (z−a = 0).

2. In case (2a), Bi contains neither a source nor a sink. Since the paths are simple
and D(z+, z−) is acyclic, no path can enter Bi. In case (2b), at least one source-
sink-path has to leave Bi. In case (2c), at least one source-sink-path has to
enter Bi.

3. Every union of source-sink-paths using a1 also has to use a2. This implies the
given equations.

Remark 5.19.
1. The results in Lemma 5.18 are similar to the ones by Becker and Hiller [7, 8],

but in a different notation.

132

5.3. Combinatorial Models for Acyclic Flows

2. The existence of a node of degree 2 is a special case of Part 3 of Lemma 5.18.

3. It is an open question whether the conditions of Lemma 5.18 define the affine
hull of PAS± in general; we will present a result for the special single source and
single sink case in Proposition 5.28.

A natural question is how the conditions in Lemma 5.18 can be checked. It turns
out that the condition of Part 1 is hard to check, even for the single source and sink
case.

Proposition 5.20. Given a directed graph with source node s, sink node t and some
arc a = (u, v), it is NP-complete to decide whether there exists a (simple) s–t-path
that contains a.

Proof. Consider the k-vertex disjoint paths problem, which consists of finding vertex
disjoint paths from si to ti for a given set of node pairs (s1, t1), . . . , (sk, tk). Obvi-
ously, finding an s–t-path that uses a is the special case of finding 2-vertex disjoint
paths between (s, u) and (v, t). Fortune et al. [39] proved that the vertex disjoint
paths problem on general directed graphs is NP-complete even for fixed k ≥ 2.

Corollary 5.21. Linear optimization over PAS± is NP-hard, even if there is a single
source s and sink t.

Proof. Consider the linear function that maximizes z+
a for some arc a over PAS±.

The optimal value is 1 if and only if there exists an s–t-path through a. The results
then follows by NP-hardness of determining the latter by Proposition 5.20.

Remark 5.22. Schrijver [130] showed that for fixed k and planar graphs, an s–t-path
that contains a given arc can be found in polynomial time. Recently, Fakcharoenphol
et al. [32] showed that one can compute the set of all arcs that are not contained in
an s–t-path of a planar graph in linear time.

Remark 5.23. With respect to Parts 2 and 3 of Lemma 5.18 the following holds.
Bridges in graphs can be found in linear time, see Tarjan [148]. Moreover, checking
whether a source and sink are in the same connected component can be done by
breadth-first search in linear time, see, e.g., Korte and Vygen [83]. Moreover, after
bridges have been removed, the linear time algorithm of Mehlhorn et al. [100] outputs
a cut-pair if one exists. More input-output subgraphs can be produced using this
algorithm iteratively.

133

Chapter 5. Combinatorial Models for Acyclic Flows

5.3.5 Analysis of the Single Source and Sink Case

In this section, we provide a further analysis for the special case of a single source s
and sink t. This implies that the balanced b ∈ RV satisfies bs = −bt ≥ 0 and bv = 0

for all v ∈ V \{s, t}. To simplify notation, we orient the arcs incident to the source s
and sink t such that δ−(s) = ∅ and δ+(t) = ∅ holds.

Lemma 5.24. Let D be the given weakly connected simple digraph with source s and
sink t. Then for every (z+, z−) ∈ PAS±, z−a = 0 holds for every a ∈ δ+(s) and for
every a ∈ δ−(t).

Proof. Since PAS± is the convex hull of the integer points, it suffices to prove
that the statement holds for all integer points. Thus, consider an integer
point (z+, z−) ∈ PAS±. Assume the statement does not hold, and let a = (s, v) with
z−a = 1. Then going backwards from v similarly to the proof of Proposition 5.14
shows that there exists an s–v-path. This would close a cycle, hence, z−a = 0 holds
for all a ∈ δ+(s). For a ∈ δ−(t) we can argue analogously.

Remark 5.25. Let S ⊂ V with s ∈ S, t /∈ S and consider the s–t-cut inequalities

z+(δ+(S)) + z−(δ−(S)) ≥ 1.

Because of Corollary 5.17 these inequalities are valid for all integer points in PAS±

and thus for their convex hull. However, they are weaker than the inequalities (5.9)
and (5.10). Indeed, the s–t-cut inequalities together with nonnegativity provide
a complete linear description of the dominant of the s–t-path polytope, see, e.g.,
Schrijver [131, Theorem 13.1]. Moreover, as an example consider the incidence
vector of the union of (at least) one s–t-path and some node-disjoint arc. This
vector is feasible for the s–t-cut inequalities, but not for (5.9) and (5.10). However,
the s–t-cut inequalities can be strengthened as follows.

Lemma 5.26. Let D be a simple connected digraph with source s and sink t. Then
for all subsets S ⊂ V with s ∈ S and t /∈ S the inequalities

z+(δ+(S)) + z−(δ−(S)) ≥ 1 + z−a ∀a ∈ δ+(S) (5.13a)

z+(δ+(S)) + z−(δ−(S)) ≥ 1 + z+
a ∀a ∈ δ−(S) (5.13b)

are valid for PAS±.

Proof. Inequality (5.13a) is satisfied by all solutions in PAS± with z−a = 0 by Re-
mark 5.25. Let (z+, z−) ∈ PAS± be an integral solution with z−a = 1. By Proposi-
tion 5.14, D(z+, z−) contains an s–t-path P that uses ~a. Then P has to cross the

134

5.3. Combinatorial Models for Acyclic Flows

cut at least twice and therefore z+(δ+(S)) + z−(δ−(S)) ≥ 2. Thus, (5.13a) holds for
the convex hull of these integer points, i.e., PAS±. The validity of (5.13b) can be
seen similarly.

Remark 5.27. Note that (5.13a) for S = {s} yields (5.9a), since z−a = 0 for all
arcs a ∈ δ+(s) by Lemma 5.24.

Since we want to use PAS± to speed-up the optimization of energy networks, we
are interested in the affine hull of PAS± to identify possible equations or variable
fixings, which we can use to strengthen our problem. In Lemma 5.18 we already
discussed such conditions for the general case. For the single sink and single sink
case we can prove the following result concerning the affine hull of PAS±.

Proposition 5.28. Assume that in
←→
D there exist two arc-disjoint s–t-paths and for

every arc a ∈
←→
A \ { ~a : a ∈ δ+(s) ∪ δ−(t)}, there exists two s–t-paths that are

arc-disjoint except for a. Then

dimPAS± = |
←→
A| − deg(s)− deg(t),

where δ+, δ− and deg are with respect to the original digraph D.

Proof. Consider an equation (c+)>z+ + (c−)>z− = γ that is valid for PAS±, i.e., we
have PAS± ⊂ {(z+, z−) : (c+)>z+ + (c−)>z− = γ}. Let c = (c+, c−).

By assumption there exist two arc-disjoint s–t-paths P1 and P2. Then the in-
cidence vectors χ(P1), χ(P2), and χ(P1 ∪ P2) are contained in PAS±. Thus, the
equalities c>χ(P1) = c>χ(P2) = γ and c>χ(P1 ∪ P2) = c>χ(P1) + c>χ(P2) = γ

hold. Adding the first two equations yields c>χ(P1) + c>χ(P2) = 2 γ which im-
plies γ = 0.

Consider an arbitrary arc a ∈
←→
A \ { ~a : a ∈ δ+(s) ∪ δ−(t)}. By assumption there

exist two s–t-paths P1 and P2 that are arc-disjoint, except for a. Let P̂1 := P1 \ {a}
and P̂2 := P2 \ {a}. Then for i ∈ {1, 2} we get

c>χ(Pi) = c>χ(P̂i) + ca = 0 (5.14)

and moreover
c>χ(P1 ∪ P2) = c>χ(P̂1) + c>χ(P̂2) + ca = 0

holds. Adding equation (5.14) for i ∈ {1, 2} yields

c>χ(P̂1) + c>χ(P̂2) + 2 ca = 0.

135

Chapter 5. Combinatorial Models for Acyclic Flows

s

u

v

t

1

1
3

1
3

1
3

1

2
3

Figure 5.5. The graph D(z+, z−) associated with a vertex of PAS±
LP

applied to the network of Figure 5.2.

This implies ca = 0, and therefore ca = 0 for all arcs a ∈
←→
A\{ ~a : a ∈ δ+(s)∪δ−(t)}.

Thus, the only possible equations are the ones of Lemma 5.24, i.e., z−a = 0 for all
arcs a ∈ δ+(s) ∪ δ−(t), and linear combinations of them. Since the former are lin-
early independent, it suffices to consider them. Together, they reduce the dimension
by |δ−(s)|+ |δ+(t)|, which shows the claim.

Note that the assumptions of Proposition 5.28 rule out bridges as well as input-
output subgraphs. If D would contain a bridge such that s and t are in different
connected components, then there are no two arc-disjoint s–t-paths. Otherwise if s
and t are in the same connected component, then there is no s–t-path using the
bridge. If a cut-pair would exist, then there are no two arc-disjoint paths using
the arcs of the cut-pair. Moreover, note that the assumptions also rule out the
existence of an s–t-arc, since the only s–t-path using this arc would be the arc itself.
Nevertheless, we could allow the existence of an s–t-arc, but then, if (s, t) ∈

←→
A,

the formula would have to be dimPAS± = |
←→
A| − deg(s)− deg(t) + 1 due to double

counting.

The following examples show that the defining inequalities of PAS± do not cover
all facet defining inequalities of PAS±. However, they all do define facets of PAS±

in particular examples. Furthermore, after the following examples we will assess the
influence of PAS± on the optimization of stationary gas networks in the next section.

Example 5.29. Consider again the graph given in Figure 5.2. This example shows
that the LP-relaxation PAS±

LP is not integral, i.e., PAS± (PAS±
LP . Indeed, Figure 5.5

depicts a graph associated with a vertex of PAS±
LP .

Example 5.30. Again consider the graph in Figure 5.2. Lemma 5.24 implies that

z−1 = z−2 = z−4 = z−5 = 0

136

5.3. Combinatorial Models for Acyclic Flows

s

v1

v2

v3

t

Figure 5.6. A graph for which dicycle inequalities (5.12) define facets of PAS±.

holds for all points in PAS±. Furthermore, the other variables can take either value
and these equations define the affine hull. Thus, in this example, the dimension
of PAS± satisfies dimPAS± = |

←→
A| − |δ+(s)| − |δ−(t)|, although the assumptions of

Proposition 5.28 are not satisfied for arc 3.

Most facets of PAS± are already part of the defining system of PAS±
LP : the variable

bounds z+
1 , z+

2 , z+
4 , z+

5 ≤ 1 and z−3 , z+
3 ≥ 0, the inequalities 1 ≤ z+

1 +z+
2 , 1 ≤ z+

4 +z+
5

(see (5.9a) and (5.9b)) and z−3 +z+
3 ≤ 1 (see (5.12)), and the node conditions (5.10a) –

(5.10d) at nodes u and v:

z+
1 ≤ z

+
3 + z+

4 , z+
2 ≤ z

−
3 + z+

5 ,

z−3 ≤ z
+
4 , z−3 ≤ z

+
2 ,

z+
3 ≤ z

+
1 , z+

3 ≤ z
+
5 ,

z+
4 ≤ z

+
1 + z−3, z+

5 ≤ z
+
2 + z−3 .

Note that these inequalities differ a bit from (5.10a) – (5.10d), since we omit the
variables already fixed to 0. The only facets that are given by other inequalities are

1 + z−3 ≤ z
+
2 + z+

3 + z+
4 ,

1 + z+
3 ≤ z

+
1 + z−3 + z+

5 ,
(5.15)

which arise from (5.13a) and (5.13b).

Example 5.31. Interestingly, in the previous example there are no facets defined
by the dicycle inequalities (5.12). Note that this does not hold in general, e.g., con-
sider the graph in Figure 5.6. Here, the dicycle inequalities defined by the two cy-
cles {(v1, v2), (v2, v3), (v3, v1)} and {(v1, v3), (v3, v2), (v2, v1)} define facets of PAS±.

137

Chapter 5. Combinatorial Models for Acyclic Flows

5.4 Numerical Results

To demonstrate the effect of our method to handle acyclic flows via PAS±, we de-
scribe computational experiments for stationary gas networks with the gas flow given
as a potential-based flow. In the next chapter, we will also present a detailed study
of the effect of using PAS± together with the ODE constrained model and Algo-
rithm 4.2, which we introduced in the previous chapter. As mentioned earlier, gas
networks usually contain additional active elements. For these we use the models
presented in Section 4.2 in the previous chapter. In particular, for the compres-
sor stations we use the constraints (4.16) without the additional facets. Instead of
the ODE model introduced in the previous chapter, pipes are handled in the way
described in Example 5.1 by

πu − πv = βaψ(xa)

with ψ(xa) = |xa|xa. Thereby, the resistances βa are given by

βa =

(
4

π

)2
La
D5
a

λa c
2,

where La is the length of the pipe, Da its diameter, λa the friction coefficient given
by (1.3), and c the speed of sound; see also Section 1.1 for a derivation of the
Weymouth equation. Recall from Example 5.1 that in stationary gas transport, the
potentials are the squares of the pressures at the nodes. To integrate the potential
equation with the other models, we couple the potentials with the pressure variables
through equations p2

u = πu. Furthermore, we use variables x for the potential-based
flow in this section, which correspond to the mass flow variables q in stationary gas
transport.

Since some of the models of network elements other than pipes cannot be (linearly)
expressed in terms of the potentials, our model includes pressure variables pu for all
nodes u ∈ V. To avoid unnecessary nonlinear equations, our model only contains
the potential variables πu and the equations p2

u = πu for nodes u ∈ V where they
are actually needed. Note that this is a modeling choice and one could also only
introduce the pressure variables as needed. More details on the implementation can
be found in Section 6.1.

Before presenting our numerical results, we briefly describe how the flow direction
variables z+, z− are integrated into the models and how the cycles of the network
are detected.

138

5.4. Numerical Results

5.4.1 Model Integration of Flow Direction Variables

For handling acyclic flows, we include flow direction variables z+, z− in our model
for all network elements except for control valves and compressor stations. Since
these are one-directional elements, i.e., the flow through control valves and compres-
sor stations is nonnegative, and their models contain binary variables zcv and zcs
which are coupled with the flow anyway, we use these variables instead of additional
flow direction variables z+

cv, z−cv, z+
cs, and z−cs. Of course, control valves and compres-

sor stations are included in the binary flow direction constraints (5.9) and (5.10).
Therefore, we use zcv and zcs as if we had introduced flow direction variables z+

cv,
z−cv, z+

cs, and z−cs with z+
cv = zcv, z−cv = 0 and z+

cs = zcs, z−cs = 0. The treatment of
control valves and compressor stations, in particular those with bypasses, in dicycle
inequalities (5.12) will be discussed in Remark 5.33.

For all other network elements a ∈ A \ (Acs ∪ Acv), we add the variables z+
a

and z−a to their respective models. We couple z+
a and z−a to the flow variables by

using the linear relaxation (5.6) of (5.3), that is, we use xa z−a ≤ xa ≤ xa z+
a instead

of sgn(xa) = z+
a − z−a . Moreover, they can be coupled to some element specific

models as follows:

• Since the pressure decreases in the direction of flow over pipelines or nonlinear
resistors, we can strengthen our model by including the inequality

(pu − pv) z−a ≤ pu − pv ≤ (pu − pv) z+
a .

Note that this is especially an improvement of the ODE relaxation as discussed
in Section 4.6.

• If a valve is closed, i.e., zva = 0, there is no flow. Thus, we couple the flow
directions with the binary variable of the valve by

z+
a + z−a = zva.

• The model for linear resistors already contains indicator variables zε+a , zε−a if the
flow is greater/less or equal than ±qε. These indicator variables are combined
with the flow directions via the inequalities

zε+a ≤ z+
a , zε−a ≤ z−a .

Remark 5.32. Note that for nodes with degree 1, we do not add the binary flow
conservation constraints (5.9) and (5.10). Instead we directly fix the flow direction
variables of the incident arc depending on the node being a source, sink or inner
node.

139

Chapter 5. Combinatorial Models for Acyclic Flows

The dicycle inequalities (5.12) can be added for a cycle basis or for all cycles in
the network. To find the cycles we consider the underlying undirected graph, where
we treat each control valve or compressor station with their respective bypass as a
single edges, since we already add the inequalities (4.14) and (4.17) which forbid
that both control valve/compressor station and the bypass can be active/open. De-
tails on the treatment of control valves and compressor stations will be discussed in
Remark 5.33. A cycle basis of the undirected graph is computed as follows. After
computing a spanning tree by breadth-first-search, each non-tree edge defines a cycle
which is added to the cycle basis. The possible combinations of these cycles are then
enumerated. Two cycles can be combined into a new cycle, if their symmetric dif-
ference induces a connected subgraph, where all nodes have degree two. We remark
that all cycles of the graph can be found by enumerating all possible combinations of
basis cycles. Moreover, note that the enumeration and checking if two cycles can be
combined takes only a fraction of a second for the networks considered here. Each of
these cycles of the underlying undirected graph then defines two dicycles for which
we add the inequalities (5.12).

Remark 5.33. In the very beginning of this chapter, we argued that potential-based
flow in cycles (over pipelines) is not possible. However, we also forbid flow in cycles
containing control valves or compressor stations. Since control valves reduce the
the pressure in the direction of the flow, we can conclude by the same arguments as
before that (gas) flow over cycles including control valves is not possible. In contrast,
compressor stations increase the pressure level, which actually makes flow in cycles
possible. But note that such cycles can significantly increase the temperature of the
gas. This could only be controlled in (transient) models where the temperature of
the gas is kept under control as well. Therefore, we decided to also forbid flow in
cycles containing compressor stations.
Since control valves and compressor stations are one-directional elements, we

have to take special care of these. Therefore, we distinguish two cases: control
valves/compressor stations without bypass and control valves/compressor stations
with bypass. In the first case, if an edge of an undirected cycle corresponds to an one-
directional element, then this cycle only defines one dicycle. If two one-directional
elements are part of the same cycle, but in reverse direction, then this cycle does
not define a dicycle for inequalities (5.12).
In the second case, a cycle with a bypass defines two dicycles, i.e., one in both di-

rections, and the control valve/compressor station defines another dicycle. However,
since not both the bypass can be open and the control valve/compressor station can
be active at the same time, we can combine the dicycle inequalities as in the follow-
ing example. Consider a cycle consisting of pipe 1, a control valve cv with bypass
va and pipe 2 closing the cycle. Then we add the following dicycle inequalities to

140

5.4. Numerical Results

our model:

z+
1 + z+

2 + z+
va + zcv ≤ 2,

z−1 + z−2 + z−va ≤ 2.

5.4.2 Results

In order to test the effects of the different conditions we performed computations
with the following model variants:

NFD no binary variables to represent flow directions;
FDO with binary variables, but no flow conservation or dicycle inequalities;
CB dicycle inequalities (5.12) for a cycle basis;
AC dicycle inequalities (5.12) for all cycles;
FLC binary flow conservation (5.9) and (5.10);
FLC+CB variant FLC plus dicycle inequalities for a cycle basis;
FLC+AC variant FLC plus dicycle inequalities for all cycles.

We use the gas network instances GasLib-40, which we already used in Section 4.6,
and GasLib-582 from the library GasLib [41, 126]. Recall that the GasLib-40
network has 40 nodes, 39 pipes, and 6 compressor stations. The GasLib-582 network
has 582 nodes, 278 pipes, 5 compressor stations, 23 control valves, 8 resistors, 26
valves, and 269 short pipes. In total there are 4227 different scenarios for network
GasLib-582, arising from different distributions of the loads.
The computations were performed on a cluster with 3.5 GHz Intel Xeon E5-1620

Quad-Core CPUs, having 32 GB main memory and 10 MB cache running Linux.
We used SCIP version 7.0.0 [40, 132] with a time limit of one hour and we used
CPLEX version 12.10.0 as LP-solver.
As objective function for the following tests we chose the maximization of the

sum of pressures. Several other possibilities for the objective function exist, see
Section 6.3.2.
Since the GasLib-40 instance is rather small, the solving time for all models is less

than a second (and hence not reported in detail). Thus, this does not allow to draw
conclusions on the different model variants. Nevertheless, the instance gives insight
on some advantages of using the flow direction variables. Table 5.1 shows statistics
for the flow bounds of the pipes after presolving. Column “#fixed flows” shows the
number of pipes with fixed flow, column “#fixed dirs” the number of pipes with
fixed flow direction, and columns “xmean” and “xmean” the arithmetic mean lower
and upper bounds of the flows. While the number of fixed flows is the same for all
models, and mainly depends on the graph and the position of sources and sinks, the

141

Chapter 5. Combinatorial Models for Acyclic Flows

Table 5.1. Statistics for the flow bounds after presolving of 39 pipes
in the network GasLib-40 for all model variants.

variant #fixed flows #fixed dirs xmean xmean

NFD 13 2 −189.23 245.10
FDO 13 12 −100.39 115.06
CB 13 17 −61.03 74.62
AC 13 17 −60.72 74.58
FLC 13 12 −98.25 111.73
FLC+CB 13 20 −41.39 54.33
FLC+AC 13 20 −41.24 54.33

number of fixed directions and the arithmetic mean flow bounds can be improved
by using the flow direction variables. This is also illustrated in Figure 5.7, which
compares models NFD and FLC+AC. The figure distinguishes pipes with fixed flow,
fixed direction and the remaining pipes.

