The Computational Complexity of Spark, RIP, and NSP

TECHNISCHE UNIVERSITÄT DARMSTADT

Andreas M. Tillmann Research Group Optimization, TU Darmstadt, Germany

joint work with Marc E. Pfetsch

SPARS 2013 07/08 – 07/11/2013, Lausanne, Switzerland

Sparse Recovery Conditions

 $\triangleright \min\{ \|x\|_0 : Ax = b \} \text{ is NP-hard}$

(also with constraint $||Ax - b||_2 \le \varepsilon$)

 $\triangleright\,$ various conditions for k-sparse solution uniqueness and recoverability by heuristics such as OMP or ℓ_1 -minimization

Complexity Rumors ...

Spark, RIP, and NSP are very often mentioned to be intractable / NP-hard, *but apparently no proof or reference anywhere in CS literature!*

In particular, hardness often "explained" solely by "combinatorial nature" (this reasoning is false – many combinatorial problems are in P)

2 Confirming the Intractability Rumors ...

- Spark
- Restricted Isometry Property (RIP)
- Nullspace Property (NSP)

1 Computational Complexity Basics

2 Confirming the Intractability Rumors ...

- Spark
- Restricted Isometry Property (RIP)
- Nullspace Property (NSP)

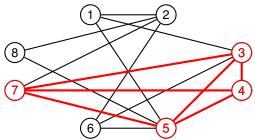
P, NP, and coNP – Hardness and completeness (informally...)

- P : deterministic-polynomial-time solvable (decision) problems
- NP : nondeterministic-polynomial-time solvable (decision) problems
 - polynomial certificate for "yes" answers, but no poly.-time solution algorithm (unless P=NP)
- coNP : complementary class of NP
 - polynomial certificate for "no" answers, but no poly.-time solution algorithm (unless P=NP)
- ▷ coNP-hard = NP-hard : (decision or optimization) problems for which existence of a polynomial solution algorithm would imply P=NP
- ▷ (co)NP-complete : NP-hard (decision) problems contained in (co)NP

Examples

- ▷ LINEAR PROGRAMMING \in P.
- ▷ A classical NP-complete problem: the *k*-CLIQUE problem Given a graph *G* and a positive integer *k*, does *G* contain a clique of size *k*?

Example: 4-clique $\{3, 4, 5, 7\}$.



Computational Complexity Basics

2 Confirming the Intractability Rumors ...

- Spark
- Restricted Isometry Property (RIP)
- Nullspace Property (NSP)

The Spark of a Matrix

Definition

spark(A) := min
$$||x||_0$$
 s.t. $Ax = 0, x \neq 0$

▷ why care?

- ► unique k-sparse ℓ₀-solution if and only if k < spark(A)/2</p>
- ▷ a.k.a. *girth* of the vector matroid $\mathcal{M}(A)$ on A:

 $\operatorname{spark}(A) = \min\{ |C| : C \operatorname{circuit} of \mathcal{M}(A) \},\$

circuit: inclusion-wise minimal collection of linearly dependent columns

▷ for graphic matroids: polynomial time; for transversal matroids: NP-hard

Spark Complexity – An overlooked early result

TECHNISCHE UNIVERSITÄT DARMSTADT

▷ Khachiyan, 1995:

Given $A \in \mathbb{Q}^{m \times n}$, it is NP-complete to decide whether A has an $(m \times m)$ -submatrix with zero determinant.

€

It is NP-complete to decide whether spark(A) $\leq m$.

▷ Observation: "Is A full-spark?" ("spark(A) = m + 1?") is coNP-complete.

(previously only known to be "hard for NP under *randomized* reductions", based on probabilistic matrix representation of transversal matroids [Alexeev et al.])

Spark Complexity – New Result

Theorem 1

(T. & Pfetsch)

Given a matrix $A \in \mathbb{Q}^{m \times n}$ (with rank(A) = m < n) and a positive integer k < m, it is NP-complete to decide whether spark(A) $\leq k$ (or spark(A) = k).

 Difference to Khachiyan's result: k < m with full (row)-rank A (Khachiyan's proof extends to k < m only by appending zero-rows)

Corollary

Given a matrix A, computing spark(A) is NP-hard.

(Polyn. algo. to compute spark(A) could decide " $spark(A) \le k$?" in poly-time.

Proof Sketch for Theorem 1

Reduction from *k*-CLIQUE:

- ▷ given instance: G = (V, E) and $k \in \mathbb{N}$ (wlog k > 4), with $n \coloneqq |V|$ and $m \coloneqq |E|$
- ▷ construct a matrix A of size $(n + \binom{k}{2} k 1) \times m$
 - ▶ first *n* rows: set $a_{ie} = 1$ iff $i \in e$, and 0 else (incidence matrix of G)
 - ► remaining rows $(n + i \text{ for } i = 1, ..., \binom{k}{2} k 1)$: set $a_{(n+i)e} = (U + i + 1)^{e-1}$ (sub-Vandermonde matrix)
- ▷ G has a k-clique if and only if spark(A) $\leq \binom{k}{2}$ (in fact, spark(A) = $\binom{k}{2}$).
 - a specific choice of U [cf. Chistov et al.] and some technical auxiliary results on graphs and incidence matrices yield the desired linear (in)dependency properties.
- ▷ containment in NP: "guess" *x* with Ax = 0 (⇒ can assume $x \in \mathbb{Q}^n$); can verify Ax = 0, $||x||_0 = \binom{k}{2}$, and that supp(*x*) is a circuit in poly-time.

Computational Complexity Basics

2 Confirming the Intractability Rumors ...

- Spark
- Restricted Isometry Property (RIP)
- Nullspace Property (NSP)

The Restricted Isometry Property (RIP)

Definition

A matrix $A \in \mathbb{R}^{m \times n}$ satisfies the RIP of order k with constant δ_k if

 $(1-\delta_k)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1+\delta_k)\|x\|_2^2 \quad \forall x: \|x\|_0 \leq k.$ (k, δ_k)-RIP

Restricted Isometry Constant (RIC): $\underline{\delta}_k := \min\{ \delta_k : A \text{ satisfies } (k, \delta_k) \text{-RIP} \}$

why care?

- ▷ ℓ_o - ℓ_1 -equivalence for *k*-sparse solutions if $\underline{\delta}_{2k} < \sqrt{2} 1$ [Candès, 2008], or if $\underline{\delta}_k < 0.307$ [Cai, Wang & Xu, 2010], ...
- ▷ certain random matrices have desirable RIP with high probability

Central RIP-related Complexity Issues

- ▷ RIC computation: Is it hard to *compute* the RIC $\underline{\delta}_k$ (given A and k)?
- ▷ RIP certification: Is it hard to *decide* whether $\underline{\delta}_k < \delta$ (given A, k, δ)?

Complexity of RIP Certification

Theorem 2 (RIP Certification I)

(T. & Pfetsch)

Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a positive integer k, deciding whether there exists some constant $\delta_k < 1$ such that A satisfies the (k, δ_k) -RIP is coNP-complete.

Theorem 3 (RIP Certification II)

(T. & Pfetsch)*

Given a matrix $A \in \mathbb{Q}^{m \times n}$, a positive integer k, and some constant $\delta_k \in (0, 1)$, deciding whether A satisfies the (k, δ_k) -RIP is (co)NP-hard.

* independently obtained by [Bandeira et al.], using Khachiyan's spark result (i.e., k = m).

Complexity of RIC Computation

Corollary

Computation of the RIC $\underline{\delta}_k$ is NP-hard.

Proof: A polynomial algorithm to compute the RIC could be used to decide RIP CERTIFICATION (I or II) in polynomial time.

A Useful Lemma

Lemma 1

Let $A = (a_{ij}) \in \mathbb{Q}^{m \times n}$ and define $\alpha \coloneqq \max |a_{ij}|, C \coloneqq 2^{\lceil \log_2(\alpha \sqrt{mn}) \rceil}$, and $\tilde{A} \coloneqq \frac{1}{C}A$. Then

 $\|\tilde{A}x\|_2^2 \leq (1+\delta)\|x\|_2^2$ for all $x \in \mathbb{R}^n$ and $\delta \geq 0$.

Why useful?

 (k, δ_k) -RIP for \tilde{A} reduces to " $(1 - \delta_k) ||x||_2^2 \le ||\tilde{A}x||_2^2 \quad \forall k$ -sparse x", i.e., only the lower RIP inequality is relevant!

Proof of Theorem 2 (RIP CERTIFICATION I) ("(k, δ_k)-RIP for some $\delta_k < 1$ "?)

Reduction from SPARK ("spark(A) $\leq k$?"):

- ▷ instance for RIP-problem: $\tilde{A} = \frac{1}{C}A$, k
- ▷ If spark(A) $\leq k$, there exists k-sparse $x \neq 0$ with $\tilde{A}x = 0$. Then

$$(1-\delta_k)\|x\|_2^2 \leq \|\tilde{A}x\|_2^2 = 0 \qquad \Rightarrow \quad \delta_k \geq 1.$$

▷ Conversely, suppose there is no $\delta_k < 1$ s.t. \tilde{A} is (k, δ_k) -RIP. Then

 $\exists x \text{ with } 1 \leq \|x\|_0 \leq k \quad \text{ s.t. } \quad 0 \geq (1 - \delta_k) \|x\|_2^2 = \|\tilde{A}x\|_2^2 \geq 0,$

hence $\tilde{A}x = 0$. $\Rightarrow \exists circuit (\subseteq supp(x))$ of size at most k, thus spark(A) $\leq k$.

▷ RIP CERTIFICATION I ∈ coNP: certificate is *x* with $1 \le ||x||_0 \le k$ which tigthly satisfies the (*k*, 1)-RIP; implies Ax = 0 (so can assume $x \in \mathbb{Q}^n$).