Note that we do not use optimality-based bound tightening (OBBT) in our ex-
periments with the potential-based flow model, see, e.g., Gleixner et al. [47] and the
references therein. Indeed, Becker and Hiller [8] use OBBT to further strengthen flow
bounds. However, we use the customized OBBT method described in Section 6.2 for
the experiments with the ODE model. Note that a more detailed study of OBBT
and the effect of PAS± on the ODE model is part of the next chapter.

The above results show that the arithmetic mean flow interval for model NFD is
more than four times as large as the flow interval of model FLC+AC. Since tighter
variable bounds typically lead to smaller branch-and-bound trees, this positive effect

Figure 5.7. The presolved network GasLib-40 corresponding to vari-
ants NFD (left) and FLC+AC (right). The scenario has 3 sources
(diamonds) and 29 sinks (circles). Pipes with fixed flow are depicted
by �, fixed flow directions are shown by→, and the remaining pipes
(with unfixed flows/directions) are dashed.

142

5.4. Numerical Results

Table 5.2. Aggregated results for GasLib-582 scenarios for all model
variants with the potential-based flow model.

variant opt feas limit inf inf-presol

NFD 218 966 864 2179 2168
FDO 819 1223 6 2179 2168
CB 586 1454 8 2179 2168
AC 767 1278 3 2179 2174
FLC 1818 220 10 2179 2168
FLC+CB 1883 164 1 2179 2170
FLC+AC 2015 30 3 2179 2174

Table 5.3. Geometric means of solving times in seconds and total run
time in hours for all model variants for the GasLib-582 scenarios.

variant to opt to first to inf total total time [h]

NFD 1435.02 892.10 1.01 50.59 1948.68
FDO 1102.95 89.46 1.01 42.32 1553.21
CB 1209.24 81.65 1.01 45.76 1713.48
AC 1313.93 81.12 1.00 44.12 1627.08
FLC 549.28 113.09 1.01 23.69 641.43
FLC+CB 465.97 103.53 1.01 21.36 537.70
FLC+AC 290.98 68.04 1.00 15.94 270.28

on the flow bounds is also reflected in the solving times of larger instances as can be
seen by the following results for the GasLib-582 network.

The results of each model variant on the GasLib-582 network are given in Ta-
bles 5.2, 5.3, and 5.4 aggregated over all 4227 scenarios. In Table 5.2, column “opt”
states the number of feasible scenarios solved to optimality, “feas” the number of
scenarios for which a feasible solution could be found, but which could not be solved
to optimality, “limit” the number of scenarios running into the time limit without a
feasible solution, “inf” the total number of scenarios that have been determined to be
infeasible, and “inf-presol” the number of infeasible scenarios for which infeasibility
has been detected during presolving.

Table 5.3 provides statistics for geometric mean times in seconds and the total run-
ning time in hours of the model variants. Here, column “to opt” shows the geometric
mean time it took to prove optimality, the column “to first” gives the geometric
mean time until the first feasible solution was found, “to inf” the geometric mean
time to prove infeasibility, “total” the total geometric mean time over all scenarios,
and “total time” shows the total computational time. Thereby, note that the total

143

Chapter 5. Combinatorial Models for Acyclic Flows

Table 5.4. Statistics on the flow bounds after presolving of 278 pipes
in network GasLib-582 for all model variants.

variant #fixed flows #fixed dirs #min dirs #max dirs xmean xmean

NFD 152.95 44.44 23 64 −111.03 174.98
FDO 152.41 50.35 25 83 −102.40 168.62
CB 151.87 52.81 25 87 −103.78 168.06
AC 152.43 53.14 25 104 −98.09 150.40
FLC 151.74 50.39 21 87 −103.41 166.69
FLC+CB 152.40 55.10 21 93 −94.53 162.76
FLC+AC 152.23 56.59 21 102 −84.63 135.68

geometric mean time over all scenarios is much less than the time to optimality due
to the running times of the infeasible scenarios.
In Table 5.4 statistics similar to Table 5.1 are given. Here, the results are averaged

over all scenarios. Additionally, the columns “#min dirs” and “#max dirs” show the
minimal and maximal number of fixed flow directions over all scenarios.

Remark 5.34. The numerical results shown in Table 5.2 are consistent in the sense
that all variants identify the same 2179 infeasible scenarios. Moreover, for all other
scenarios feasible solutions were found by at least one model variant. In fact, only 20
scenarios could not be solved to optimality. For these scenarios, at least one model
variant found a feasible solution with an optimality gap of 0.4% or better.

The results clearly show that determining infeasibility seems to be easy in most
cases. With all model variants, almost all infeasible scenarios could already be
identified during presolving. That is, our acyclic flow models only slightly improve
the computations here. However, the numbers of feasible scenarios show a completely
different picture. Comparing the solving times in Table 5.3 for the basic model
without any binary direction variables (i.e., NFD) with the model enhanced by
PAS± (i.e., FLC+AC) shows a speed-up factor of ∼ 4.9 for the geometric mean
time to prove optimality, and a speed-up factor of ∼ 7.2 for the total running times.
Moreover, Table 5.2 shows that with model NFD no feasible solution has been found
for almost half of the feasible scenarios, whereas with model FLC+AC almost all
feasible scenarios could be solved to optimality.
A partial explanation for the performance improvement is as follows. Using the

flow direction variables and the additional constraints, we can represent properties of
feasible solutions, which are otherwise not included in the initial model or relaxation.
Moreover, the heuristics and presolving techniques can detect more variable fixings,
implications and reductions based on the flow conservation and the flow direction

144

5.4. Numerical Results

variables. For example, in diving heuristics, it is easier to detect infeasibility based on
the binary flow direction variables without having to consider the nonlinear physics.
This leads to tighter variable bounds (after presolving), which can be seen for the flow
variables in Tables 5.1 and 5.4. Since having tight variables bounds is important to
derive good relaxations for the nonlinearities, the LP-relaxations are already stronger
early in the branch-and-bound tree. Moreover, tighter variable bounds (typically)
lead to smaller branch-and-bound trees, since the search space is smaller. Indeed,
we can observe this effect for the computations on the network GasLib-582. The
arithmetic mean number of branch-and-bound nodes (rounded up) for the feasible
scenarios solved to optimality with model variant NFD is 168 970, while it is 35 330

with model FLC+AC. That is, in model NFD it takes about 4.8-times as many
nodes in comparison with variant FLC+AC, which is almost the same ratio as the
speed-up for the geometric mean solving time to optimality shown in Table 5.3.

Another interesting observation is that variants AC and FLC form an exception of
the positive effect of having tighter relaxations. Tables 5.1 and 5.4 both suggest that
model variant AC defines the tighter LP-relaxation. Furthermore, also the geometric
mean time until the first solution is found for the GasLib-582 scenarios is smaller
with variant AC; see Table 5.3. However, with variant FLC more than twice the
number of scenarios could be solved to optimality and also the geometric mean time
to prove optimality is less than half. Thus, variant FLC seems to be better suited
for optimization although AC yields tighter relaxations. However, combining the
two variants performs even better.

Remark 5.35. Although the results here show no improvement for determining
infeasibility through the usage of PAS±, this is not true in general. It seems that
a lot of the scenarios can be identified as infeasible during presolving due to tight
pressure bounds in some parts of the network. If we relax the pressure bounds by
1 bar, then more than 3000 scenarios are feasible. If we additionally use a more
restrictive model for compressor stations, in particular, the model given by (4.16)
with the additional facets, then with model variant NFD 2448 scenarios are identified
as infeasible and 115 of them are already infeasible after presolving. With model
FLC+AC 2637 scenarios are identified as infeasible, 919 of them already during
presolving. Note that the 2637 infeasible scenarios of model FLC+AC include the
scenarios which are infeasible with model NFD and the difference of 189 scenarios
ran into the time limit with model NFD. However, the geometric mean solving times
are still quite fast with 13.62 and 4.80 seconds, respectively.

Remark 5.36. The fact that potential-based flows are acyclic does not only hold
for this algebraic model for stationary gas flows. It also applies to the stationary

145

Chapter 5. Combinatorial Models for Acyclic Flows

Table 5.5. Aggregated results for GasLib-582 scenarios for the ODE model.

variant opt feas limit inf inf-presol

NFD 41 93 2042 2051 2038
FLC+AC 1784 349 0 2094 2080

Table 5.6. Geometric means of solving times in seconds and total run
time in hours for the GasLib-582 scenarios for the ODE model.

variant to opt to first to inf total total time [h]

NFD 864.49 1233.67 1.02 67.46 2149.23
FLC+AC 720.42 73.75 1.02 31.91 829.31

model without height differences based on ODEs which was presented in the previous
chapter. To see this, consider a dicycle (v1, v2, . . . , vk) of pipelines and assume that
there is positive flow on each arc (vi, vi+1) with i ∈ [k] and (vk, v1). Recall that
by Corollary 2.17 the pressure decreases in the direction of the flow. Thus, positive
flow on each arc in the cycle implies

pv1 > pv2 > . . . > pvk > pv1

which is a contradiction, i.e., flow in a cycle is not possible for the ODE model, too.
Tables 5.5 and 5.6 display results for the ODE model with the variants NFD and

FLC+AC. In particular, the results show an even stronger effect of using FLC+AC.
Note that for these computations, we used νc = 0.4, the feasibility tolerances 10−6

(SCIP default value) for solving the LP-relaxations and δ1 = δ2 = 10−1 for the ODE
constraints; see Corollary 4.7. Moreover, the additional bound tightening methods
discussed in Section 6.2 were used to strengthen the bounds of the pressure and flow
variables.
With model NFD, almost half of the scenarios ran into the time limit without

a feasible solution. Only 41 scenarios could be solved to optimality and feasible
solutions were found for only 93 further scenarios. In contrast, with model FLC+AC
all scenarios were either proven to be infeasible or a feasible solution was found.
Moreover, 84% of the feasible scenarios were solved to optimality.
A more detailed study of computational experiments with the ODE model will be

presented in the next chapter. There, we will again consider all model variants from
NFD to FLC+AC and study their influence when used together with additional flow
tightening techniques.

146

CHA PTER 6
Implementation and
Numerical Results

In this chapter, we finally present details on our implementation of the convex relax-
ation Algorithm 4.1 and the adaptive spatial branch-and-bound Algorithm 4.2 with
the branch-and-bound framework SCIP [40, 132] and computational results for gas
network instances from the library GasLib [41, 126].
To this end, we show how the models for gas network elements, which were intro-

duced in Section 4.2, are realized with SCIP in the next section. In particular, we will
discuss how the implicit trapezoidal rule is solved with a bound preserving adaption
of Newton’s method; see also Remark 2.20. Then we present problem specific bound
tightening techniques in Section 6.2. For pressure and flow variables we have imple-
mented bound tightening techniques based on the lower and upper bounds produced
by the explicit midpoint method and the trapezoidal rule; see Section 2.3. More-
over, we have implemented a variant of optimality-based bound tightening (OBBT)
for the flow variables. In Section 6.3, the computational setup is introduced, and
results for the gas network instance GasLib-40 and first results for the instance
GasLib-582 are discussed. In Section 4.6, we already presented first results for the
network GasLib-40 and identified the LP-relaxation as well as the presolving as the
main reasons for the poor performance. We show that we can successfully overcome
these issues by using the combinatorial model PAS± developed in Chapter 5 and the
bound tightening techniques presented in Section 6.2. Subsequently in Section 6.3.1,
we discuss numerical issues which we are facing and in Sections 6.3.2 and 6.3.3 we
investigate the influence of the objective function and the compressor station model.
Finally, in Section 6.3.4 we investigate the performance of our implementation of the
convex relaxation Algorithm 4.1 and the adaptive spatial branch-and-bound Algo-

147

Chapter 6. Implementation and Numerical Results

rithm 4.2 for the gas network instance GasLib-582 similar to Section 5.4. Therefore,
we compare results for the model variants introduced in Section 5.4.2 with and with-
out the additional flow tightening techniques. These results show that our methods
significantly speed-up the solving process such that we can solve more than 90% of
the 4227 scenarios which are available for the network GasLib-582 within a time
limit of one hour.

6.1 Model Implementation with SCIP

SCIP is a general purpose solver for solving constraint integer programs and provides
an LP-based branch-and-bound framework for mixed-integer nonlinear program-
ming; see Vigerske and Gleixner [151] for details on the solving process. Besides
a variety of general heuristics, branching rules, separators, presolvers, and propa-
gators, SCIP relies on so-called constraint handlers for specific types of constraints.
These constraint handlers always provide constraint specific feasibility checks and
enforcement routines to resolve infeasibility of LP solutions w.r.t. the constraint,
e.g., by adding a (linear) constraint to cut off the solution, by reducing the domain
of a variable or by branching. Furthermore, they usually contain constraint specific
presolving, bound propagation and separation methods. To realize our models pre-
sented in Section 4.2 we use the following constraint types which are implemented in
SCIP with variables x ∈ Rn, y, ỹ ∈ R and z ∈ Z, and left-hand sides l ∈ R ∪ {−∞}
and right-hand sides r ∈ R ∪ {∞}:

Linear Linear constraint with α ∈ Rn:

l ≤ α>x ≤ r

Variable Bound Linear constraint with β ∈ R:

l ≤ y + β z ≤ r

Quadratic Nonlinear constraint with α ∈ Rn×n and β ∈ Rn:

l ≤
n∑

i,j=1

αi,j xi xj +

n∑
i=1

βi xi ≤ r

Absolute Power Nonlinear constraint with α, β ∈ R and γ > 1:

l ≤ sgn(y + α)|y + α|γ + β ỹ ≤ r

Note that the variables x, y, ỹ in these constraints can be both continuous or in-
teger variables, but the variable z in variable bound constraints has to be binary
or integer. Further constraint types are, for example, knapsack constraints, cardi-

148

6.1. Model Implementation with SCIP

nality constraints, or general nonlinear constraints which are represented by using
expression trees.
In the following, we present our realization of the models from Section 4.2 and

the Weymouth equation (1.9) which we used for the computations in Chapter 5.
Since the models of short cuts, valves, control valves and compressors only consist
of linear constraints, they can directly be represented by linear and variable bound
constraints. Thus, we do not consider their models again, but we present some
simplifications for resistors in control valve stations or compressor stations.

6.1.1 Linear Resistors

Our model for linear resistors is given by the constraints (4.9) and (4.10). Since these
constraints are linear, they are directly implemented by using the linear constraint
type. However, recall that these constraints are a piecewise linear approximation of
the discontinuous pressure loss function (4.7)

pu − pv =

ξa if qa > 0,

0 if qa = 0,

−ξa if qa < 0,

with fixed pressure loss ξa > 0. Since control valves and compressors are one-
directional elements, i.e., flow over these elements is nonnegative, and their models
already contain binary variables which represent their state, we can directly integrate
the pressure loss induced by a linear resistor into the models of control valve stations
and compressor stations instead of representing the linear resistor via a separate arc.

Linear Resistors in Control Valve Stations
Consider a control valve station with two linear resistors rin = (ũ, u), rout = (v, ṽ)

and the actual control valve cv = (u, v) ∈ Acv; see Figure 4.1. The pressure vari-
ables pu and pv have to satisfy the constraints (4.13), i.e.,

(pu − pv)(1− zcv) + ∆cv zcv ≤ pu − pv,
pu − pv ≤ (pu − pv)(1− zcv) + ∆cv zcv,

pcv zcv ≤ pu,
pv ≤ pcv zcv + pv(1− zcv),

where ∆cv and ∆cv denote the minimal and maximal pressure reduction, and zcv
is the binary variable representing the state of the control valve; see also Table 4.6.
Since the flow on the resistors is equal to the flow on the control valve and only

149

Chapter 6. Implementation and Numerical Results

nonzero if zcv = 1, we can integrate the pressure loss ξin and ξout into these con-
straints as follows. If the control valve is active, then pu has to satisfy pu ≥ pcv This
constraint on pu is obviously satisfied if pũ ≥ pcv + ξin holds. Analogously, pv ≤ pcv
holds if pṽ ≤ pcv − ξout is true. Moreover, the minimal and maximal pressure dif-
ferences ∆cv and ∆cv between nodes u and v correspond to minimal and maximal
pressure differences ∆cv + ξin + ξout and ∆cv + ξin + ξout between nodes ũ and ṽ.
Thus, if we suppose for simplicity that the pressure bounds on pu and pũ as well
as pv and pṽ are equal, we can combine the models for the resistors and control valve
by using the constraints

(pu − pv)(1− zcv) + (∆cv + ξin + ξout) zcv ≤ pũ − pṽ,
pũ − pṽ ≤ (pu − pv)(1− zcv) + (∆cv + ξin + ξout) zcv,

(pcv + ξin) zcv ≤ pũ,
pṽ ≤ (pcv − ξout) zcv + pv(1− zcv).

Linear Resistors in Compressor Stations
Recall that the model for a compressor station cv = (u, v) ∈ Acs contains additional
pressure variables pinc , poutc and a binary variable zc for every configuration c ∈ Ccfcs
of the compressor station; see also Table 4.7. For each configuration the pressure
variables are coupled with pu and pv through the constraints

(pu − pinc) (1− zc) ≤ pu − pinc ≤ (pu − pinc) (1− zc),
(pv − poutc) (1− zc) ≤ pv − poutc ≤ (pv − poutc) (1− zc).

Thus, if linear resistors are part of the compressor station, see Figure 4.2, then we
can integrate the corresponding pressure loss ξin, ξout > 0 into these constraints
which yields

(pu − pinc) (1− zc) ≤ pu − pinc − ξin zc ≤ (pu − pinc) (1− zc),
(pv − poutc) (1− zc) ≤ pv − poutc + ξout zc ≤ (pv − poutc) (1− zc).

6.1.2 Nonlinear Resistors

The pressure loss induced by a nonlinear resistor a = (u, v) ∈ Are is given by the
nonlinear equation (4.12)

p2
u − p2

v + |pu − pv|(pu − pv) = 2βa|qa|qa.

To realize this equation with the specific constraint types listed above, we introduce
the additional variables πu, πv, ∆a, ∆abs

a and qabsa representing the squared pressure

150

6.1. Model Implementation with SCIP

variables at nodes u and v, the pressure difference pu − pv, and the signed squares
of ∆a and the flow qa, respectively. That is, we can represent equation (4.12) by

πu = p2
u, πv = p2

v,

∆a = pu − pv, ∆abs
a = sgn(∆a) ∆2

a,

qabsa = sgn(qa) q2
a,

πu − πv + ∆abs
a − 2βa q

abs
a = 0.

All of these constraints correspond to the constraint types linear, quadratic, and
absolute power.

If a nonlinear resistor is part of a compressor station, we know the flow direction
in advance – w.l.o.g. let qa be nonnegative – and thus we can use a simplification of
the model above. In this case, we only introduce one additional variable ∆a, again
representing the pressure difference. Since qa is nonnegative, we do not require the
variables for the (signed) squares. Instead we can directly use 0 ≤ ∆a and represent
equation (4.12) with one linear and one quadratic constraint via

∆a = pu − pv,
p2
u − p2

v + ∆2
a − 2βa q

2
a = 0.

We remark that we could also use this simplification for nonlinear resistors in control
valve stations, however, our test instances do not contain such resistors.

6.1.3 Pipelines with Potential-Based Flow Model

For the numerical results in Chapter 5 we used the Weymouth equation (1.9)

p2
u − p2

v = βa qa|qa|

to describe the gas flow through a pipeline a = (u, v) ∈ Api. Since this equation is
similar to the pressure loss equation of nonlinear resistors, we handle it similarly. We
introduce additional variables πu and πv representing the squared pressure variables
and ∆a now representing the difference πu − πv which is then coupled to the flow
via an absolute power constraint. Altogether we model the Weymouth equation via
the constraints

πu = p2
u, πv = p2

v,

∆a = πu − πv,
β−1
a ∆a = sgn(qa) q2

a.

151

Chapter 6. Implementation and Numerical Results

p

R̃(p)

pui

p0i p1i p2i

Figure 6.1. Application of Newton’s method to solve one step of the
trapezoidal rule given by R̃(pui) = R(h, pui−1, p

u
i , q) = 0.

6.1.4 Pipelines with ODE Model

To handle the gas flow model based on differential equations we have implemented
a constraint handler for constraints given by the stationary isothermal Euler equa-
tion (1.8) with σ = 0. At its core this constraint handler provides the functionality
of Algorithm 4.1, that is, a feasibility check based on the explicit midpoint method
and the trapezoidal rule, and separation routines which produce under- and overesti-
mators as described in Sections 4.3.1 and 4.3.2. Furthermore, the constraint handler
contains the bound tightening techniques which will be introduced in the next sec-
tion and is integrated in the conflict analysis provided by SCIP; see Achterberg [1]
for more information. Conflict analysis tries to find cuts to avoid the exploration of
infeasible regions of the branch-and-bound tree based on the information of bound
changes which led to infeasible subproblems. For a pipeline a = (u, v) with mass
flow qa ≥ 0 this information is, for example, whether decreasing the upper bound pu
led to a new smaller upper bound pv.

The basis for all methods and functionality of the constraint handler is given
by evaluating the explicit midpoint method (2.18) and trapezoidal rule (2.19), and
Lemma 2.23, which shows that the two one-step methods define convex lower and
upper bounds P `a and Pua for every pipeline a ∈ A. Since the midpoint method
is explicit, we can straightforwardly evaluate the method and also compute the
derivatives with respect to mass flow and pressure; see Section 4.3.1. However, the
trapezoidal rule is an implicit method and we already observed in Remark 2.20 that
using standard Newton’s method to solve each step of the trapezoidal rule can lead
to numerical errors.

Recall from Section 2.3 that for q ≥ 0 and σ = 0 the trapezoidal rule applied to
ODE (1.8) is given by

pu0 = p0, pui = pui−1 − h
2

[
ϕ
(
pui−1, q

)
+ ϕ

(
pui , q

)]
∀i ∈ [N].

152

6.1. Model Implementation with SCIP

Thus, for i ∈ [N] one step is given by solving the equation

R
(
h, pui−1, p

u
i , q
)

= pui − pui−1 + h
2

[
ϕ
(
pui−1, q

)
+ ϕ

(
pui , q

)]
= 0.

In the following we use R̃(p) := R(h, pui−1, p, q). Moreover, suppose that q > 0 holds.
Otherwise, we have pui = p0 for all i ∈ [N]. Then, if we apply Newton’s method to
solve this equation for pui with starting point p0

i = pui−1, a new iterate pni is given as
a solution of the equation

R̃
(
pn−1
i

)
+ ∂pR̃

(
pn−1
i

) (
pni − pn−1

i

)
= 0

for all n ∈ N. Since R̃(p) is increasing and concave in p, this implies R̃(pni) < 0 and
thus pni < pui for all n ∈ N. That is, Newton’s method produces lower bounds on pui ;
see Figure 6.1. Since this error increases by solving N steps of the trapezoidal rule,
this can actually lead to solutions puN < p`N , that is, what should be an upper bound
on the solution is a lower bound.

To resolve this issue, observe that by choosing h = L
N according to Lemma 2.23

we get h ∂pϕ(p, q) ≤ 1 and thus

1 < ∂pR̃(p) = 1 + h
2 ∂pϕ(p, q) ≤ 3

2 . (6.1)

Now, suppose that R̃(pn−1
i) > 0 holds, i.e., pn−1

i > pui and let

pni = pn−1
i − 2

3

R̃(pn−1
i)

∂pR̃(pn−1
i)

,

that is, we define pni by using two-thirds of the regular Newton step length. Then
using that R̃ is concave yields

R̃(pni) ≥ R̃(pn−1
i) + ∂pR̃(pni)

(
pni − pn−1

i

)
= R̃(pn−1

i)− 2

3

∂pR̃(pni)

∂pR̃(pn−1
i)

R̃(pn−1
i)

> R̃(pn−1
i)− 2

3

3

2
R̃(pn−1

i) = 0.

Therefore, pni is an upper bound on pui . We can exploit this fact to derive a bound
preserving Newton method for evaluating the trapezoidal rule as described in Algo-
rithm 6.1.

We initialize Algorithm 6.1 with the current iterate pui−1 of the trapezoidal rule,
the step size h, and two tolerances ε1, ε2 > 0. In the first phase of the algorithm, we
perform the standard Newton’s method with starting point p0

i = pui−1 to compute a

153

Chapter 6. Implementation and Numerical Results

Algorithm 6.1 Bound preserving Newton method for evaluating (2.19)
Input: Starting pressure pui−1, step size h, tolerances ε1, ε2 > 0.
Output: Upper bound pni on the solution pui of R(h, pui−1, p

u
i , q) = 0 with R̃(pni) ≤

ε2.
1: Let p0

i ← pui−1 and n← 0.
2: While R̃(pni) < −ε1 do
3: Let n← n+ 1.
4: Set pni ← pn−1

i − R̃(pn−1
i)

∂pR̃(pn−1
i)

.

5: While R̃(pni) < 0 do
6: Set pni ← pni −

R̃(pn−1
i)

∂pR̃(pn−1
i)

.

7: While R̃(pni) > ε2 do
8: Let n← n+ 1.
9: Set pni ← pn−1

i − 2
3

R̃(pn−1
i)

∂pR̃(pn−1
i)

.
10: return pni .

solution pni which is already close to the exact solution of R̃(p) = 0, but still a lower
bound. For that, we use the tolerance ε1 and the stopping criterion R̃(pni) ≥ −ε1.
Next, we iteratively add the last step length to pni until it satisfies R̃(pni) ≥ 0, i.e.,
until pni is an upper bound on pui . Afterwards, we apply Newton’s method again,
but with only two-thirds of the regular step length, until we find a solution pni which
satisfies R̃(pni) < ε2. By the arguments above, this is an upper bound on pui .

By default we use the tolerances ε1 = 0.5 Pa and ε2 = 10−5 Pa for Algorithm 6.1.
Furthermore, if we apply the trapezoidal rule in the direction of the flow to compute
lower bounds on the output pressure, see Remark 2.22, we use the same adaption
of Newton’s method. We then additionally check if there is a solution pni ≥

c,q
νcA

.
Moreover, we use one-half instead of two-thirds of the regular step length in the
third phase of the algorithm for the following reason. Since the trapezoidal rule in
the direction of the flow is given by

R
(
h, pui−1, p

u
i , q
)

= pui − pui−1 − h
2

[
ϕ
(
pui−1, q

)
+ ϕ

(
pui , q

)]
= 0

with the pressure variables minus (instead of plus) the evaluations of ϕ. Analog to
equation (6.1) we get that ∂pR̃(p) is bounded, however, then instead by

1 > ∂pR̃(p) = 1− h
2 ∂pϕ(p, q) ≥ 1

2 .

154

6.2. Bound Tightening Techniques

6.2 Bound Tightening Techniques

In (spatial) branch-and-bound approaches for mixed-integer nonlinear optimization
bound tightening techniques are typically applied during presolving and in every
node of the branch-and-bound tree; for example, see Belotti et al. [11] for a de-
scription of bound tightening techniques used in the solver COUENNE. While from
a theoretical point of view bound tightening is not necessary to ensure convergence,
it has a big impact on the performance in practice as shown in the recent survey by
Puranik and Sahinidis [112]. In particular, BARON [123] is named after the branch-
and-reduce algorithm by Ryoo and Sahinidis [118], where the “reduce” stands for
domain reduction of the variables. Since bound tightening is important for the per-
formance, we have implemented problem specific methods to be used alongside the
techniques already implemented in SCIP.

Bound tightening techniques can roughly be categorized as feasibility-based and
optimality-based. As an example for feasibility-based bound tightening, consider a
linear inequality constraint

∑d
i=1 αixi ≤ β and variable bounds x ≤ x ≤ x. Then

for xj with αj 6= 0 we can use

αj xj ≤ β −
∑
i 6=j,

αi xi ≤ β −
∑

i 6=j, αi>0

αi xi −
∑

i6=j, αi<0

αi xi

to possibly derive a new upper bound if αj > 0 or lower bound if αj < 0. This proce-
dure is also known as bound propagation and can be applied to nonlinear constraints
if they are nondecreasing or nonincreasing in the variables. The idea of optimality-
based bound tightening (OBBT) is to minimize or maximize a variable, typically over
a relaxation of the original problem, to derive new bounds. For enhancements of
this basic idea see Gleixner et al. [47].

We will now present bound tightening of pressure variables based on bound prop-
agation using the functions P ` and Pu; see Lemma 2.23. Afterwards, we introduce
bound tightening for flow bounds of pipes based on bound propagation and bisection.
Furthermore, we discuss our implementation of OBBT for general flow bounds.

6.2.1 Pressure Bounds

Consider a pipe a = (u, v) ∈ Api with pressure variables pu ≤ pu ≤ pu, pv ≤ pv ≤ pv
and mass flow qa ≤ qa ≤ qa. By Lemma 2.23 we know that P ` and Pu are nonde-
creasing and define lower and upper bounds on the input pressure w.r.t. the flow
direction. We can exploit these properties to perform bound propagation as fol-
lows. To this end, we consider the two cases 0 ≤ qa and qa < 0 < qa. Note that

155

Chapter 6. Implementation and Numerical Results

pu

pu

pv

pv

P `
a(pv, qa, Na)

Pu
a (pv, qa, Na)

Figure 6.2. Example for bound propagation of pressure bounds with
the functions P `a and Pua in the case 0 < qa.

the case qa ≤ 0 can be treated analogously to the first case by interchanging the
pressure variables, and using the mass flow −qa.

Case 0 ≤ qa. In this case, the inequality P `a(pv, qa, Na) ≤ pu ≤ Pua (pv, qa, Na) holds.
Thus, by using monotonicity we get

P `a(pv, qa, Na) ≤ pu ≤ Pua (pv, qa, Na).

Hence, if pu < P `a(pv, qa, Na) or Pua (pv, qa, Na) < pu, we can tighten the bounds of
pressure variable pu. Figure 6.2 shows an example, where we can derive a new lower
bound. Moreover, we can use this to detect infeasibility of the (sub)problem, e.g., if
inequality pu < P `a(pv, qa, Na) holds, there is no feasible solution.

Case qa < 0 < qa. In the second case, we can still compute an upper bound on
the variable pu through Pua (pv, qa, Na). But due to qa < 0 we cannot derive a new
lower bound on either of the pressure variables with P ` and Pu. Instead, we can
propagate the upper bound on pu with the lower flow bound and try to compute a
new upper bound on pv, that is, an upper bound on pv is given by

pv ≤ Pua (pu,−qa, Na).

Furthermore, it is also possible to detect infeasibility in this case.
Recall from Remarks 2.5 and 2.22 in Chapter 2 that we can apply the explicit

midpoint method (2.18) and the trapezoidal rule (2.19) in the direction of the flow as
well, i.e., start with the input pressure as initial value instead of the output pressure.
If we can successfully evaluate both methods, that is, 0 ≤ νcAp`/uN − c q holds, then
the trapezoidal rule defines a lower bound on the output pressure and the explicit
midpoint method defines an upper bound. We use this for bound propagation as
well. Therefore, denote with P `,+(p, q,N) and Pu,+(p, q,N) the evaluation of the
two methods in the direction of the flow.

Case 0 ≤ qa. The output pressure is increasing with respect to the input pressure
and decreasing with respect to the mass flow. Hence, we can try to compute new

156

6.2. Bound Tightening Techniques

bounds on pv via

P `,+a (pu, qa, Na) ≤ pv ≤ Pu,+a (pu, qa, Na).

Case qa < 0 < qa. Analogously to computing bounds in the reverse direction of
the flow, propagating qa with P `,+a (pu, qa, Na) is still a valid lower bound on pv.
Moreover, a new lower bound on pu can possibly be computed via

P `,+a (pv,−qa, Na) ≤ pu.

Note that in both cases it is again possible to detect infeasibility.
We repeatedly apply bound propagation during presolving and in every node of

the branch-and-bound tree before the LP-relaxation is solved. To avoid unnecessary
evaluations of the numerical schemes, we only propagate bounds if at least one bound
has changed since we last tried to derive a new bound. That is, for example in the
first case, we only check whether Pua (pv, qa, Na) defines a tighter bound on pu if at
least one of the variable bounds pv or qa has changed due to branching or further
bound tightening.
Note that bound propagation for pressure has been used for all computations with

the ODE model in this thesis. It is quite fundamental for the performance of our
implementation. Thus, we did not implement an option to turn it on or off and
did not test the influence of bound propagation on solving capabilities and running
times.

6.2.2 Flow Bounds

In Section 4.6, we observed that the flow bounds often are still very large after pre-
solving, which motivated not only the study of the combinatorial models in Chap-
ter 5, but also the implementation of flow tightening techniques based on bound
propagation and optimality-based bound tightening. But first of all notice the fol-
lowing simple test whether the flow direction of a pipe a = (u, v) ∈ Api can be fixed.
Whenever we perform bound propagation for the pressure bounds, we also check if
either pu ≥ pv or pu ≤ pv holds. Since we assumed σ = 0, the pressure decreases in
the direction of the flow, and thus the flow has to be nonnegative in the first case or
nonpositive in the second case.
Note that we have implemented the flow tightening techniques presented in the

following only for the ODE model, i.e., we did not use them for the computations
with the algebraic model in Chapter 5. Furthermore, both methods are optional,
that is, they can be turned on or off, and in particular we study their influence on
the performance of our spatial branch-and-bound algorithm in Section 6.3.4.

157

Chapter 6. Implementation and Numerical Results

Bound Propagation

Consider a pipe a = (u, v) ∈ Api with 0 ≤ qa. Our bound propagation method for
flow bounds is based on the observation that if

pu < P `a(pv, qa, Na)

holds, there is no feasible solution with qa = qa. We then apply bisection to the
flow interval [qa, qa] to find a new upper bound on the flow. We stop the bisection
procedure if we find a flow value q̃a such that P `a(pv, q̃a, Na) satisfies

pu ≤ P `a(pv, q̃a, Na) ≤ pu + 1.0 bar.

Note that we use the confidence interval of 1.0 bar to avoid long running times of
the bisection procedure. Moreover, note that other approaches than bisection are
possible to find a new upper flow bound. For example, we tested variants of bisection
which use gradient information of P `a to determine a point for dividing the interval
other than using the midpoint. However, it turned out that standard bisection is
faster. Furthermore, if the lower flow bound satisfies qa < 0, we apply bisection to
the interval [0, qa] instead and we can also use this idea to increase the lower flow
bound if we have

pv < P `a(pu,−qa, Na).

We apply bound propagation for flow variables immediately before we apply bound
propagation to the pressure variables, i.e., during presolving as well as in every node
of the branch-and-bound tree. Just like before, we only try to compute new bounds
on the flows, if at least one of the pressure bounds of pu and pv has changed.

Optimality-Based Bound Tightening

In contrast to the bound propagation method described above, we can apply OBBT
to all network elements. Since minimizing or maximizing a variable over the original
constraints would be as hard as the problem we want to solve itself, we only minimize
and maximize flow variables over a mixed-integer linear relaxation. The particular
relaxation R, which we solve, is given by removing all nonlinear constraints from the
original problem (4.18), i.e., we remove all quadratic and absolute power constraints,
see Section 6.1, and all ODE constraints. Moreover, the combinatorial model variants
presented in Chapter 5 are used in the relaxation for OBBT as well if they are
included in the current problem. To derive new bounds on a flow variable qa for
arc a ∈ A, we then solve

min /max qa s.t. (p, q, z) ∈ R.

158

6.3. Computational Experiments

Since solving two optimization problems for every flow variable can be very time
consuming, we take the following measures:

• We perform OBBT only once at the end of presolving.
• We try to compute new bounds on variables only if they are not already “close.”
For all computations in this thesis we only performed OBBT on flow variables qa
with

qa − qa > 10.0 kg s−1.

• In total we use a time limit of 10 minutes for OBBT.
• We use reoptimization, i.e., if we change the objective from minimizing to maxi-
mizing or from one variable to another, we do not solve the problem from scratch.
Instead, we use previously found feasible solutions to speed-up the solution pro-
cess.

6.3 Computational Experiments

In this section, we present computational results to demonstrate the capabilities of
the adaptive spatial branch-and-bound Algorithm 4.2. Therefore, we first present
the computational setup and come back to the earlier results for the gas network
GasLib-40 and the problems discussed in Section 4.6. We will see that by using
the combinatorial model PAS± from Chapter 5 and the flow tightening techniques
introduced above, we can successfully improve the performance of the presolving and
the running times. Afterwards, we present computations for the larger gas network
GasLib-582. We discuss some numerical issues, which we are facing, the influence
of the objective function and the compressor station model. In the end, we present a
detailed study of numerical results similar to Section 5.4, where we presented results
for the potential-based flow model with the model variants NFD to FLC+AC.
All computations presented in this thesis were performed on a cluster with 3.5

GHz Intel Xeon E5-1620 Quad-Core CPUs, having 32 GB main memory and 10 MB
cache running Linux. We used SCIP version 7.0.0 [40, 132] with a time limit of
one hour and we used either CPLEX version 12.10.0 or SOPLEX version 5.0.0 as
LP-solver.
If not explicitly stated otherwise, we used the following default settings. LP-

relaxations were solved with CPLEX and a feasibility tolerance of 10−6 (SCIP default
value). Moreover, we used the parameter νc = 0.4, chose the initial discretizations
according to Lemma 2.23, and used tolerances δ1 = δ2 = 10−1 for testing δ-feasibility
of the ODE constraints, see Corollary 4.7. The default objective function was to
maximize the sum of the pressure variables at the nodes and we used the compressor
station model (4.15) by Hiller and coworkers [69, 154] with the additional facets.

159

Chapter 6. Implementation and Numerical Results

Furthermore, by default we used model variant FLC+AC and the flow tightening
techniques based on bound propagation and OBBT.

Our test networks GasLib-40 and GasLib-582 are part of the library GasLib [41,
126] for gas network instances. Particular networks from GasLib have also been used
in other publications, e.g., see Pfetsch et al. [111], Koch et al. [82], Gugat et al. [53],
Schmidt et al. [128], Becker and Hiller [8], or Burlacu et al. [20].

In Section 4.6, we presented first computational results for the network GasLib-40,
which has 40 nodes, 39 pipes, and 6 compressor stations, for a load scenario with
3 entries and 29 exits. There, we used the parameters νc = 0.8 and δ1 = δ2 = 10−4,
and the basic model presented in Section 4.2 without binary variables representing
the flow directions, i.e., the model NFD. We have seen that for this model presolving
has almost no positive effect on the variable bounds of the flow variables. However, if
we use the same parameters with the combinatorial model PAS±, i.e., model variant
FLC+AC, and the flow tightening techniques introduced in Section 6.2, then pre-
solving can fix three additional flow variables and drastically tightens the arithmetic
mean lower and upper bound of the remaining flow variables from −2125.83 kg/s

and 2139.25 kg/s to −42.32 kg/s and 87.90 kg/s. Analogously to Figure 5.7, we com-
pare the state of the network after presolving for model variant NFD and for model
variant FLC+AC with the flow tightening techniques in Figure 6.3. The figure shows
that presolving for model FLC+AC not only fixes three additional flow variables,
but also the flow direction on 19 pipelines. The flow direction remains unknown
for only four of 39 pipelines. Furthermore, using model FLC+AC leads to a faster
running time of 449.24 seconds compared to 972.90 seconds for model variant NFD.

Figure 6.3. The presolved network GasLib-40 corresponding to the
ODE model with variants NFD without flow tightening techniques
(left) and FLC+AC with flow tightening (right). The scenario has
3 sources (diamonds) and 29 sinks (circles). Pipes with fixed flow
are depicted by �, fixed flow directions are shown by →, and the
remaining pipes (with unfixed flows/directions) are dashed.

160

6.3. Computational Experiments

Further speed-up of the solving times for instance GasLib-40 can be obtained
by using smaller values for the parameter νc and larger feasibility tolerances δ1 =

δ2. For example, if we use parameter νc = 0.4 and tolerances δ1 = δ2 = 10−2

instead of νc = 0.8 and δ1 = δ2 = 10−4, then we can solve the scenario for network
GasLib-40 in 1.13 seconds. Note that using larger feasibility tolerances has only a
small effect on the optimal solution of this instance. The optimal value (sum of the
pressure variables) changes by less than one bar which is a change of roughly 0.027%.
Moreover, c q

A p < νc = 0.4 is satisfied in both optimal solutions.
Since our algorithm is significantly faster with model FLC+AC, we can solve

larger gas networks. In particular, for the subsequent computational experiments
we use the network GasLib-582 which has 582 nodes, 278 pipes, 5 compressor sta-
tions, 23 control valves, 8 resistors, 26 valves, and 269 short pipes. In total there
are 4227 different load scenarios, i.e., inflows and outflows, for this network. These
scenarios have been generated by sampling different distributions of loads for differ-
ent temperature classes. The distributions are based on historical data, which are
available (but not publicly) since GasLib-582 is a distortion of a real-world network
in Germany. For details on the scenario generation see Hayn et al. [65].