(note $\mathcal{M}(A) = \mathcal{M}(\tilde{A})$)

Another Useful Lemma

Lemma 2

Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a positive integer $k \le n$, if spark(A) > k, there exists a rational constant ε > 0 such that

$$\|Ax\|_2^2 \ge \varepsilon \|x\|_2^2$$
 for all x with $1 \le \|x\|_0 \le k$.

Why useful?

reveals a "rationality gap": $\delta_k < 1 \quad \Leftrightarrow \quad \delta_k \leq 1 - \varepsilon$

Complexity of RIP CERTIFICATION II ("(k, δ_k)-RIP with $\delta_k \leq \delta$ for *given* $\delta \in (0, 1)$ "?)

Proof Sketch:

▷ essentially extend the proof of Theorem 2 by means of previous Lemma:

spark(
$$A$$
) $\leq k \iff \tilde{A}$ not (k, δ_k)-RIP with some $\delta_k < 1$ (Theorem 2)
 $\Leftrightarrow \tilde{A}$ not ($k, 1 - \varepsilon$)-RIP (Theorem 3)

Remark: Containment in coNP not known.

(rationality of the certificate x is not obvious, since no longer Ax = 0)

Computational Complexity Basics

2 Confirming the Intractability Rumors ...

- Spark
- Restricted Isometry Property (RIP)
- Nullspace Property (NSP)

The Nullspace Property (NSP)

Definition

A matrix $A \in \mathbb{R}^{m \times n}$ satisfies the NSP of order k with constant α_k if

$$\|x\|_{k,1} \coloneqq \max_{S:|S|=k} \sum_{i \in S} |x_i| \le \alpha_k \|x\|_1 \quad \forall x : Ax = 0.$$
 (k, α_k)-NSP

Nullspace Constant (NSC): $\underline{\alpha}_k := \min\{ \alpha_k : A \text{ satisfies } (k, \alpha_k) \text{-NSP } \}$

why care?

 $\triangleright \ \ell_0 - \ell_1$ -equivalence *if and only if* $\underline{\alpha}_k < 1/2$

Complexity of the NSP

Theorem 4

(T. & Pfetsch)

Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a positive integer k, deciding whether there exists some constant $\alpha_k < 1$ such that A satisfies the (k, α_k) -NSP is coNP-complete.

Corollary

Computation of the NSC $\underline{\alpha}_{k}$ is NP-hard.

Proof of Theorem 4

Reduction from SPARK ("spark(A) $\leq k$?"):

- \triangleright instance for NSP-decision problem: *A*, *k*
- ▷ If spark(A) $\leq k$, there exists x with Ax = 0 and $1 \leq ||x||_0 \leq k$. Then, $||x||_{k,1} = ||x||_1$, and therefore $\alpha_k \geq 1$ (in fact, $\alpha_k = 1$).
- ▷ Conversely, suppose there is no $\alpha_k < 1$ s.t. *A* satisfies the (k, α_k) -NSP. Then there is some *x* with Ax = 0 and $1 \le ||x||_0 \le k$ such that $||x||_{k,1} = ||x||_1$ (otherwise $\alpha_k < 1$ was possible).

 $\Rightarrow \exists$ circuit (\subseteq supp(x)) of size at most k, whence spark(A) $\leq k$.

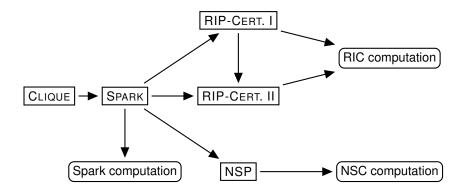
▷ ∈coNP: $\alpha_k \le 1$ (trivially) ⇒ "no"-certificate is a *k*-sparse $x \in \mathbb{Q}^n$ s.t. Ax = 0and $||x||_{k,1} \le \alpha_k ||x||_1$ with $\alpha_k = 1$ is tightly satisfied, i.e., $||x||_{k,1} = ||x||_1$

Computational Complexity Basics

2 Confirming the Intractability Rumors ...

- Spark
- Restricted Isometry Property (RIP)
- Nullspace Property (NSP)

Suspicions confirmed: Spark, RIP, and NSP are all NP-hard indeed



Concluding Remarks

- ▷ Suspicions confirmed: Spark, RIP, and NSP are all NP-hard indeed
- Existing approximation/relaxation algorithms well justified
- More work on exact algorithms desirable
 - NP-hardness means not all instances can be solved efficiently

 existence of practically efficient methods not necessarily excluded!
- ▷ Still open: Complexity of verifying (e.g.) $\underline{\delta}_k < 0.307, \underline{\alpha}_k < 1/2, ... ?$ Complexity of approximating $\underline{\delta}_k$ or $\underline{\alpha}_k$?
- Details, and more results, in our paper

arXiv: 1205.2081 (new version v4!)