Remark 6.1. In our default setting we use the parameter νc = 0.4 and the feasibility
tolerances δ1 = δ2 = 10−1. Using νc = 0.4 is not very restrictive and evaluating the
fraction c q

A p in feasible solutions which we find with our algorithm shows that we
could also use smaller values for νc, e.g., νc = 0.2. Since νc directly influences the
maximal step sizes in the discretizations of the ODE constraints, this would make
our algorithm faster; see Lemma 2.23. On the other hand, using a larger value such
as νc = 0.8 makes the algorithm significantly slower. Moreover, we point out that we
can also use smaller feasibility tolerances. Using δ1 = δ2 = 10−2 has only a minor
effect on the number of infeasible scenarios for the network GasLib-582. With a
tolerance of 10−1 there are 3134 infeasible scenarios, see Table 6.3 with LP-solver
CPLEX, and with tolerance 10−2 there are 3140 infeasible scenarios. However, using
tolerance 10−2 significantly increases the total time for the computation from 417

hours to almost 900 hours.

Remark 6.2. The discretizations used to compute the explicit midpoint
method (2.18) and the implicit trapezoidal rule (2.19) mainly depend on the choice
of the parameter νc and the feasibility tolerances δ1, δ2. In fact, the initial dis-
cretization only depends on νc and the pipelines parameters, i.e., length, diameter
and friction coefficient. The smaller νc is the larger the step sizes can be cho-
sen. For the network GasLib-40 using the parameter νc = 0.2 leads to initial step
sizes between 877.69 m and 3418.01 m, using νc = 0.4 to step sizes between 156.03 m

and 569.67 m, and νc = 0.8 to step sizes between 5.12 m and 19.2 m. For the network

161

Chapter 6. Implementation and Numerical Results

Table 6.1. Results for network GasLib-582 using the default setting
categorized in temperature the classes warm, mild, cool, cold and
freezing.

temperature class opt feas limit inf inf-presol total

warm 271 45 2 65 0 383
mild 285 47 6 309 17 647
cool 212 37 8 943 553 1200
cold 149 27 3 933 847 1112
freezing 1 0 0 884 883 885

total 918 156 19 3134 2300 4227

Table 6.2. Geometric mean solving times in seconds and total run time
in hours for the results presented in Table 6.1.

temperature class to opt to first to inf total total time [h]

warm 574.54 109.43 34.89 447.35 111.83
mild 630.29 97.29 28.69 166.24 131.93
cool 677.15 105.25 4.31 13.56 110.44
cold 501.42 108.36 1.38 3.75 63.03
freezing 190.80 45.60 1.00 1.01 0.09

total 600.03 104.32 2.56 11.31 417.32

GasLib-582 the same parameters νc correspond to initial step sizes between 151.02 m

and 4742.95 m, 27.04 m and 822.54 m, and 0.89 m and 26.87 m. Note that using a
first-discretize-then-optimize approach as discussed in Section 1.2 with these initial
discretizations would require 570, 3486, or 107947 additional pressure variables for
network GasLib-40 and 1533, 9822 or even 306448 additional pressure variables for
network GasLib-582.

The development of the discretizations during the course of the branch-and-bound
process then depends on the feasibility tolerances and the solutions of the relaxations
which are found. Of course, using smaller tolerances makes it more likely that the
discretization is refined. However, since the the initial step sizes can be rather small,
in particular if we use νc = 0.8, it can happen that the discretizations are not refined
even when using δ1 = δ2 = 10−4. For example, this occurred for instance mild_2480
of network GasLib-582 with νc = 0.8 and δ1 = δ2 = 10−4. On the other hand,
when using the coarse initial discretization resulting from νc = 0.2 instead for this
instance the smallest step size after the one hour time limit was 9.94 m, while the
largest step size still was 4742.95 m.

162

6.3. Computational Experiments

With our default settings we can solve almost all of the 4227 scenarios for the
network GasLib-582 within the time limit of one hour. Tables 6.1 and 6.2 show
results and running times for these scenarios categorized by the temperature classes
warm, mild, cool, cold and freezing. Similar to Section 5.4, in Table 6.1 column
“opt” displays the number of feasible scenarios solved to optimality, column “feas”
the number of scenarios for which a feasible solution was found, but could not be
solved to optimality, column “limit” the number of scenarios running into the time
limit without a feasible solution, column “inf” the total number of scenarios which
have been proven to be infeasible, and “inf-presol” the number of infeasible scenarios
where infeasibility has been detected during presolving. Moreover, Table 6.4 shows
geometric mean times in seconds and the total running time in hours for these com-
putations. Here, column “to opt” shows the geometric mean time to prove optimality,
“to first” the geometric mean time until the first feasible solution was found, “to inf”
the geometric mean time to prove infeasibility, “total” the geometric mean time over
all scenarios and “total time” shows the total running time of the computations in
hours. The results show that for only 19 of 4227 scenarios our algorithm cannot find
a feasible solution or prove that the scenario is infeasible. Moreover, in total only
175 scenarios ran into the time limit, whereas the other scenarios can be solved to
optimality with a geometric mean time of about 10 minutes or proven to be infeasible
with a geometric mean time of less than three seconds.

6.3.1 Numerical Issues

The optimization problem (4.18) with the binary variables for the flow directions
and model variant FLC+AC for a scenario of the network GasLib-582 contains
2579 variables and initially consists of nearly 6300 constraints including almost 6000
linear constraints and 278 ODE constraints. Unfortunately, the LP-relaxations of
this problem (in fact for all model variants) are sometimes ill-conditioned. Therefore,
we have to be aware of computational accuracy when reading and evaluating the
computational results in this chapter. Using pressure variables in bar instead of
pascal has the advantage that most pressure bounds are within 1 and 90 instead
of 105 and 90 · 105. Moreover, then pressure and mass flow variables are within a
similar range after presolving; see Table 6.12 for the mean flow bounds on pipes after
presolving. The negative side effect of this is that we have to include the conversion
factor of 105 in the constraints, which can lead to badly scaled inequalities. Consider
for example the inequalities

pin − 0.999662423562658 pout + 0.000214179735239 q ≤ 0.053861944508877,

pin − 0.996842741770021 pout − 0.001480746986198 q ≥ 0.001454351582613,

163

Chapter 6. Implementation and Numerical Results

Table 6.3. Comparison of results for GasLib-582 scenarios with model
variant FLC+AC for LP-solvers CPLEX and SOPLEX.

LP-solver opt feas limit inf inf-presol

CPLEX 918 156 19 3134 2300
SOPLEX 938 123 15 3151 2301

Table 6.4. Geometric mean solving times in seconds and total run time
in hours for the GasLib-582 scenarios with model variant FLC+AC
for LP-solvers CPLEX and SOPLEX.

LP-solver to opt to first to inf total total time [h]

CPLEX 600.03 104.32 2.56 11.31 417.32
SOPLEX 548.67 122.20 2.71 11.14 364.13

and

157079.6326795 pin + 1719.10820854487 q ≥ 0

which are examples for an underestimator of P `, an overestimator of Pu, and inequal-
ity (4.3) with νc = 0.4 produced during one solving process of scenario warm_414.
Furthermore, the conversion factor might lead to cancellation and loss of signifi-
cance during the evaluation of (2.18) and (2.19), when computing the lower and
upper bounding functions P ` and Pu.

One consequence of the badly scaled inequalities is that both LP-solvers we use,
that is, CPLEX and SOPLEX, infrequently report numerical troubles. While in most
cases the LP-relaxations can be solved with tighter feasibility tolerances, there are
very seldom cases where the LP-relaxation cannot be solved at all. Another problem
which we can observe more often, is that we get contradicting results for the same
scenario, when varying the model variant or the LP-solver. That is, sometimes one
variant or solver claims to have found a feasible or optimal solution and another
variant or solver declares the scenario infeasible. For example, consider Table 6.3
which shows results for all 4227 scenarios for the network GasLib-582 with the LP-
solvers CPLEX and SOPLEX. For these computations the model variant FLC+AC
and the additional compressor facets were used and the objective was to maximize
the sum of the pressures at the nodes. Analogously to before, Table 6.3 displays
the number of feasible scenarios solved to optimality, the number of scenarios which
ran into the time limit with and without a feasible solution, the number of scenarios
proven to be infeasible, and the number of scenarios proven to be infeasible already
during presolving. Moreover, Table 6.4 shows the corresponding geometric mean

164

6.3. Computational Experiments

Table 6.5. Detailed comparison of solving status for LP-solvers CPLEX
and SOPLEX. The columns denote the solving status with CPLEX
(cpx) and the rows the status with SOPLEX (spx).

spx\cpx opt feas limit inf

opt 827 99 10 2
feas 73 48 1 1
limit 4 4 7 0
inf 14 5 1 3131

times to optimality, until the first feasible solution was found, to infeasibility, and
the geometric mean time over all scenarios in seconds and the total running time in
hours.

While at first glance the numbers in Tables 6.3 and 6.4 are very similar and only
suggest that SOPLEX is a bit faster, there are 22 scenarios with contradicting results.
In Table 6.5 we can see a partitioning of the scenarios by their results with the two
LP-solvers. The columns denote the result using CPLEX and the rows denote the
result using SOPLEX, e.g., column “feas”, row “inf” shows the number of scenarios for
which a feasible solution was found using CPLEX, but were infeasible using SOPLEX.
Moreover, when comparing the objective values for the scenarios, which are feasible
or optimal with both solvers, we found 30 scenarios where one solution value violates
the dual bound of the other solver by more than 0.1%. The maximal gap between the
corresponding primal and dual bounds we found is 1.861%. Note that the number
of contradictions increaseas if we use settings such that more scenarios are feasible.
For example, if we do not use the additional facets for the compressor model, then
there are 55 scenarios with contradicting results.

Another explanation for contradicting results is the fact that convex underestima-
tors and concave overestimators of nonlinear functions are typically tight in some
points and thus cut off δ-feasible solutions. However, when using another model or
solver, the solving process usually differs so that slightly other under- and overesti-
mators are generated, which then cut off different δ-feasible solutions. While some
of the contradicting results might be due to this fact, it seems very likely that some
of the contradictions can be traced back to numerical errors.

Although Table 6.4 shows that SOPLEX is faster than CPLEX, we use CPLEX
for the following tests. The reason for this is that in our computational experience
CPLEX seems to be more robust in handling numerical problems.

165

Chapter 6. Implementation and Numerical Results

6.3.2 Influence of the Objective Function

Concerning the planning or operation of a gas network there are several questions one
can ask. For example, for the long-term planning of network extension or if transport
contracts have to be made, the transmission system operator has to know whether
certain (future) load scenarios can be realized. Moreover, for the operation itself
energy efficient transport is desirable. Thus, there are several objective functions
which come into question for us; see also Section 4.2. Nevertheless, we chose as
objective function to maximize the sum of the pressure variables at the nodes for
demonstrating the effect of using the combinatorial model PAS± in Section 5.4.2.
Furthermore, we will this objective in the subsequent sections as well, even though it
has not an interpretation as clear as, for example, finding an energy efficient solution.
To show that this objective function is suitable for demonstrating the capabilities

of our algorithm, the effect of using the combinatorial model PAS± and the flow
tightening techniques, we performed tests with the following objective functions:

• Solve problem (4.18) as a pure feasibility problem, i.e., C(p, q, z) ≡ 0.
• Minimize the number of running compressors, i.e., C(p, q, z) =

∑
cs∈A zcs.

• Minimize the power loss due to transportation, i.e., we use the objective func-
tion C(p, q, z) =

∑
v∈V q

±
v pv as a proxy for the power required for transporta-

tion; see Section 4.2.7.
• Maximize the sum of the pressure variables, i.e., C(p, q, z) = −

∑
v∈V pv.

Since the energy required for the transport is mainly consumend in compressor
stations, it would be of particular interest to minimize their power consumption.
However, as mentioned before this is not possible with the (current) compressor
station model which we are using. Instead, we can minimize the number of running
compressors as a substitute.
The results for the network GasLib-582 are summarized in Tables 6.6 and 6.7,

where the columns denote the same as before, i.e., the numbers of optimally solved
scenarios, scenarios that ran into the time limit with or without a feasible solution,
infeasible scenarios, and the number infeasible scenarios which were already identi-
fied as infeasible during presolving in Table 6.6. The geometric mean solving times
and the total running time corresponding to these results are shown in Table 6.7.
The numbers show that (for most scenarios) determining infeasibility is easy with

each objective function. In total 3136 different scenarios were identified as infeasible
and 2300 of them already during presolving. Moreover, for 2 of the 3136 scenar-
ios we have contradicting results, that is, we found a feasible solution for scenario
mild_593 twice and a feasible solution for scenario mild_3309 once, otherwise these
two scenarios have been proven to be infeasible. Furthermore, the geometric mean
times to infeasibility are quite fast. The geometric mean time to infeasibility over

166

6.3. Computational Experiments

Table 6.6. Comparison of results for GasLib-582 scenarios with differ-
ent objective functions1.

objective opt feas limit inf inf-presol

min 0 979 0 115 3133 2300
min

∑
zcs 1023 1 70 3133 2300

min
∑
q±u pu 60 868 161 3136 2300

max
∑
pu 918 156 19 3134 2300

Table 6.7. Geometric mean solving times in seconds and total run time
in hours for the GasLib-582 scenarios with different objective func-
tions.

objective to opt to first to inf total total time [h]

min 0 76.95 76.94 2.54 6.82 165.10
min

∑
zcs 75.76 75.56 2.54 6.52 122.48

min
∑
q±u pu 1556.26 179.08 2.57 16.46 1072.01

max
∑
pu 600.03 104.32 2.56 11.31 417.32

all objective functions is less than three seconds. And further, the geometric mean
time to infeasibility for the scenarios which are not solved during presolving is still
less than 100 seconds for all objective functions.

In contrast to that, the objective functions lead to a quite different behavior of
the solution process for the feasible scenarios. We can see that solving the feasibility
problem behaves very similar to minimizing the number of running compressors
and minimizing the power loss sticks out with more than a quarter of the scenarios
running into the time limit. When solving the feasibility problem, we are done if a
feasible solution is found. For the objective C(p, q, z) =

∑
cs∈A zcs the times to the

first solution and the time to optimality are very close. One possible explanation
for this is as follows. Since there are only five compressor stations, there are only
six possible results, i.e.,

∑
cs∈A zcs ∈ {0, 1, . . . , 5}. Thus, if a feasible solution with

no active compressor station is found, then we are done. Otherwise, if a feasible
solution with only one or two active compressor stations is found, then it remains to
show that the problem is infeasible with less running compressors. As we have seen,
determining infeasibility seems to be easy and hence optimality can be proven shortly
after. A partial explanation for the slower running times of minimizing the power loss

1Note that with the objective to minimize the power loss, i.e., min
∑

q±u pu, two scenarios could
not be solved due to “unresolved numerical troubles” in the LP-relaxation. Hence, there are
only 4225 scenarios listed in Table 6.6 for this objective function.

167

Chapter 6. Implementation and Numerical Results

is that the objective functions favors unphysical solutions. For example, consider
a single pipe a = (u, v) with positive flow qa. Then the LP-relaxation produces
solutions with pu as small as possible and pv as large as possible. However, since
the pressure decreases in the direction of the flow, pu > pv has to hold. Therefore,
the LP-relaxation has to describe the gas physics more accurately until a feasible
solution is found.

To maximize the sum of the pressure variables at the nodes does not have an
interpretation as clear as the other objective functions. However, it provides a good
trade-off between fast running times and still being able to observe a difference
between finding a feasible and an optimal solution. On the one hand, when solving
problem (4.18) as feasibility problem or with the objective to minimize the number
of running compressor stations, we cannot observe the influence of our techniques
on the time to optimality. On the other hand, minimizing the power loss takes much
more time.

Remark 6.3. As an attempt to find a bug in our implementation, which led to infea-
sibility of almost all of the 4227 scenarios for network GasLib-582, we implemented
the option to relax the lower or upper pressure bounds by a given amount. Note
that by relaxing the lower and upper bound by one bar each, about 500 previously
infeasible scenarios turn to be feasible; see Table 6.10. Then we tried to identify
where the error was in the following two ways. First we tried to minimize the max-
imal distance to the original pressure bounds such that there is a feasible solution,
that is, we added a slack variable α, the constraints pv − pv ≤ α and pv − pv ≤ α

for all nodes v ∈ V, and minimized α. Secondly, we added slack variables αv for all
nodes v ∈ V and then minimized the sum of the slack variables.

Even though we could identify the bug in this particular way, the two objectives
can be used to find bottlenecks in the network. However, with either of these ob-
jectives problem (4.18) seems to be hard to solve with almost half of the scenarios
running into the time limit without a feasible solution.

6.3.3 Influence of the Compressor Model

Gas cannot be transported over long distances without increasing the pressure level
in compressor stations along the way. Thus, compressor stations and their respective
model play an important role for the feasibility of a scenario. Therefore, we compare
computational results for the two variants introduced in Section 4.2.6. That is, the
simple box constraint model given by the constraints (4.15) and the box constraint
model with the additional facets as proposed by Walther et al. [154] to derive a
better approximation of the feasible operating range of a compressor station.

168

6.3. Computational Experiments

Table 6.8. Results for all GasLib-582 scenarios using the idealized
model (idealCS), the box constraint model (box) and the box con-
straint model with the additional facets (box+facets) for compressor
stations.

cs-model opt feas limit inf inf-presol

idealCS 2049 95 2 2081 2073
box 1784 349 0 2094 2080
box+facets 918 156 19 3134 2300

Table 6.9. Geometric mean solving times in seconds and total run time
in hours for the results presented in Table 6.8.

cs-model to opt to first to inf total total time [h]

idealCS 368.27 76.47 1.01 21.29 416.99
box 720.42 73.75 1.02 31.91 829.31
box+facets 600.03 104.32 2.56 11.31 417.32

Furthermore, we implemented the following idealized model to get an impression
if either model provides an accurate approximation of the feasible operating ranges
of compressor stations. Our idealized model for a compressor station cs = (u, v)

consists of the constraints

0 ≤ qcs ≤ qcs zcs,
pcs zcs + pu(1− zcs) ≤ pu,
pv ≤ pcs zcs + pv(1− zcs),
∆ zcs + (pv − pu)(1− zcs) ≤ pv − pu,
pv − pu ≤ ∆ zcs + (pv − pu)(1− zcs).

(6.2)

Here, we have the variables pu, pv, qcs and zcs as usual and we use the variable
bounds qcs, pu, pu, pv, pv, and the technical limits pcs, pcs as specified in the
network data of the instance GasLib-582. Furthermore, we have lower and upper
bounds on the possible pressure increase ∆ and ∆, which can be chosen by the user
(of our implementation). With this model, there can only be flow on the compressor
station if the compressor station is running (zcs = 1), otherwise the flow is not
coupled with the pressure. The technical limits and the bounds on the pressure
increase have to be satisfied only if the compressor station is active. Otherwise, the
pressure variables are decoupled. Moreover, for this model we do not consider any
resistors as part of the compressor station, but there still can be a bypass valve to
allow flow in the reverse direction (from v to u).

169

Chapter 6. Implementation and Numerical Results

The computational results and solving times for all scenarios for the network
GasLib-582 with those three compressor station models are summarized in Ta-
bles 6.8 and 6.9. For the idealized model we used the parameters ∆ = 0 bar

and ∆ = 45 bar for each compressor station such that the idealized model pro-
vides a relaxation of the other models. The table shows that the models only have
a minor influence on the number of scenarios which are infeasible after presolving.
However on the one hand, the additional facets for the box constraint model have a
huge impact on the number of feasible scenarios. With the additional facets we have
over 1000 infeasible scenarios more than without. And on the other hand, the box
constraint model without the additional facets already seems to be quite idealized,
since the numbers of infeasible scenarios are almost the same for the idealized model
and the box constraint model. Therefore, we use the box constrained model with
the additional facets for the following test.

6.3.4 Comprehensive Performance Tests

In this section, we finally study the effect of using the combinatorial model PAS±

and the flow tightening techniques from Section 6.2 on the performance of Algo-
rithm 4.2. We proceed similar to Section 5.4.2 and present results for the different
model variants in combination with and without the optimization-based bound tight-
ening technique (OBBT) and the flow tightening based on bound propagation (BP).
Therefore, recall the following model variants used to enhance problem (4.18):

NFD no binary variables to represent flow directions;
FDO with binary variables, but no flow conservation or dicycle inequalities;
CB dicycle inequalities (5.12) for a cycle basis;
AC dicycle inequalities (5.12) for all cycles;
FLC binary flow conservation (5.9) and (5.10);
FLC+CB variant FLC plus dicycle inequalities for a cycle basis;
FLC+AC variant FLC plus dicycle inequalities for all cycles.

In Section 5.4.2, we presented results for these variants with the algebraic model
for the gas flow for all 4227 scenarios. However, since we want to compare these
variants with the different combinations of the flow tightening techniques and the
computations with the ODE model take more time, we use a smaller test set of 200
scenarios for network GasLib-582 here. We chose this test set as follows. First of all,
we performed computations using CPLEX and SOPLEX for model variant FLC+AC
and both flow tightening techniques for all scenarios; the results and solving times
using CPLEX are shown in Tables 6.10 and 6.11. For these computations we relaxed
the lower and upper pressure bounds at the nodes (which are specified in the network

170

6.3. Computational Experiments

Table 6.10. Results for network GasLib-582 with relaxation of the
lower and upper pressure bounds by one bar categorized in tempera-
ture classes. The results are produced with model variant FLC+AC
and flow tightening by OBBT and BP.

temperature class opt feas limit inf inf-presol total

warm 296 34 1 52 0 383
mild 296 55 4 292 7 647
cool 298 101 16 785 157 1200
cold 305 39 8 760 315 1112
freezing 134 18 9 724 386 885

total 1329 247 38 2613 865 4227

Table 6.11. Geometric mean solving times in seconds and total run
time in hours for the results presented in Table 6.10.

temperature class to opt to first to inf total total time [h]

warm 588.01 94.28 39.15 480.33 104.83
mild 689.54 97.04 35.63 210.51 143.65
cool 746.98 99.43 18.61 77.79 215.92
cold 513.38 93.24 8.09 32.68 117.74
freezing 459.35 89.01 4.88 11.89 59.01

total 607.79 95.41 11.00 57.39 641.15

data) by one bar for two reasons. On the one hand, relaxing the pressure bounds
makes identifying infeasible scenarios more difficult such that we can also test the
effect of our methods on the solving process of infeasible scenarios. On the other
hand, by relaxing the pressure bounds there are more feasible or optimal scenarios to
choose from. Especially in the temperature class freezing there are 152 scenarios with
a feasible solution instead of only one scenario. We remark that the geometric mean
times to the first feasible solution and to optimality in Table 6.11 are very similar
compared to the corresponding geometric mean times without relaxing the pressure
variables in Table 6.2. The geometric mean times with relaxation of the pressure
bounds are increased a little, but show the same characteristics, i.e., for temperature
class cool the time to optimality is the largest and identifying infeasibility is easier for
colder temperatures. Only the geometric mean times for temperature class freezing
differ significantly. However, this is due to the fact that without relaxing the pressure
bounds there is only one feasible scenario in this class. After performing these
computations with CPLEX and SOPLEX we removed the scenarios with contradicting
results; see also Section 6.3.1. In total there are 28 scenarios where one solver

171

Chapter 6. Implementation and Numerical Results

Table 6.12. Comparison of the arithmetic mean flow bounds of pipes
after presolving, for which the flow is not already fixed.

OBBT & BP BP OBBT neither

variant LB UB LB UB LB UB LB UB

NFD −196.73 232.05 −217.81 371.02 −413.36 364.50 −483.79 587.80
FDO −101.01 154.56 −165.36 307.81 −279.16 265.10 −444.35 564.22
CB −89.45 157.29 −160.27 303.23 −220.38 224.74 −399.92 521.61
AC −73.43 181.02 −143.14 264.68 −200.45 304.09 −398.53 518.81
FLC −98.09 149.57 −163.53 297.66 −269.57 248.29 −443.64 563.36
FLC+CB −72.64 110.35 −129.89 278.76 −188.87 160.08 −372.10 484.71
FLC+AC −13.94 85.73 −92.67 163.28 −9.24 83.38 −359.27 448.39

produced a feasible or optimal solution and the other returned infeasible and 33
scenarios where primal and dual bounds of the two LP-solvers differ by more than
0.1%. Finally, from each of the temperature classes warm, mild, cool, cold and
freezing we randomly chose 10 scenarios which were solved to optimality and 10
scenarios which were proven to be infeasible by both LP-solvers. Thereby, we chose
only scenarios where CPLEX and SOPLEX produce the same result such that we
can be (relatively) sure that this result is correct and to avoid scenarios which are
numerically problematic.
The results for all model variants and combinations of flow tightening techniques

OBBT and BP can be seen in Tables 6.12 to 6.16. The Tables 6.12 and 6.13 show
statistics on the flow variables of pipelines after presolving. Table 6.12 displays the
arithmetic mean lower and upper flow bounds for pipelines whose flow is not already
fixed and Table 6.13 displays the arithmetic mean number of pipelines with fixed flow

Table 6.13. Comparison of the mean number of fixed flows and fixed
directions of pipes after presolving.

OBBT & BP BP OBBT neither

variant #dir #flows #dir #flows #dir #flows #dir #flows

NFD 44.13 157.00 51.78 142.00 43.80 157.00 44.40 142.00
FDO 52.20 156.72 60.21 142.13 51.88 156.35 58.55 142.13
CB 59.39 155.56 66.52 142.17 58.62 155.72 65.94 142.17
AC 63.49 150.46 67.00 142.17 62.76 150.01 65.94 142.17
FLC 52.44 157.10 60.37 142.13 51.52 157.10 58.43 142.13
FLC+CB 61.80 155.17 70.45 142.17 60.68 155.17 68.72 142.17
FLC+AC 67.05 153.31 74.81 142.33 62.59 155.04 69.72 142.17

172

6.3. Computational Experiments

Table 6.14. Comparison of arithmetic mean number of branch-and-
bound nodes for scenarios solved to optimality or infeasibility. The
numbers are rounded up.

OBBT & BP BP OBBT neither

variant opt inf opt inf opt inf opt inf

NFD 427631 197390 460243 86272 – – – –
FDO 667040 3134 – 15764 630724 9672 16245 23897
CB 683321 2859 410455 16597 522858 5836 – 42851
AC – 7508 – 5287 590781 11844 – 23989
FLC 269324 820 298947 637 324837 958 292147 3587
FLC+CB 277270 447 270101 936 247487 758 298967 7501
FLC+AC 180169 191 186762 481 209586 4673 239784 1794

direction “#dir” and the mean number of pipelines with fixed flow direction “#flows”.
Table 6.14 shows the arithmetic mean numbers of nodes in the branch-and-bound
tree for the scenarios solved to optimality or proven to be infeasible. Then Table 6.15
shows the results for the 200 scenarios, i.e., the number of feasible scenarios solved to
optimality “opt”, the number of scenarios that ran into the time limit with a feasible
solution “feas” or without a feasible solution “limit” and the number of scenarios
proven to be infeasible “inf”. Table 6.16 shows the corresponding geometric mean
times to optimality “to opt”, the geometric mean time until the first feasible solution
was found “to feas”, and the geometric mean time until infeasibility was proven “to
inf”. In this table the geometric mean times are rounded up to the next full second.

Altogether, we can say that using the combinatorial model PAS± and the flow
tightening techniques have a very positive effect on the performance of our imple-
mentation. With model FLC+AC the flow bounds after presolving are tighter than
with model NFD, i.e., the model without any binary direction variables, indepen-
dently of using the flow tightening techniques or not. In Section 5.4.2, we have seen
that we could speed-up the total running time for the algebraic gas flow model by
a factor of ∼ 7.2 with model variant FLC+AC compared to model NFD. Here we
can see that for the ODE model we can speed-up the total running times by a factor
of ∼ 4.5 when using neither OBBT nor BP, by a factor of ∼ 5.9 when using OBBT,
by a factor of ∼ 5.7 when using BP, and by a factor of ∼ 6.3 when using both
OBBT and BP. But more importantly, with model FLC+AC, OBBT and BP we
can solve all 200 scenarios to optimality or prove infeasibility, whereas with model
NFD without OBBT and BP we can solve none of the scenarios. Moreover, the geo-
metric mean times for model FLC+AC with OBBT and BP show that our algorithm

173

Chapter 6. Implementation and Numerical Results

works quite fast with a geometric mean time to optimality of nearly 9 minutes and
a geometric mean time of only 13 seconds to infeasibility.

The (probably) main reason for the performance improvement is analogous to
Section 5.4.2. Using the binary variables to represent the flow directions and the
corresponding constraints yields better relaxations of the original problem. This
leads to a more successful presolving, that is, tighter variable bounds. Addi-
tionally using the problem specific flow tightening methods OBBT and BP im-
proves the variable bounds even more. This implies that the LP-relaxations in
the branch-and-bound tree are stronger and the search space is smaller, which leads
to smaller branch-and-bound trees. Hence, the algorithm is faster. That the sizes
of the branch-and-bound trees actually behave like this can be seen in Table 6.14,
which shows the arithmetic mean numbers of nodes in the trees for the scenarios
solved to optimality or infeasibility. For example, this effect can be seen by compar-
ing the arithmetic mean number of processed nodes of the branch-and-bound tree
for variants NFD and FLC+AC with OBBT and BP. For variant NFD the arith-
metic mean number of nodes it takes to prove optimality or infeasibility is 427631
and 197390 nodes, respectively. In contrast for variant FLC+AC the mean number
of nodes are 180169 and only 191, respectively.

When studying the results more closely, we observe that flow tightening based on
bound propagation has only a minor effect on the number of fixed flow directions
and a negligible effect on the number of fixed flows; see Table 6.13. However, BP
significantly tightens the lower and upper flow bounds after presolving and also the
numbers of scenarios which are optimally solved or proven to be infeasible and the
corresponding geometric mean times to optimality and infeasibility are improved
by using BP – at least for the models containing the binary flow conservation con-
straints (5.9) and (5.10), i.e., the model variants FLC, FLC+CB and FLC+AC.

In Section 5.4.2, we observed that variant AC defines tighter LP-relaxations for
the algebraic model than variant FLC, but the running times and number of solved
scenarios with variant FLC are superior to those of variant AC. Here, Tables 6.15
and 6.16 also show that variant FLC performs much better than variant AC. Fur-
thermore, the flow bounds in Table 6.12 still show that variant AC defines tighter
LP-relaxations when not using OBBT. But when using OBBT then variant FLC de-
fines tighter LP-relaxations. The reason for that is that variant AC seems to define
relaxations which are hard to solve if the binary flow conservation constraints are
not used as well. For variant AC, we can observe that OBBT takes much more time
than with other variants and, in fact, for more than half of the scenarios OBBT ran
into its time limit of 10 minutes. When using BP as well, then OBBT still ran into
its time limit for almost half of the scenarios. This observation also explains the
larger geometric times to the first feasible solution with variant AC in Table 6.16.

174

6.3. Computational Experiments

T
ab

le
6.
15

.
N
um

be
r
of

sc
en
ar
io
s
th
at

w
er
e
so
lv
ed

to
op

ti
m
al
it
y,

te
rm

in
at
ed

w
it
h
a
fe
as
ib
le

so
lu
ti
on

,
te
rm

in
at
ed

w
it
ho

ut
fe
as
ib
le

so
lu
ti
on

,a
nd

w
er
e
pr
ov
en

to
be

in
fe
as
ib
le

fo
r
al
lm

od
el

va
ri
an

ts
an

d
al
l

co
m
bi
na

ti
on

s
of

flo
w

ti
gh

te
ni
ng

te
ch
ni
qu

es
.

O
B
B
T

&
B
P

B
P

O
B
B
T

ne
it
he
r

va
ri
an

t
op

t
fe
as

lim
it

in
f

op
t

fe
as

lim
it

in
f

op
t

fe
as

lim
it

in
f

op
t

fe
as

lim
it

in
f

N
F
D

4
16

11
8

62
2

1
15
4

43
0

0
20
0

0
0

0
20
0

0
F
D
O

1
85

15
99

0
90

11
99

3
92

6
99

1
94

7
98

C
B

2
92

6
10
0

2
91

8
99

1
94

5
10
0

0
95

9
96

A
C

0
95

5
10
0

0
99

3
98

3
93

4
10
0

0
97

7
96

F
LC

49
49

2
10
0

54
44

2
10
0

49
48

3
10
0

41
57

2
10
0

F
LC

+
C
B

75
23

2
10
0

68
29

3
10
0

65
30

5
10
0

58
40

3
99

F
LC

+
A
C

10
0

0
0

10
0

94
6

0
10
0

93
6

2
99

87
13

4
96

T
ab

le
6.
16

.
G
eo
m
et
ri
c
m
ea
n

so
lv
in
g
ti
m
es

un
ti
l
th
e
sc
en
ar
io
s
w
er
e
so
lv
ed

to
op

ti
m
al
it
y,

th
e
fir
st

fe
as
ib
le

so
lu
ti
on

w
as

fo
un

d,
or

th
e
sc
en
ar
io

w
as

pr
ov
en

to
be

in
fe
as
ib
le
.
So

lv
in
g
ti
m
es

ar
e
in

se
co
nd

s,
ro
un

de
d
up

.

O
B
B
T

&
B
P

B
P

O
B
B
T

ne
it
he
r

va
ri
an

t
to

op
t

to
fir
st

to
in
f

to
op

t
to

fir
st

to
in
f

to
op

t
to

fir
st

to
in
f

to
op

t
to

fir
st

to
in
f

N
F
D

22
35

18
94

16
5

22
74

17
61

40
–

–
–

–
–

–
F
D
O

26
56

23
7

12
0

–
13
6

29
28
83

29
4

15
4

12
4

14
5

77
C
B

29
35

29
9

12
5

18
39

12
8

26
24
77

36
8

18
0

–
18
0

83
A
C

–
55
6

20
5

–
15
8

22
21
99

63
5

37
7

–
17
8

68
F
LC

73
8

12
5

50
98
8

72
8

98
3

12
8

67
10
18

63
19

F
LC

+
C
B

71
8

96
42

78
8

75
8

76
8

11
2

55
91
8

81
14

F
LC

+
A
C

54
1

89
13

55
3

53
4

62
4

97
50

74
9

50
11

175

Chapter 6. Implementation and Numerical Results

Yet, to find an explanation why variant AC defines relaxations which are hard to
solve requires future investigation.
We have seen that OBBT actually worsens the performance of our algorithm for

model variant AC and it increases the geometric mean times to infeasibility as well
due to its additional computational overhead. Nevertheless, OBBT significantly
tightens the variable bounds and increases the number of fixed flows; see Tables 6.12
and 6.13. Note that the reason why OBBT fixes more flow directions for variant
NFD than for variant FLC+AC is the following. Since we only perform OBBT on
variables whose lower and upper bounds are more than 10.0 kg s−1 apart and the
flow bounds with model FLC+AC are already tighter before OBBT is applied, we
perform OBBT on fewer variables for model FLC+AC which leads to less variable
fixings. Furthermore, OBBT improves the geometric mean running times and the
number of solved scenarios for model variants FLC, FLC+CB and FLC+AC; see
Tables 6.15 and 6.16.
Overall the results show that with model variant FLC+AC, OBBT and BP we can

solve optimization problems on the network GasLib-582 quite fast with a geometric
mean time of about 9 minutes to prove optimality and less than 100 seconds to
prove infeasibility. We point out that this network is a slightly distorted version
of a real-world gas transport network. Moreover, this real-world network actually
covers roughly one-fourth of Germany; see Schmidt et al. [126]. The same network
has been used to present other global optimization approaches on the example of
stationary gas transport, too. However, among other modelling differences they use
an algebraic potential-based flow model instead of the more complex ODE model
we use; for example, see Pfetsch et al. [111], Koch et al. [82], or Burlacu et al. [20].

176

CHA PTER 7
Conclusion and Outlook

In this thesis, we have developed a new spatial branch-and-bound algorithm for
the global optimization of a particular class of mixed-integer nonlinear optimization
problems which contain ODE constraints. The distinguishing feature of this class
is the assumption that the optimization problem only depends on the boundary
values of the ODEs and not on the solution at some intermediate point. This as-
sumption and the structure of the class of optimization problems is motivated by
the application of stationary gas transport where it suffices to know the pressure at
the ends of the pipelines and the ODEs describe the gas flow along the pipelines.
Moreover, this assumption sets this particular class of optimization problems and
the spatial branch-and-bound algorithm which is based on this assumption apart
from other mixed-integer optimal control problems and dynamical systems which
are considered in the literature, for example, the optimal gear shifting of a car or
controlling the process of chemical reactions.

To define relaxations of the ODE solutions for the use in spatial branch-and-bound
we have first derived sufficient conditions such that numerical one-step methods
for solving scalar parameter-dependent initial value problems define lower or upper
bounds on the exact solution in Chapter 2. We have used the corresponding result,
that is, Lemma 2.3, to specify conditions on the differential equation such that the
explicit midpoint method, the second-order Taylor method and the trapezoidal rule
produce lower or upper bounds on the ODE solution. Moreover, we have investigated
conditions such that the input-output functions defined by these methods are convex
or concave. Afterwards, we have seen that these three methods can be used to define
convex lower and upper bounds on the solution of the stationary isothermal Euler
equation with and without height differences, which is the particular ODE in our
application on stationary gas transport.

177

Chapter 7. Conclusion and Outlook

Based on the assumption that such lower and upper bounding methods exist for
a general ODE (system) we have developed an adaptive spatial branch-and-bound
algorithm in Chapter 3. The main ideas of this algorithm are as follows. If the
ODEs are uniquely solvable and we have an algebraic formula for the exact rela-
tion between parameters and boundary values, then we could replace the ODEs
by that formula. Otherwise, if we do not have such a formula, then the lower
and upper bounding methods define a tube around the analytical solution, i.e., a
relaxation. Assuming that we can construct convex under- and concave overestima-
tors of these methods for the use in an black-box solver in finite time we can use
these methods in the spatial branch-and-bound method as follows. In a node of the
branch-and-bound tree we first solve a convex relaxation of the original problem and
then use the lower and upper bounding methods to check if we are close to an exact
solution (δ-feasible). For that, we refine the discretization if necessary. If the solution
is not δ-feasible we improve the under- or overestimator to cut off the solution of the
relaxation, or if this is not possible we perform branching such that the solution can
be cut off afterwards. We have shown that the resulting spatial branch-and-bound
algorithm, i.e., Algorithm 3.3, terminates finitely under mild conditions on the under-
and overestimators; see Theorem 3.8. Moreover, we discussed how to define a con-
sistent δ-feasibility notion and how to extend this approach to adaptively change the
discretization which is not possible in other first-discretize-then-optimize approaches.

In Chapter 4, we applied our general framework to stationary gas transport. For
this application, we use the explicit midpoint method and the trapezoidal rule to
compute lower and upper bounds on the gas flow on pipelines without height dif-
ferences. We have seen that we can use these to methods to construct linear re-
laxations of the gas flow for an LP-based spatial branch-and-bound algorithm and
proven that the necessary conditions are satisfied such that the algorithm termi-
nates finitely. Afterwards, we discussed possible extensions to this algorithm and
presented first numerical results for our implementation with the branch-and-bound
framework SCIP.

Motivated by the observations that our initial relaxations of the gas flow were
weak and that the flow on potential-based networks such as stationary gas networks
is necessarily acyclic, we derived and investigated combinatorial models to describe
acyclic flows in Chapter 5. We have studied the properties of these models and
in particular the model PAS±. This model exploits the knowledge on sources and
sinks, and that the flow is acyclic. Moreover, we have shown that linear optimization
over PAS± is NP-hard. Nevertheless, we can use this combinatorial model to speed-
up the optimization over potential-based flows. Using the Weymouth equation to
describe the gas flow, we can speed-up the optimization on the gas network instance
GasLib-582 by a factor of about 7 through using PAS±.

178

Finally in Chapter 6, we discussed our implementation for the application on sta-
tionary gas transport with the branch-and-bound framework SCIP. We have intro-
duced problem specific bound tightening methods and presented further numerical
results. These results have also shown that the combinatorial models for acyclic
flows have a big impact on the performance of our algorithm for the ODE con-
strained model. Furthermore, with the additional bound tightening methods we can
solve optimization problems on the network GasLib-582 quite fast with a geometric
mean time of 9 minutes to optimality which we otherwise could not solve. Again,
we point out that this network is based on a real-world network which covers nearly
a quarter of Germany and thus is of relevant size.

Outlook

This thesis still leaves plenty of open questions and starting points for future research
and investigations. In Chapter 2, we have mainly considered scalar ODEs and only
presented a preliminary result on the extension of the results to ODE systems.
Furthermore, we only discussed ideas how to construct lower and upper bounds
on the solutions of ODEs if the necessary requirements for the explicit midpoint
method, second-order Taylor method or trapezoidal rule are not satisfied. These
ideas and the extension to ODE systems require future investigation. Moreover, it
is ongoing work by Prof. Stefan Ulbrich and Kristina Janzen to construct lower and
upper bounds on the isothermal Euler equations in the instationary case, that is, for
PDEs.
In the relaxation Algorithms 3.2 and 4.1 we choose the “most infeasible” ODE con-

straints to resolve infeasibility of optimal solutions for the convex relaxation. How-
ever, in mixed-integer linear programming it is known that most fractional branching
in most cases does not perform any better than randomly choosing the branching
variable; see Achterberg et al. [2]. Thus, it can be worth to study other selection
criteria and test their influence on the computations. For the example of stationary
gas transport we can investigate if there are pipelines which are more important
than others. For example, this can be pipelines which are bridges in the underlying
graph or pipelines which close cycles in the network.
In Chapter 4, we only consider a stationary setting. Thus, it can be part of future

research to extend our spatial branch-and-bound algorithm to solve instationary
problems. A starting point for this is the article by Burlacu et al. [19]. The authors
discretize an instationary problem such that the problem turns into a stationary
problem for each time step. With minor changes to the derivation of their dis-
cretization, we can derive a model such that each time step is a stationary problem
similar to problem (4.18).

179

Chapter 7. Conclusion and Outlook

Concerning the combinatorial models for acyclic flows there are several interest-
ing open questions, too. In Proposition 5.28 we investigated the dimension of PAS±

in the single-source and single-sink case, however, in the general case it is an open
question if the conditions in Lemma 5.18 suffice to define the dimension of PAS±.
Moreover, it would be interesting to obtain additional facets of PAS±, for example,
by transferring facets defined by k-fences and Möbius-ladders from the acyclic sub-
graph polytope if possible. Besides, from a computational point of view it would be
interesting the compare the performance of our algorithm where we add the dicycle
inequalities up front to an algorithm which dynamically separates dicycle inequali-
ties. This can for example be done by considering a graph corresponding to the flow
direction variables which are part of an LP-solution. If we can find a dicycle in this
graph, then we can cut off the LP-solution via the corresponding dicycle inequality.
This is of particular interest for solving even larger gas networks where enumerating
all cycles might not be possible any more.
In the last chapter, we compared numerical results for different models for com-

pressor stations and have seen that the box constraint model (4.15) is rather ideal-
ized. Thus, we could improve our code by implementing a more detailed or realistic
model for compressor stations. Moreover, we observed in Section 6.3.4 that adding
all dicycle constraints (5.12) but not the binary flow conservation constraints (5.9)
and (5.10), renders even the simple relaxation without nonlinear constraints, which
we use for OBBT, hard to solve. It requires future investigation why that is the case.
Solving this issue might even lead to improvements for the model variants FLC+AC
using both the dicycle inequalities and the flow conservation constraints.

180

Bibliography

[1] T. Achterberg, Conflict analysis in mixed integer programming, Discrete
Optimization, 4 (2007), pp. 4–20. doi: 10.1016/j.disopt.2006.10.006.
[→152]

[2] T. Achterberg, T. Koch, and A. Martin, Branching rules revisited, Op-
erations Research Letters, 33 (2005), pp. 42–54. doi: 10.1016/j.orl.2004.
04.002. [→62, 101, 179]

[3] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas, A global op-
timization method, αBB, for general twice differentiable NLPs – II. Imple-
mentation and computational results, Computers & Chemical Engineering, 22
(1998), pp. 1159–1179. doi: 10.1016/S0098-1354(98)00218-X. [→11, 52, 56,
64, 89]

[4] C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier, A global
optimization method, αBB, for general twice differentiable NLPs – I. Theoret-
ical advances, Computers & Chemical Engineering, 22 (1998), pp. 1137–1158.
doi: 10.1016/S0098-1354(98)00027-1. [→11, 52, 56, 64, 89]

[5] B. Assarf, E. Gawrilow, K. Herr, M. Joswig, B. Lorenz, A. Paffen-
holz, and T. Rehn, Computing convex hulls and counting integer points with
polymake, Mathematical Programming Computputation, 9 (2017), pp. 1–38.
doi: 10.1007/s12532-016-0104-z. [→128]

[6] I. Bajaj and M. M. F. Hasan, Global dynamic optimization using edge-
concave underestimator, Journal on Global Optimization, 77 (2020), pp. 487–
512. doi: 10.1007/s10898-020-00883-2. [→12, 53]

[7] K.-H. Becker and B. Hiller, ASTS orientations on undirected graphs:
Structural analysis and enumeration, ZIB-Report 18-31, Zuse Institute Berlin,
2018. [→13, 113, 114, 128, 132]

[8] K.-H. Becker and B. Hiller, Improved optimization models for potential-
driven network flow problems via ASTS orientations, ZIB-Report 19-58, Zuse
Institute Berlin, 2019. [→13, 113, 114, 128, 132, 142, 160]

181

https://doi.org/10.1016/j.disopt.2006.10.006
https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1016/S0098-1354(98)00218-X
https://doi.org/10.1016/S0098-1354(98)00027-1
https://doi.org/10.1007/s12532-016-0104-z
https://doi.org/10.1007/s10898-020-00883-2

Bibliography

[9] K.-H. Becker and B. Hiller, Efficient enumeration of acyclic graph orien-
tations with sources or sinks revisited, ZIB-Report 20-05, Zuse Institute Berlin,
2020. [→13, 113, 114]

[10] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke,
and A. Mahajan, Mixed-integer nonlinear optimization, Acta Numerica, 22
(2013), pp. 1–131. doi: 10.1017/S0962492913000032. [→51]

[11] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter,
Branching and Bounds Tightening Techniques for Non-Convex MINLP, Op-
timization Methods and Software, 24 (2009), pp. 597–634. doi: 10.1080/
10556780903087124. [→56, 60, 89, 155]

[12] D. Bienstock, Electrical Transmission System Cascades and Vulnerability:
An Operations Research Viewpoint, MOS-SIAM Series on Optimization, So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, 2015. doi:
10.1137/1.9781611974164. [→116]

[13] G. Birkhoff and J. B. Diaz, Non-linear network problems, Quarterly of Ap-
plied Mathematics, 13 (1956), pp. 431–443. doi: 10.1090/qam/77398. [→113]

[14] Bundesministerium für Bildung und Forschung. https://www.bmbf.de/. Last
visited: June 25, 2020. [→2]

[15] H. G. Bock, C. Kirches, A. Meyer, and A. Potschka, Numerical solu-
tion of optimal control problems with explicit and implicit switches, Optimiza-
tion Methods and Software, 33 (2018), pp. 450–474. doi: 10.1080/10556788.
2018.1449843. [→52]

[16] P. Bonami, J. Lee, S. Leyffer, and A. Wächter, More branch-and-
bound experiments in convex nonlinear integer programming, tech. report, Op-
timization Online, 2011, http://www.optimization-online.org/DB_HTML/
2011/09/3191.html. [→101]

[17] C. Buchheim, R. Kuhlmann, and C. Meyer, Combinatorial optimal con-
trol of semilinear elliptic PDEs, Computational Optimization and Applica-
tions, 70 (2018), pp. 641–675. doi: 10.1007/s10589-018-9993-2. [→12]

[18] J. Burgschweiger, B. Gnädig, and M. C. Steinbach, Optimization mod-
els for operative planning in drinking water networks, Optimization and Engi-
neering, 10 (2009), pp. 43–73. doi: 10.1007/s11081-008-9040-8. [→116]

[19] R. Burlacu, H. Egger, M. Groß, A. Martin, M. E. Pfetsch,
L. Schewe, M. Sirvent, and M. Skutella, Maximizing the storage capac-
ity of gas networks: a global MINLP approach, Optimization and Engineering,
20 (2019), pp. 543–573. doi: 10.1007/s11081-018-9414-5. [→179]

[20] R. Burlacu, B. Geißler, and L. Schewe, Solving mixed-integer non-
linear programmes using adaptively refined mixed-integer linear programmes,

182

https://doi.org/10.1017/S0962492913000032
https://doi.org/10.1080/10556780903087124
https://doi.org/10.1080/10556780903087124
https://doi.org/10.1137/1.9781611974164
https://doi.org/10.1090/qam/77398
https://www.bmbf.de/
https://doi.org/10.1080/10556788.2018.1449843
https://doi.org/10.1080/10556788.2018.1449843
http://www.optimization-online.org/DB_HTML/2011/09/3191.html
http://www.optimization-online.org/DB_HTML/2011/09/3191.html
https://doi.org/10.1007/s10589-018-9993-2
https://doi.org/10.1007/s11081-008-9040-8
https://doi.org/10.1007/s11081-018-9414-5

Bibliography

Optimization Methods and Software, 35 (2020), pp. 37–64. doi: 10.1080/
10556788.2018.1556661. [→14, 160, 176]

[21] B. Chachuat, A. B. Singer, and P. I. Barton, Global mixed-integer
dynamic optimization, AIChE Journal, 51 (2005), pp. 2235–2253. doi: 10.
1002/aic.10494. [→12, 16, 53, 58]

[22] B. Chachuat, A. B. Singer, and P. I. Barton, Global Methods for Dy-
namic Optimization and Mixed-Integer Dynamic Optimization, Industrial &
Engineering Chemistry Research, 45 (2006), pp. 8373–8392. doi: 10.1021/
ie0601605. [→12, 16, 53, 58]

[23] B. Chachuat and M. Villanueva, Bounding the Solutions of Paramet-
ric ODEs: When Taylor Models Meet Differential Inequalities, in 22nd Eu-
ropean Symposium on Computer Aided Process Engineering, I. D. L. Bogle
and M. Fairweather, eds., vol. 30 of Computer Aided Chemical Engineering,
Elsevier, 2012, pp. 1307–1311. doi: 10.1016/B978-0-444-59520-1.50120-2.
[→17]

[24] M. Čižniar, M. Podmajerský, T. Hirmajer, M. Fikar, and A. M.
Latifi, Global optimization for parameter estimation of differential-algebraic
systems, Chemical Papers, 63 (2009), pp. 274–283. doi: 10.2478/
s11696-009-0017-7. [→52]

[25] C. F. Colebrook, Turbulent Flow in Pipes, with particular reference to the
Transition Region between the Smooth and Rough Pipe Laws, Journal of the
Institution of Civil Engineers, 11 (1939), pp. 133–156. doi: 10.1680/ijoti.
1939.13150. [→104]

[26] M. Collins, L. Cooper, R. Helgason, J. Kennington, and
L. LeBlanc, Solving the pipe network analysis problem using optimization
techniques, Management Science, 24 (1978), pp. 747–760. doi: 10.1287/mnsc.
24.7.747. [→13, 115]

[27] Y. Crama, Concave extensions for nonlinear 0–1 maximization problems,
Mathematical Programming, 61 (1993), pp. 53–60. doi: 10.1007/BF01582138.
[→92]

[28] H. Diedam and S. Sager, Global optimal control with the direct multi-
ple shooting method, Optimal Control Applications and Methods, 39 (2018),
pp. 449–470. doi: 10.1002/oca.2324. [→52]

[29] P. Domschke, B. Geißler, O. Kolb, J. Lang, A. Martin, and
A. Morsi, Combination of Nonlinear and Linear Optimization of Transient
Gas Networks, INFORMS Journal on Computing, 23 (2011), pp. 605–617. doi:
10.1287/ijoc.1100.0429. [→76]

183

https://doi.org/10.1080/10556788.2018.1556661
https://doi.org/10.1080/10556788.2018.1556661
https://doi.org/10.1002/aic.10494
https://doi.org/10.1002/aic.10494
https://doi.org/10.1021/ie0601605
https://doi.org/10.1021/ie0601605
https://doi.org/10.1016/B978-0-444-59520-1.50120-2
https://doi.org/10.2478/s11696-009-0017-7
https://doi.org/10.2478/s11696-009-0017-7
https://doi.org/10.1680/ijoti.1939.13150
https://doi.org/10.1680/ijoti.1939.13150
https://doi.org/10.1287/mnsc.24.7.747
https://doi.org/10.1287/mnsc.24.7.747
https://doi.org/10.1007/BF01582138
https://doi.org/10.1002/oca.2324
https://doi.org/10.1287/ijoc.1100.0429

Bibliography

[30] M. A. Duran and I. E. Grossmann, An outer-approximation algorithm for
a class of mixed-integer nonlinear programs, Mathematical Programming, 36
(1986), pp. 307–339. doi: 10.1007/BF02592064. [→31, 52, 56, 66, 89, 91]

[31] W. R. Esposito and C. A. Floudas, Deterministic Global Optimization
in Nonlinear Optimal Control Problems, Journal of Global Optimization, 17
(2000), pp. 97–126. doi: 10.1023/A:1026578104213. [→53]

[32] J. Fakcharoenphol, B. Laekhanukit, and P. Sukprasert, Finding all
useless arcs in directed planar graphs, 2018, https://arxiv.org/abs/1702.
04786. [→133]

[33] J. E. Falk, Lagrange Multipliers and Nonconvex Programs, SIAM Journal on
Control, 7 (1969), pp. 534–545. doi: 10.1137/0307039. [→51, 92]

[34] J. E. Falk and K. R. Hoffman, A Successive Underestimation Method
for Concave Minimization Problems, Mathematics of Operations Research, 1
(1976), pp. 251–259. doi: 10.1287/moor.1.3.251. [→51, 93]

[35] J. E. Falk and R. M. Soland, An Algorithm for Separable Nonconvex
Programming Problems, Management Science, 15 (1969), pp. 550–569. doi:
10.1287/mnsc.15.9.550. [→51, 92]

[36] M. Feistauer, Mathematical methods in fluid dynamics, vol. 67 of Pitman
Monographs and Surveys in Pure and Applied Mathematics, Longman Scien-
tific & Technical, 1993. [→3]

[37] E. J. Finnemore and J. B. Franzini, Fluid Mechanics with Engineering
Applications, vol. 10, McGraw-Hill New York, 2002. [→104]

[38] C. A. Floudas and C. E. Gounaris, A review of recent advances in global
optimization, Journal of Global Optimization, 45 (2008), pp. 3–38. doi: 10.
1007/s10898-008-9332-8. [→51]

[39] S. Fortune, J. Hopcroft, and J. Wyllie, The directed subgraph home-
omorphism problem, Theoretical Computer Science, 10 (1980), pp. 111–121.
doi: 10.1016/0304-3975(80)90009-2. [→133]

[40] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler,
M. Gasse, P. Gemander, A. Gleixner, L. Gottwald, K. Halbig,
G. Hendel, C. Hojny, T. Koch, P. L. Bodic, S. J. Maher, F. Mat-
ter, M. Miltenberger, E. Mühmer, B. Müller, M. E. Pfetsch,
F. Schlösser, F. Serrano, Y. Shinano, C. Tawfik, S. Vigerske,
F. Wegscheider, D. Weninger, and J. Witzig, The SCIP Opti-
mization Suite 7.0, tech. report, Optimization Online, 2020, http://www.
optimization-online.org/DB_HTML/2020/03/7705.html. [→56, 89, 101,
107, 141, 147, 159]

[41] GasLib, GasLib – a library of gas network instances. http://gaslib.zib.
de/. [→107, 141, 147, 160]

184

https://doi.org/10.1007/BF02592064
https://doi.org/10.1023/A:1026578104213
https://arxiv.org/abs/1702.04786
https://arxiv.org/abs/1702.04786
https://doi.org/10.1137/0307039
https://doi.org/10.1287/moor.1.3.251
https://doi.org/10.1287/mnsc.15.9.550
https://doi.org/10.1007/s10898-008-9332-8
https://doi.org/10.1007/s10898-008-9332-8
https://doi.org/10.1016/0304-3975(80)90009-2
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://gaslib.zib.de/
http://gaslib.zib.de/

Bibliography

[42] Gasunie. https://www.gasunie.nl/en. Last visited: June 25, 2020. [→2]
[43] E. Gawrilow and M. Joswig, polymake: a framework for analyzing convex

polytopes, in Polytopes—combinatorics and computation (Oberwolfach, 1997),
vol. 29 of DMV Seminar, Birkhäuser, Basel, 2000, pp. 43–73. doi: 10.1007/
978-3-0348-8438-9_2. [→128]

[44] B. Geißler, A. Morsi, L. Schewe, and M. Schmidt, Solving power-
constrained gas transportation problems using an MIP-based alternating direc-
tion method, Computers & Chemical Engineering, 82 (2015), pp. 303–317. doi:
10.1016/j.compchemeng.2015.07.005. [→76]

[45] B. Geißler, A. Martin, A. Morsi, and L. Schewe, The MILP-relaxation
approach, in Evaluating Gas Network Capacities, T. Koch, B. Hiller, M. E.
Pfetsch, and L. Schewe, eds., MOS-SIAM Series on Optimization, Society
for Industrial and Applied Mathematics, Philadelphia, PA, 2015, Chapter 6,
pp. 103–122. doi: 10.1137/1.9781611973693.ch6. [→5, 76, 81]

[46] M. Gerdts, Solving mixed-integer optimal control problems by branch-and-
bound: a case study from automobile test-driving with gear shift, Optimal Con-
trol Applications and Methods, 26 (2005), pp. 1–18. doi: 10.1002/oca.751.
[→11]

[47] A. Gleixner, T. Berthold, B. Müller, and S. Weltge, Three en-
hancements for optimization-based bound tightening, Journal of Global Opti-
mization, 67 (2017), pp. 731–757. doi: 10.1007/s10898-016-0450-4. [→142,
155]

[48] S. Göttlich, A. Potschka, and U. Ziegler, Partial Outer Convexifi-
cation for Traffic Light Optimization in Road Networks, SIAM Journal on
Scientific Computing, 39 (2017), pp. B53–B75. doi: 10.1137/15M1048197.
[→12]

[49] M. Groß, M. E. Pfetsch, L. Schewe, M. Schmidt, and M. Skutella,
Algorithmic results for potential-based flows: Easy and hard cases, Networks,
73 (2019), pp. 306–324. doi: 10.1002/net.21865. [→115, 116]

[50] M. Grötschel, M. Jünger, and G. Reinelt, On the acyclic subgraph
polytope, Mathematical Programming, 33 (1985), pp. 28–42. doi: 10.1007/
BF01582009. [→124, 125]

[51] M. Gugat, F. Hante, M. Hirsch-Dick, and G. Leugering, Station-
ary States in Gas Networks, Networks and Heterogeneous Media, 10 (2015),
pp. 295–320. doi: 10.3934/nhm.2015.10.295. [→77, 89]

[52] M. Gugat, G. Leugering, A. Martin, M. Schmidt, M. Sirvent, and
D. Wintergerst, MIP-based instantaneous control of mixed-integer PDE-
constrained gas transport problems, Computational Optimization and Appli-
cations, 70 (2018), pp. 267–294. doi: 10.1007/s10589-017-9970-1. [→76]

185

https://www.gasunie.nl/en
https://doi.org/10.1007/978-3-0348-8438-9_2
https://doi.org/10.1007/978-3-0348-8438-9_2
https://doi.org/10.1016/j.compchemeng.2015.07.005
https://doi.org/10.1137/1.9781611973693.ch6
https://doi.org/10.1002/oca.751
https://doi.org/10.1007/s10898-016-0450-4
https://doi.org/10.1137/15M1048197
https://doi.org/10.1002/net.21865
https://doi.org/10.1007/BF01582009
https://doi.org/10.1007/BF01582009
https://doi.org/10.3934/nhm.2015.10.295
https://doi.org/10.1007/s10589-017-9970-1

Bibliography

[53] M. Gugat, G. Leugering, A. Martin, M. Schmidt, M. Sirvent, and
D. Wintergerst, Towards simulation based mixed-integer optimization with
differential equations, Networks, 72 (2018), pp. 60–83. doi: 10.1002/net.
21812. [→12, 53, 76, 160]

[54] M. Gugat, R. Schultz, and D. Wintergerst, Networks of pipelines
for gas with nonconstant compressibility factor: stationary states, Computa-
tional and Applied Mathematics, 37 (2018), pp. 1066–1097. doi: 10.1007/
s40314-016-0383-z. [→8, 15, 55, 77, 89]

[55] O. Habeck and M. E. Pfetsch, Combinatorial Acyclicity Models for
Potential-based Flows, tech. report, Optimization Online, 2020, http://www.
optimization-online.org/DB_HTML/2020/04/7761.html. [→13, 113]

[56] O. Habeck, M. E. Pfetsch, and S. Ulbrich, Global Optimization of
Mixed-Integer ODE Constrained Network Problems Using the Example of Sta-
tionary Gas Transport, SIAM Journal on Optimization, 29 (2019), pp. 2949–
2985. doi: 10.1137/17M1152668. [→13, 16, 47, 51, 75, 114]

[57] M. Hahn, C. Kirches, P. Manns, S. Sager, and C. Zeile, Decom-
position and approximation for PDE-constrained mixed-integer optimal con-
trol, in SPP1962 Special Issue, M. H. et al., ed., Birkhäuser, 2019, https:
//mathopt.de/PUBLICATIONS/Hahn2019.pdf. [→12]

[58] F. M. Hante, G. Leugering, A. Martin, L. Schewe, and M. Schmidt,
Challenges in Optimal Control Problems for Gas and Fluid Flow in Networks
of Pipes and Canals: From Modeling to Industrial Applications, in Industrial
Mathematics and Complex Systems: Emerging Mathematical Models, Meth-
ods and Algorithms, P. Manchanda, R. Lozi, and A. H. Siddiqi, eds., Springer,
Singapore, 2017, pp. 77–122. doi: 10.1007/978-981-10-3758-0_5. [→2, 12,
75]

[59] F. M. Hante and S. Sager, Relaxation methods for mixed-integer optimal
control of partial differential equations, Computational Optimization and Ap-
plications, 55 (2013), pp. 197–225. doi: 10.1007/s10589-012-9518-3. [→12]

[60] F. M. Hante and M. Schmidt, Convergence of Finite-Dimensional Ap-
proximations for Mixed-Integer Optimization with Differential Equations, tech.
report, Optimization Online, 2019, http://www.optimization-online.org/
DB_HTML/2018/12/6973.html. [→6, 11, 53]

[61] P. Hartman, Ordinary Differential Equations, Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, 2002. doi: 10.1137/1.9780898719222.
[→54]

[62] S. M. Harwood and P. I. Barton, Efficient polyhedral enclosures for the
reachable set of nonlinear control systems, Mathematics of Control, Signals,

186

https://doi.org/10.1002/net.21812
https://doi.org/10.1002/net.21812
https://doi.org/10.1007/s40314-016-0383-z
https://doi.org/10.1007/s40314-016-0383-z
http://www.optimization-online.org/DB_HTML/2020/04/7761.html
http://www.optimization-online.org/DB_HTML/2020/04/7761.html
https://doi.org/10.1137/17M1152668
https://mathopt.de/PUBLICATIONS/Hahn2019.pdf
https://mathopt.de/PUBLICATIONS/Hahn2019.pdf
https://doi.org/10.1007/978-981-10-3758-0_5
https://doi.org/10.1007/s10589-012-9518-3
http://www.optimization-online.org/DB_HTML/2018/12/6973.html
http://www.optimization-online.org/DB_HTML/2018/12/6973.html
https://doi.org/10.1137/1.9780898719222

Bibliography

and Systems, 28 (2016), pp. 1–33. doi: 10.1007/s00498-015-0153-2. [→17,
57]

[63] S. M. Harwood and P. I. Barton, Affine relaxations for the solutions of
constrained parametric ordinary differential equations, Optimal Control Appli-
cations and Methods, 39 (2018), pp. 427–448. doi: 10.1002/oca.2323. [→12,
17, 57]

[64] M. M. F. Hasan, An edge-concave underestimator for the global optimization
of twice-differentiable nonconvex problems, Journal of Global Optimization, 71
(2018), pp. 735–752. doi: 10.1007/s10898-018-0646-x. [→12, 53]

[65] C. Hayn, H. Heitsch, R. Henrion, H. Leövey, A. Möller, and
W. Römisch, Methods for verifying booked capacities, in Evaluating Gas
Network Capacities, T. Koch, B. Hiller, M. E. Pfetsch, and L. Schewe,
eds., MOS-SIAM Series on Optimization, Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, 2015, Chapter 14, pp. 291–315. doi:
10.1137/1.9781611973693.ch14. [→161]

[66] R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel, Nonlinear In-
teger Programming, in 50 Years of Integer Programming 1958–2008: From
the Early Years to the State-of-the-Art, M. Jünger, T. M. Liebling, D. Nad-
def, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and
L. A. Wolsey, eds., Springer, Berlin, Heidelberg, 2010, pp. 561–618. doi:
10.1007/978-3-540-68279-0_15. [→51]

[67] C. T. Hendrickson and B. N. Janson, A common network flow formula-
tion for several civil engineering problems, Civil Engineering Systems, 1 (1984),
pp. 195–203. doi: 10.1080/02630258408970343. [→12, 113, 115]

[68] B. Hiller and K. H. Becker, Improving relaxations for potential-driven
network flow problems via acyclic flow orientations, ZIB-Report 18-30, Zuse
Institute Berlin, 2018. [→13, 113, 116, 128]

[69] B. Hiller and T. Walther, Modelling compressor stations in gas networks,
Tech. Report 17-67, Zuse Institut Berlin, 2017. [→79, 85, 159]

[70] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with
PDE constraints, vol. 23 of Mathematical Modelling: Theory and Applications,
Springer, New York, 2009. doi: 10.1007/978-1-4020-8839-1. [→12, 52]

[71] P. Hofer, Beurteilung von Fehlern in Rohrnetzberechnungen (Error evalua-
tion in calculation of pipelines), GWF–Gas/Erdgas, 11 (1973), pp. 113–119.
[→104]

[72] R. Horst, An algorithm for nonconvex programming problems, Mathematical
Programming, 10 (1976), pp. 312–321. doi: 10.1007/BF01580678. [→51]

187

https://doi.org/10.1007/s00498-015-0153-2
https://doi.org/10.1002/oca.2323
https://doi.org/10.1007/s10898-018-0646-x
https://doi.org/10.1137/1.9781611973693.ch14
https://doi.org/10.1007/978-3-540-68279-0_15
https://doi.org/10.1080/02630258408970343
https://doi.org/10.1007/978-1-4020-8839-1
https://doi.org/10.1007/BF01580678

Bibliography

[73] R. Horst and H. Tuy, Global Optimization: Deterministic Approaches,
Springer, Berlin, Heidelberg, 3 ed., 1996. doi: 10.1007/978-3-662-03199-5.
[→11, 32, 40, 48, 51, 56, 57]

[74] B. Houska, M. E. Villanueva, and B. Chachuat, A validated integration
algorithm for nonlinear ODEs using Taylor models and ellipsoidal calculus,
in 52nd IEEE Conference on Decision and Control, 2013, pp. 484–489. doi:
10.1109/CDC.2013.6759928. [→17]

[75] B. Houska, M. E. Villanueva, and B. Chachuat, Stable Set-Valued In-
tegration of Nonlinear Dynamic Systems using Affine Set-Parameterizations,
SIAM Journal on Numerical Analysis, 53 (2015), pp. 2307–2328. doi:
10.1137/140976807. [→17]

[76] M. N. Jung, G. Reinelt, and S. Sager, The Lagrangian relaxation for
the combinatorial integral approximation problem, Optimization Methods and
Software, 30 (2015), pp. 54–80. doi: 10.1080/10556788.2014.890196. [→12,
52]

[77] B. Kalantari and J. B. Rosen, An Algorithm for Global Minimization of
Linearly Constrained Concave Quadratic Functions, Mathematics of Opera-
tions Research, 12 (1987), pp. 544–561. doi: 10.1287/moor.12.3.544. [→92]

[78] R. M. Karp, Reducibility among combinatorial problems, in Complexity of
Computer Computations, R. Miller and J. Thatcher, eds., Plenum Press, 1972,
pp. 85–103. [→125]

[79] M. R. Kılınç and N. V. Sahinidis, Chapter 21: State of the art in mixed-
integer nonlinear optimization, in Advances and Trends in Optimization with
Engineering Applications, T. Terlaky, M. F. Anjos, and S. Ahmed, eds., MOS-
SIAM Series on Optimization, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2017, pp. 273–292. doi: 10.1137/1.9781611974683.ch21.
[→11, 51, 56]

[80] C. Kirches, F. Lenders, and P. Manns, Approximation Properties and
Tight Bounds for Constrained Mixed-Integer Optimal Control, SIAM Jour-
nal on Control and Optimization, 58 (2020), pp. 1371–1402. doi: 10.1137/
18M1182917. [→12, 52]

[81] K. Kleibohm, Bemerkungen zum Problem der nichtkonvexen Program-
mierung, Unternehmensforschung, 11 (1967), pp. 49–60. doi: 10.1007/
BF01922383. [→51, 92]

[82] T. Koch, B. Hiller, M. E. Pfetsch, and L. Schewe, eds., Eval-
uating Gas Network Capacities, MOS-SIAM Series on Optimization, Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, 2015. doi:
10.1137/1.9781611973693. [→4, 6, 12, 14, 76, 79, 85, 103, 115, 160, 176]

188

https://doi.org/10.1007/978-3-662-03199-5
https://doi.org/10.1109/CDC.2013.6759928
https://doi.org/10.1137/140976807
https://doi.org/10.1080/10556788.2014.890196
https://doi.org/10.1287/moor.12.3.544
https://doi.org/10.1137/1.9781611974683.ch21
https://doi.org/10.1137/18M1182917
https://doi.org/10.1137/18M1182917
https://doi.org/10.1007/BF01922383
https://doi.org/10.1007/BF01922383
https://doi.org/10.1137/1.9781611973693

Bibliography

[83] B. Korte and J. Vygen, Combinatorial Optimization. Theory and Algo-
rithms, vol. 21 of Algorithms and Combinatorics, Springer, Berlin, Heidelberg,
6th ed., 2018. [→121, 133]

[84] J. Králik, P. Stiegler, Z. Vostrý, and J. Záworka, Dynamic Modeling
of Large-Scale Networks with Application to Gas Distribution, vol. 6 of Studies
in Automation and Control, Elsevier, 1988. [→4]

[85] J. Lang and J. G. Verwer, On global error estimation and control for initial
value problems, SIAM Journal on Scientific Computing, 29 (2007), pp. 1460–
1475. doi: 10.1137/050646950. [→19]

[86] B. E. Larock, R. W. Jeppson, and G. Z. Watters, Hydraulics of pipeline
systems, CRC press, 2010. [→116]

[87] J. Lee and S. Leyffer, eds., Mixed Integer Nonlinear Programming, vol. 154
of IMA Volumes in Mathematics and its Applications, Springer, New York,
2012. doi: 10.1007/978-1-4614-1927-3. [→51]

[88] K. Lehmann, A. Grastien, and P. Van Hentenryck, The Complexity of
DC-Switching Problems, 2014, https://arxiv.org/abs/1411.4369. [→119]

[89] L. Liberti and C. C. Pantelides, Convex envelopes of monomials of odd
degree, Journal of Global Optimization, 25 (2003), pp. 157–168. doi: 10.1023/
A:1021924706467. [→52, 56, 89]

[90] Y. Lin, J. A. Enszer, and M. A. Stadtherr, Enclosing all solutions of
two-point boundary value problems for ODEs, Computers & Chemical Engi-
neering, 32 (2008), pp. 1714–1725. doi: 10.1016/j.compchemeng.2007.08.
013. [→17]

[91] Y. Lin and M. A. Stadtherr, Deterministic global optimization of nonlinear
dynamic systems, AIChE Journal, 53 (2007), pp. 866–875. doi: 10.1002/aic.
11101. [→12, 16, 53]

[92] Y. Lin and M. A. Stadtherr, Validated solutions of initial value problems
for parametric ODEs, Applied Numerical Mathematics, 57 (2007), pp. 1145–
1162. doi: 10.1016/j.apnum.2006.10.006. [→17]

[93] M. Locatelli and F. Schoen, Global Optimization, MOS-SIAM Series on
Optimization, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 2013. doi: 10.1137/1.9781611972672. [→51, 56, 58, 62]

[94] D. Mahlke, A. Martin, and S. Moritz, A mixed integer approach for time-
dependent gas network optimization, Optimization Methods and Software, 25
(2010), pp. 625–644. doi: 10.1080/10556780903270886. [→76]

[95] P. Manns and C. Kirches, Improved regularity assumptions for partial
outer convexification of mixed-integer PDE-constrained optimization problems,
ESAIM: COCV, 26 (2020), p. 32. doi: 10.1051/cocv/2019016. [→12]

189

https://doi.org/10.1137/050646950
https://doi.org/10.1007/978-1-4614-1927-3
https://arxiv.org/abs/1411.4369
https://doi.org/10.1023/A:1021924706467
https://doi.org/10.1023/A:1021924706467
https://doi.org/10.1016/j.compchemeng.2007.08.013
https://doi.org/10.1016/j.compchemeng.2007.08.013
https://doi.org/10.1002/aic.11101
https://doi.org/10.1002/aic.11101
https://doi.org/10.1016/j.apnum.2006.10.006
https://doi.org/10.1137/1.9781611972672
https://doi.org/10.1080/10556780903270886
https://doi.org/10.1051/cocv/2019016

Bibliography

[96] A. Martin, M. Möller, and S. Moritz, Mixed Integer Models for the
Stationary Case of Gas Network Optimization, Mathematical Programming,
105 (2006), pp. 563–582. doi: 10.1007/s10107-005-0665-5. [→76]

[97] R. Mattheij and J. Molenaar, Ordinary Differential Equations in Theory
and Practice, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 2002. doi: 10.1137/1.9780898719178. [→18, 22, 39]

[98] J. J. Maugis, Etude de réseaux de transport et de distribution de fluide,
RAIRO Operations Research, 11 (1977), pp. 243–248. [→13, 115]

[99] G. P. McCormick, Computability of global solutions to factorable nonconvex
programs: Part I — Convex underestimating problems, Mathematical Pro-
gramming, 10 (1976), pp. 147–175. doi: 10.1007/BF01580665. [→11, 52, 56,
64, 89]

[100] K. Mehlhorn, A. Neumann, and J. M. Schmidt, Certifying 3-
edge-connectivity, Algorithmica, 77 (2017), pp. 309–335. doi: 10.1007/
s00453-015-0075-x. [→133]

[101] C. A. Meyer and C. A. Floudas, Convex envelopes for edge-concave func-
tions, Mathematical Programming, 103 (2005), pp. 207–224. doi: 10.1007/
s10107-005-0580-9. [→52, 56, 89, 93]

[102] R. Misener and C. A. Floudas, ANTIGONE: Algorithms for coNTinu-
ous/Integer Global Optimization of Nonlinear Equations, Journal of Global
Optimization, 59 (2014), pp. 503–526. doi: 10.1007/s10898-014-0166-2.
[→56, 89]

[103] R. E. Moore, Methods and Applications of Interval Analysis, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1979. doi: 10.1137/
1.9781611970906. [→17]

[104] N. Nedialkov, K. Jackson, and G. Corliss, Validated solutions of initial
value problems for ordinary differential equations, Applied Mathematics and
Computation, 105 (1999), pp. 21–68. doi: 10.1016/S0096-3003(98)10083-8.
[→11, 17]

[105] M. Neher, K. R. Jackson, and N. S. Nedialkov, On Taylor model based
integration of ODEs, SIAM Journal on Numerical Analysis, 45 (2007), pp. 236–
262. doi: 10.1137/050638448. [→11, 17]

[106] J. Nikuradse, Strömungsgesetze in rauhen Rohren, Forschungsheft auf dem
Gebiete des Ingenieurwesens, VDI-Verlag, Düsseldorf, 1933. [→4, 103]

[107] J. Nikuradse, Laws of Flow in Rough Pipes, vol. Technical Memorandum
1292, National Advisory Committee for Aeronautics Washington, 1950. [→4,
103]

190

https://doi.org/10.1007/s10107-005-0665-5
https://doi.org/10.1137/1.9780898719178
https://doi.org/10.1007/BF01580665
https://doi.org/10.1007/s00453-015-0075-x
https://doi.org/10.1007/s00453-015-0075-x
https://doi.org/10.1007/s10107-005-0580-9
https://doi.org/10.1007/s10107-005-0580-9
https://doi.org/10.1007/s10898-014-0166-2
https://doi.org/10.1137/1.9781611970906
https://doi.org/10.1137/1.9781611970906
https://doi.org/10.1016/S0096-3003(98)10083-8
https://doi.org/10.1137/050638448

Bibliography

[108] A. J. Osiadacz, Different transient models – limitations, advantages and
disadvantages, tech. report, PSIG report 9606, Pipeline Simulation Interest
Group, 1996. [→5]

[109] I. Papamichail and C. S. Adjiman, A rigorous global optimization algorithm
for problems with ordinary differential equations, Journal of Global Optimiza-
tion, 24 (2002), pp. 1–33. doi: 10.1023/A:1016259507911. [→53]

[110] I. Papamichail and C. S. Adjiman, Proof of convergence for a global
optimization algorithm for problems with ordinary differential equations,
Journal of Global Optimization, 33 (2005), pp. 83–107. doi: 10.1007/
s10898-004-6100-2. [→53]

[111] M. E. Pfetsch, A. Fügenschuh, B. Geißler, N. Geißler,
R. Gollmer, B. Hiller, J. Humpola, T. Koch, T. Lehmann, A. Mar-
tin, A. Morsi, J. Rövekamp, L. Schewe, M. Schmidt, R. Schultz,
R. Schwarz, J. Schweiger, C. Stangl, M. C. Steinbach, S. Vigerske,
and B. M. Willert, Validation of nominations in gas network optimiza-
tion: models, methods, and solutions, Optimization Methods and Software, 30
(2015), pp. 15–53. doi: 10.1080/10556788.2014.888426. [→14, 160, 176]

[112] Y. Puranik and N. V. Sahinidis, Domain reduction techniques for global
NLP and MINLP optimization, Constraints, 22 (2017), pp. 338–376. doi:
10.1007/s10601-016-9267-5. [→60, 155]

[113] A. D. Rikun, A convex envelope formula for multilinear functions, Jour-
nal of Global Optimization, 10 (1997), pp. 425–437. doi: 10.1023/A:
1008217604285. [→52, 93]

[114] R. Z. Ríos-Mercado and C. Borraz-Sánchez, Optimization problems in
natural gas transportation systems: A state-of-the-art review, Applied Energy,
147 (2015), pp. 536–555. doi: 10.1016/j.apenergy.2015.03.017. [→5, 12,
76]

[115] R. Z. Ríos-Mercado, S. Wu, L. R. Scott, and E. A. Boyd, A Reduc-
tion Technique for Natural Gas Transmission Network Optimization Problems,
Annals fo Operations Research, 117 (2002), pp. 217–234. doi: 10.1023/A:
1021529709006. [→13, 115]

[116] R. T. Rockafellar, Convex analysis, vol. 28 of Princeton Mathemat-
ical Series, Princeton Univeristy Press, Princeton, 1970. doi: 10.1515/
9781400873173. [→92, 93]

[117] R. T. Rockafellar, Network Flows and Monotropic Optimization, Athena
Scientific, Belmont, Massachusetts, 2nd ed., 1998. [→113, 115]

[118] H. S. Ryoo and N. V. Sahinidis, A branch-and-reduce approach to global
optimization, Journal of Global Optimization, 8 (1996), pp. 107–138. doi:
10.1007/BF00138689. [→155]

191

https://doi.org/10.1023/A:1016259507911
https://doi.org/10.1007/s10898-004-6100-2
https://doi.org/10.1007/s10898-004-6100-2
https://doi.org/10.1080/10556788.2014.888426
https://doi.org/10.1007/s10601-016-9267-5
https://doi.org/10.1023/A:1008217604285
https://doi.org/10.1023/A:1008217604285
https://doi.org/10.1016/j.apenergy.2015.03.017
https://doi.org/10.1023/A:1021529709006
https://doi.org/10.1023/A:1021529709006
https://doi.org/10.1515/9781400873173
https://doi.org/10.1515/9781400873173
https://doi.org/10.1007/BF00138689

Bibliography

[119] S. Sager, H. G. Bock, and M. Diehl, The integer approximation error in
mixed-integer optimal control, Mathematical Programming, 133 (2012), pp. 1–
23. doi: 10.1007/s10107-010-0405-3. [→12, 52]

[120] S. Sager, H. G. Bock, and G. Reinelt, Direct methods with maximal lower
bound for mixed-integer optimal control problems, Mathematical Programming,
118 (2009), pp. 109–149. doi: 10.1007/s10107-007-0185-6. [→12, 52]

[121] S. Sager, M. Jung, and C. Kirches, Combinatorial integral approximation,
Mathematical Methods of Operationl Research, 73 (2011), pp. 363–380. doi:
10.1007/s00186-011-0355-4. [→12, 52]

[122] S. Sager and C. Zeile, On Mixed-Integer Optimal Control with Con-
strained Total Variation of the Integer Control, tech. report, Optimiza-
tion Online, 2019, http://www.optimization-online.org/DB_HTML/2019/
10/7432.html. [→12, 52]

[123] N. V. Sahinidis, BARON: A general purpose global optimization software
package, Journal of Global Optimization, 8 (1996), pp. 201–205. doi: 10.
1007/BF00138693. [→56, 89, 155]

[124] A. Sahlodin and B. Chachuat, Convex/concave relaxations of parametric
ODEs using Taylor models, Computers & Chemical Engineering, 35 (2011),
pp. 844–857. doi: 10.1016/j.compchemeng.2011.01.031. [→11, 17]

[125] A. M. Sahlodin and B. Chachuat, Discretize-then-relax approach for con-
vex/concave relaxations of the solutions of parametric ODEs, Applied Numer-
ical Mathematics, 61 (2011), pp. 803–820. doi: 10.1016/j.apnum.2011.01.
009. [→11, 17]

[126] M. Schmidt, D. Aßmann, R. Burlacu, J. Humpola, I. Joormann,
N. Kanelakis, T. Koch, D. Oucherif, M. E. Pfetsch, L. Schewe,
R. Schwarz, and M. Sirvent, GasLib – A Library of Gas Network In-
stances, Data, 2 (2017). doi: 10.3390/data2040040. [→107, 141, 147, 160,
176]

[127] M. Schmidt, M. Sirvent, and W. Wollner, The Cost of Not Knowing
Enough: Mixed-Integer Optimization with Implicit Lipschitz Nonlinearities,
tech. report, Optimization Online, 2018, http://www.optimization-online.
org/DB_HTML/2018/04/6594.html. [→77]

[128] M. Schmidt, M. Sirvent, and W. Wollner, A decomposition method
for MINLPs with Lipschitz continuous nonlinearities, Mathematical Program-
ming, 178 (2019), pp. 449–483. doi: 10.1007/s10107-018-1309-x. [→12, 53,
76, 160]

[129] M. Schmidt, M. C. Steinbach, and B. M. Willert, High detail station-
ary optimization models for gas networks, Optimization and Engineering, 16
(2015), pp. 131–164. doi: 10.1007/s11081-014-9246-x. [→77, 85]

192

https://doi.org/10.1007/s10107-010-0405-3
https://doi.org/10.1007/s10107-007-0185-6
https://doi.org/10.1007/s00186-011-0355-4
http://www.optimization-online.org/DB_HTML/2019/10/7432.html
http://www.optimization-online.org/DB_HTML/2019/10/7432.html
https://doi.org/10.1007/BF00138693
https://doi.org/10.1007/BF00138693
https://doi.org/10.1016/j.compchemeng.2011.01.031
https://doi.org/10.1016/j.apnum.2011.01.009
https://doi.org/10.1016/j.apnum.2011.01.009
https://doi.org/10.3390/data2040040
http://www.optimization-online.org/DB_HTML/2018/04/6594.html
http://www.optimization-online.org/DB_HTML/2018/04/6594.html
https://doi.org/10.1007/s10107-018-1309-x
https://doi.org/10.1007/s11081-014-9246-x

Bibliography

[130] A. Schrijver, Finding k disjoint paths in a directed planar graph, SIAM Jour-
nal on Computing, 23 (1994), pp. 780–788. doi: 10.1137/S0097539792224061.
[→133]

[131] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, vol. 24
of Algorithms and Combinatorics, Springer, Berlin, Heidelberg, 2003. [→134]

[132] SCIP, Solving Constraint Integer Programs. http://scip.zib.de/. [→101,
107, 141, 147, 159]

[133] J. K. Scott and P. I. Barton, Convex and Concave Relaxations for the
Parametric Solutions of Semi-explicit Index-One Differential-Algebraic Equa-
tions, Journal of Optimization Theory and Applications, 156 (2013), pp. 617–
649. doi: 10.1007/s10957-012-0149-8. [→17, 53]

[134] J. K. Scott and P. I. Barton, Improved relaxations for the parametric
solutions of ODEs using differential inequalities, Journal of Global Optimiza-
tion, 57 (2013), pp. 143–176. doi: 10.1007/s10898-012-9909-0. [→12, 17,
57]

[135] J. K. Scott, B. Chachuat, and P. I. Barton, Nonlinear convex and
concave relaxations for the solutions of parametric ODEs, Optimal Control
Applications and Methods, 34 (2013), pp. 145–163. doi: 10.1002/oca.2014.
[→53, 57]

[136] J. K. Scott, M. D. Stuber, and P. I. Barton, Generalized McCormick
relaxations, Journal of Global Optimization, 51 (2011), pp. 569–606. doi:
10.1007/s10898-011-9664-7. [→17, 52, 57]

[137] H. D. Sherali and A. Alameddine, A new reformulation-linearization tech-
nique for bilinear programming problems, Journal of Global optimization, 2
(1992), pp. 379–410. doi: 10.1007/BF00122429. [→11, 52, 56, 89]

[138] H. D. Sherali and C. H. Tuncbilek, A global optimization algorithm
for polynomial programming problems using a reformulation-linearization tech-
nique, Journal of Global Optimization, 2 (1992), pp. 101–112. doi: 10.1007/
BF00121304. [→11, 52, 56, 89]

[139] H. D. Sherali and C. H. Tuncbilek, A reformulation-convexification
approach for solving nonconvex quadratic programming problems, Journal of
Global Optimization, 7 (1995), pp. 1–31. doi: 10.1007/BF01100203. [→11,
52, 56, 89]

[140] A. B. Singer and P. I. Barton, Bounding the solutions of parameter de-
pendent nonlinear ordinary differential equations, SIAM Journal on Scientific
Computing, 27 (2006), pp. 2167–2182. doi: 10.1137/040604388. [→12, 17,
57]

193

https://doi.org/10.1137/S0097539792224061
http://scip.zib.de/
https://doi.org/10.1007/s10957-012-0149-8
https://doi.org/10.1007/s10898-012-9909-0
https://doi.org/10.1002/oca.2014
https://doi.org/10.1007/s10898-011-9664-7
https://doi.org/10.1007/BF00122429
https://doi.org/10.1007/BF00121304
https://doi.org/10.1007/BF00121304
https://doi.org/10.1007/BF01100203
https://doi.org/10.1137/040604388

Bibliography

[141] A. B. Singer and P. I. Barton, Global optimization with nonlinear ordinary
differential equations, Journal of Global Optimimization, 34 (2006), pp. 159–
190. doi: 10.1007/s10898-005-7074-4. [→53]

[142] M. Sirvent, Incorporating Differential Equations into Mixed-Integer Pro-
gramming for Gas Transport Optimization, phd thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg, 2018. doi: 10.25593/978-3-96147-114-0.
[→77]

[143] R. D. Skeel, Thirteen ways to estimate global error, Numerische Mathematik,
48 (1986), pp. 1–20. doi: 10.1007/BF01389440. [→19]

[144] E. Smith and C. Pantelides, A symbolic reformulation/spatial branch-
and-bound algorithm for the global optimisation of nonconvex MINLPs, Com-
puters & Chemical Engineering, 23 (1999), pp. 457–478. doi: 10.1016/
S0098-1354(98)00286-5. [→15]

[145] M. D. Stuber, J. K. Scott, and P. I. Barton, Convex and concave relax-
ations of implicit functions, Optimization Methods and Software, 30 (2015),
pp. 424–460. doi: 10.1080/10556788.2014.924514. [→52, 57]

[146] J. Szabó, The set of solutions to nomination validation in passive gas trans-
portation networks with a generalized flow formula, ZIB-Report 11-44, Zuse
Intitute Berlin, 2012. [→119]

[147] F. Tardella, On the existence of polyhedral convex envelopes, in Fron-
tiers in Global Optimization, C. A. Floudas and P. Pardalos, eds.,
Boston, Massachusetts, 2004, Springer US, pp. 563–573. doi: 10.1007/
978-1-4613-0251-3. [→52, 56, 89, 92, 93]

[148] R. E. Tarjan, A note on finding the bridges of a graph, Information Process-
ing Letters, 2 (1974), pp. 160–161. doi: 10.1016/0020-0190(74)90003-9.
[→133]

[149] M. Tawarmalani, J.-P. P. Richard, and C. Xiong, Explicit convex
and concave envelopes through polyhedral subdivisions, Mathematical Program-
ming, 138 (2013), pp. 531–577. doi: 10.1007/s10107-012-0581-4. [→52, 89,
93, 94]

[150] Vereinigung der Fernleitungsnetzbetreiber Gas e.V. https://www.fnb-gas.
de/. Last visited: June 25, 2020. [→2, 77]

[151] S. Vigerske and A. Gleixner, SCIP: global optimization of mixed-integer
nonlinear programs in a branch-and-cut framework, Optimization Methods and
Software, 33 (2018), pp. 563–593. doi: 10.1080/10556788.2017.1335312.
[→148]

[152] M. E. Villanueva, B. Houska, and B. Chachuat, Unified framework
for the propagation of continuous-time enclosures for parametric nonlinear

194

https://doi.org/10.1007/s10898-005-7074-4
https://doi.org/10.25593/978-3-96147-114-0
https://doi.org/10.1007/BF01389440
https://doi.org/10.1016/S0098-1354(98)00286-5
https://doi.org/10.1016/S0098-1354(98)00286-5
https://doi.org/10.1080/10556788.2014.924514
https://doi.org/10.1007/978-1-4613-0251-3
https://doi.org/10.1007/978-1-4613-0251-3
https://doi.org/10.1016/0020-0190(74)90003-9
https://doi.org/10.1007/s10107-012-0581-4
https://www.fnb-gas.de/
https://www.fnb-gas.de/
https://doi.org/10.1080/10556788.2017.1335312

Bibliography

ODEs, Journal of Global Optimization, 62 (2015), pp. 575–613. doi: 10.
1007/s10898-014-0235-6. [→17]

[153] W. Walter, Differential and Integral Inequalities, Springer, Berlin, Heidel-
berg, 1970. doi: 10.1007/978-3-642-86405-6. [→17]

[154] T. Walther, B. Hiller, and R. Saitenmacher, Polyhedral 3d models for
compressors in gas networks, Tech. Report 17-66, Zuse Institut Berlin, 2017.
[→85, 86, 159, 168]

[155] M. E. Wilhelm, A. V. Le, and M. D. Stuber, Global optimization of
stiff dynamical systems, AIChE Journal, 65 (2019). doi: 10.1002/aic.16836.
[→52]

[156] C. Zeile, N. Robuschi, and S. Sager, Mixed-Integer Optimal Con-
trol under Minimum Dwell Time Constraints, tech. report, Optimization
Online, 2019, http://www.optimization-online.org/DB_HTML/2019/09/
7366.html. [→12, 52]

[157] C. Zeile, T. Weber, and S. Sager, Combinatorial Integral Approximation
Decompositions for Mixed-Integer Optimal Control, tech. report, Optimiza-
tion Online, 2018, http://www.optimization-online.org/DB_HTML/2018/
02/6472.html. [→12, 52]

195

https://doi.org/10.1007/s10898-014-0235-6
https://doi.org/10.1007/s10898-014-0235-6
https://doi.org/10.1007/978-3-642-86405-6
https://doi.org/10.1002/aic.16836
http://www.optimization-online.org/DB_HTML/2019/09/7366.html
http://www.optimization-online.org/DB_HTML/2019/09/7366.html
http://www.optimization-online.org/DB_HTML/2018/02/6472.html
http://www.optimization-online.org/DB_HTML/2018/02/6472.html

List of Algorithms

3.1 Spatial branch-and-bound for (3.4) 61
3.2 Adaptive convex relaxation . 65
3.3 Adaptive spatial branch-and-bound for (3.3) 67

4.1 Adaptive convex relaxation of gas flow 97
4.2 Adaptive spatial branch-and-bound for stationary gas transport . 102

6.1 Bound preserving Newton method for evaluating (2.19) 154

xiii

List of Figures

2.1 The figure depicts the properties of the input-output functions P `

and Pu (dashed lines) for a fixed mass flow q ≥ 0. The functions
are nondecreasing and convex in (p0, q). Moreover, they define a tube
around the analytical solution P (p0, q) = p(0) of (2.16) (solid line).
See also Lemma 2.23. 38

2.2 The figure shows the pressure p(x) in bar along a 20 km pipe. The
left figure depicts p(x) for one initial value and positive slope, and the
right figure shows p(x) for different initial values and negative slope. 41

4.1 Schematic plot of a control valve station with a bypass and two resis-
tors. 84

4.2 Schematic plot of a compressor station with configurations c1 and c2,
a bypass, and two resistors. 87

4.3 If the domain U of P ` and Pu is not empty or a singleton, it has five
possible shapes depicted in this figure. 95

4.4 For a pair (pin, pout) and fixed mass flow rate q there are the three
different cases of infeasibility of constraint (4.22). The feasible region
is hatched and the three cases (from left to right) are as follows: pin is
greater than the concave envelope of Pu; pin is greater than Pu, but
cannot be cut off by the concave envelope; pin is less than the lower
bound and infeasibility can be resolved by adding a gradient cut. 98

4.5 The figure shows an exemplary progression of the relaxation produced
by repeatedly calling Algorithm 4.1. The feasible set defined by Pu

and P ` is hatched (with north west lines) and the relaxation is shaded
gray. Thereby, the development of the relaxation is as follows: We
start with the box defined by the variable bounds (I). Then after tight-
ening the variable bounds (II), the concave overestimator is added (III).
The bounds are tightened again after branching w.r.t. pout (IV). Fi-
nally, the new overestimator and a gradient cut are added in the right
node (V) and also in the left node (VI). 100

xv

List of Figures

4.6 Resolving infeasibility for a solution (p̃in, p̃out, q̃, λ̃) of the relaxation is
more involved with nonconstant friction coefficient, since under- and
overestimators have to be constructed w.r.t. λ and λ. The left-hand
side depicts Case I, where p̃in is too large, and the right-hand side
depicts Case II with p̃in too small. 104

4.7 The network GasLib-40 after presolving for the scenario which has 3
sources (diamonds) and 29 sinks (circles). Pipes with fixed flow are
depicted by �, the remaining pipes are dashed. 108

5.1 An s–t-flow which can be decomposed into two paths (indicated by
dashed/dotted arcs) each with flow value 1, but that is not acyclic. 116

5.2 A diamond shaped network with source s and sink t and arc labels 1

to 5. 117
5.3 Example of the digraph D = (V,A) constructed in the proof of

Lemma 5.12 for the graph G = ({u, v, w}, {{u, v}, {v, w}}). . . . 126
5.4 The graph shows that Theorem 5.16 does not hold in general if both

|V+| ≥ 2 and |V−| ≥ 2: Suppose that bs2 , bt2 6= 0 and bs2 < −bt2 ,
then the flow on at least one of the arcs (s1, s2) and (t1, t2) has to be
positive. Nevertheless, if bt1 6= 0, they need not be used in PAS±, i.e.,
PAS± 6⊆ PAF. 130

5.5 The graph D(z+, z−) associated with a vertex of PAS±
LP applied to the

network of Figure 5.2. 136
5.6 A graph for which dicycle inequalities (5.12) define facets of PAS±. 137
5.7 The presolved network GasLib-40 corresponding to variants NFD

(left) and FLC+AC (right). The scenario has 3 sources (diamonds)
and 29 sinks (circles). Pipes with fixed flow are depicted by �, fixed
flow directions are shown by→, and the remaining pipes (with unfixed
flows/directions) are dashed. 142

6.1 Application of Newton’s method to solve one step of the trapezoidal
rule given by R̃(pui) = R(h, pui−1, p

u
i , q) = 0. 152

6.2 Example for bound propagation of pressure bounds with the functions
P `a and Pua in the case 0 < qa. 156

6.3 The presolved network GasLib-40 corresponding to the ODE model
with variants NFD without flow tightening techniques (left) and
FLC+AC with flow tightening (right). The scenario has 3 sources
(diamonds) and 29 sinks (circles). Pipes with fixed flow are depicted
by �, fixed flow directions are shown by→, and the remaining pipes
(with unfixed flows/directions) are dashed. 160

xvi

List of Tables

4.1 Overview on arc types, their respective subsets of the arcs A and their
symbol in figures. 78

4.2 Variables and parameters of a pipeline a = (u, v) ∈ Api. 80
4.3 Variables of a valve a = (u, v) ∈ Ava. 81
4.4 Variables and parameters of a linear resistor a = (u, v) ∈ Are. . . 82
4.5 Variables and parameters of a nonlinear resistor a = (u, v) ∈ Are. 82
4.6 Variables and parameters of a control valve cv = (u, v) ∈ Acv. . . 85
4.7 Variables and parameters of a compressor station cs = (u, v) ∈ Acs. 86

5.1 Statistics for the flow bounds after presolving of 39 pipes in the net-
work GasLib-40 for all model variants. 142

5.2 Aggregated results for GasLib-582 scenarios for all model variants
with the potential-based flow model. 143

5.3 Geometric means of solving times in seconds and total run time in
hours for all model variants for the GasLib-582 scenarios. 143

5.4 Statistics on the flow bounds after presolving of 278 pipes in network
GasLib-582 for all model variants. 144

5.5 Aggregated results for GasLib-582 scenarios for the ODE model. 146
5.6 Geometric means of solving times in seconds and total run time in

hours for the GasLib-582 scenarios for the ODE model. 146

6.1 Results for network GasLib-582 using the default setting categorized
in temperature the classes warm, mild, cool, cold and freezing. . 162

6.2 Geometric mean solving times in seconds and total run time in hours
for the results presented in Table 6.1. 162

6.3 Comparison of results for GasLib-582 scenarios with model variant
FLC+AC for LP-solvers CPLEX and SOPLEX. 164

6.4 Geometric mean solving times in seconds and total run time in hours
for the GasLib-582 scenarios with model variant FLC+AC for LP-
solvers CPLEX and SOPLEX. 164

xvii

List of Tables

6.5 Detailed comparison of solving status for LP-solvers CPLEX and SO-
PLEX. The columns denote the solving status with CPLEX (cpx) and
the rows the status with SOPLEX (spx). 165

6.6 Comparison of results for GasLib-582 scenarios with different objec-
tive functions1. 167

6.7 Geometric mean solving times in seconds and total run time in hours
for the GasLib-582 scenarios with different objective functions. . 167

6.8 Results for all GasLib-582 scenarios using the idealized model (ide-
alCS), the box constraint model (box) and the box constraint model
with the additional facets (box+facets) for compressor stations. . 169

6.9 Geometric mean solving times in seconds and total run time in hours
for the results presented in Table 6.8. 169

6.10 Results for network GasLib-582 with relaxation of the lower and up-
per pressure bounds by one bar categorized in temperature classes.
The results are produced with model variant FLC+AC and flow tight-
ening by OBBT and BP. 171

6.11 Geometric mean solving times in seconds and total run time in hours
for the results presented in Table 6.10. 171

6.12 Comparison of the arithmetic mean flow bounds of pipes after pre-
solving, for which the flow is not already fixed. 172

6.13 Comparison of the mean number of fixed flows and fixed directions of
pipes after presolving. 172

6.14 Comparison of arithmetic mean number of branch-and-bound nodes
for scenarios solved to optimality or infeasibility. The numbers are
rounded up. 173

6.15 Number of scenarios that were solved to optimality, terminated with
a feasible solution, terminated without feasible solution, and were
proven to be infeasible for all model variants and all combinations of
flow tightening techniques. 175

6.16 Geometric mean solving times until the scenarios were solved to opti-
mality, the first feasible solution was found, or the scenario was proven
to be infeasible. Solving times are in seconds, rounded up. 175

xviii

Wissenschaftlicher Werdegang

06/2015 – 09/2020 Wissenschaftlicher Mitarbeiter am Fachbereich Mathema-
tik der Technischen Universität Darmstadt in der Arbeits-
gruppe Diskrete Optimierung und im Sonderforschungsbe-
reich Transregio 154 „Mathematische Modellierung, Simu-
lation und Optimierung am Beispiel von Gasnetzwerken“

04/2015 Abschluss Master of Science in Mathematik

10/2009 – 04/2015 Studium der Mathematik an der Technischen Universität
Darmstadt

06/2008 Abitur am Friedrich Alexander Gymnasium in Neustadt an
der Aisch

xix

	Acknowledgments
	Zusammenfassung
	Abstract
	Contents
	Introduction
	The Physics of Gas Flow in Pipelines
	Goals and Fundamental Ideas
	Outline of the Thesis
	Literature Review
	Scientific Contribution

	Bounding the Solutions of Ordinary Differential Equations
	Literature Review
	Bounding Scalar ODEs
	Gas Flow in Pipelines without Height Differences
	Gas Flow in Pipelines with Height Differences
	Outlook

	Spatial Branch-and-Bound for ODE Constrained Problems
	Literature Review
	Relaxation Hierarchy
	Basic Spatial Branch-and-Bound Approach
	Adaptive Spatial Branch-and-Bound

	Stationary Gas Transport
	Literature Review
	Modeling Stationary Gas Networks
	Pipelines
	Short Cuts
	Valves
	Resistors
	Control Valves
	Compressor Stations
	Optimization Model for Stationary Gas Transport

	LP-Relaxation for Gas Flow on Pipelines
	Linear Underestimators
	Linear Overestimators
	Relaxation Algorithm

	Spatial Branch-and-Bound Algorithm for Stationary Gas Transport
	Possible Extensions to the Model
	Nonconstant Friction Coefficient
	Pipelines with Height Differences

	First Numerical Results

	Combinatorial Models for Acyclic Flows
	Literature Review
	Potential-based Flows
	Combinatorial Models for Acyclic Flows
	Relations among Combinatorial Models
	Acyclic Subgraphs and Computational Complexity
	Acyclic Subgraphs with Sources and Sinks
	Analysis of Acyclic Subgraphs with Sources and Sinks
	Analysis of the Single Source and Sink Case

	Numerical Results
	Model Integration of Flow Direction Variables
	Results

	Implementation and Numerical Results
	Model Implementation with SCIP
	Linear Resistors
	Nonlinear Resistors
	Pipelines with Potential-Based Flow Model
	Pipelines with ODE Model

	Bound Tightening Techniques
	Pressure Bounds
	Flow Bounds

	Computational Experiments
	Numerical Issues
	Influence of the Objective Function
	Influence of the Compressor Model
	Comprehensive Performance Tests

	Conclusion and Outlook
	Bibliography
	List of Algorithms
	List of Figures
	List of Tables

