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Sparse Recovery Conditions

. min{ ‖x‖0 : Ax = b } is NP-hard (also with constraint ‖Ax − b‖2 ≤ ε)

. various conditions for k -sparse solution uniqueness and recoverability by
heuristics such as OMP or `1-minimization

Complexity Rumors ...

Spark, RIP, and NSP are very often mentioned to be intractable / NP-hard,
but apparently no proof or reference anywhere in CS literature!

. In particular, hardness often “explained” solely by “combinatorial nature”

(this reasoning is false – many combinatorial problems are in P)
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P, NP, and coNP – Hardness and completeness
(informally...)

. P : deterministic-polynomial-time solvable (decision) problems

. NP : nondeterministic-polynomial-time solvable (decision) problems
I polynomial certificate for “yes” answers, but no poly.-time solution algorithm

(unless P=NP)

. coNP : complementary class of NP
I polynomial certificate for “no” answers, but no poly.-time solution algorithm

(unless P=NP)

. coNP-hard ≡ NP-hard : (decision or optimization) problems for which
existence of a polynomial solution algorithm would imply P=NP

. (co)NP-complete : NP-hard (decision) problems contained in (co)NP
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Examples

. LINEAR PROGRAMMING ∈ P.

. A classical NP-complete problem: the k -CLIQUE problem
Given a graph G and a positive integer k , does G contain a clique of size k?

Example: 4-clique {3, 4, 5, 7}.
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The Spark of a Matrix

Definition
spark(A) := min ‖x‖0 s.t. Ax = 0, x 6= 0

. why care?
I unique k -sparse `0-solution if and only if k < spark(A)/2

. a.k.a. girth of the vector matroidM(A) on A:

spark(A) = min{ |C| : C circuit ofM(A) },

circuit: inclusion-wise minimal collection of linearly dependent columns

. for graphic matroids: polynomial time; for transversal matroids: NP-hard
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Spark Complexity – An overlooked early result

. Khachiyan, 1995:

Given A ∈ Qm×n, it is NP-complete to decide whether A
has an (m ×m)-submatrix with zero determinant.

m
It is NP-complete to decide whether spark(A) ≤ m.

. Observation: “Is A full-spark?” (“spark(A) = m + 1?”) is coNP-complete.

(previously only known to be “hard for NP under randomized reductions”,
based on probabilistic matrix representation of transversal matroids [Alexeev
et al.])
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Spark Complexity – New Result

Theorem 1 (T. & Pfetsch)

Given a matrix A ∈ Qm×n (with rank(A) = m < n) and a positive integer k < m,
it is NP-complete to decide whether spark(A) ≤ k (or spark(A) = k ).

. Difference to Khachiyan’s result: k < m with full (row)-rank A
(Khachiyan’s proof extends to k < m only by appending zero-rows)

Corollary

Given a matrix A, computing spark(A) is NP-hard.

(Polyn. algo. to compute spark(A) could decide “spark(A) ≤ k?” in poly-time. �)
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Proof Sketch for Theorem 1

Reduction from k -CLIQUE:

. given instance: G = (V , E) and k ∈ N (wlog k > 4), with n := |V | and m := |E |

. construct a matrix A of size (n +
(k

2

)
− k − 1)×m

I first n rows: set aie = 1 iff i ∈ e, and 0 else (incidence matrix of G)

I remaining rows (n + i for i = 1, ... ,
(k

2

)
− k − 1): set a(n+i)e = (U + i + 1)e−1

(sub-Vandermonde matrix)

. G has a k -clique if and only if spark(A) ≤
(k

2

)
(in fact, spark(A) =

(k
2

)
).

I a specific choice of U [cf. Chistov et al.] and some technical auxiliary results on
graphs and incidence matrices yield the desired linear (in)dependency properties.

. containment in NP: “guess” x with Ax = 0 (⇒ can assume x ∈ Qn);
can verify Ax = 0, ‖x‖0 =

(k
2

)
, and that supp(x) is a circuit in poly-time.
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The Restricted Isometry Property (RIP)

Definition
A matrix A ∈ Rm×n satisfies the RIP of order k with constant δk if

(1− δk )‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk )‖x‖2
2 ∀ x : ‖x‖0 ≤ k . (k , δk )-RIP

Restricted Isometry Constant (RIC): δk := min{ δk : A satisfies (k , δk )-RIP }

why care?

. `o-`1-equivalence for k -sparse solutions if δ2k <
√

2− 1 [Candès, 2008],
or if δk < 0.307 [Cai, Wang & Xu, 2010], ...

. certain random matrices have desirable RIP with high probability
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Central RIP-related Complexity Issues

. RIC computation: Is it hard to compute the RIC δk (given A and k )?

. RIP certification: Is it hard to decide whether δk < δ (given A, k , δ)?
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Complexity of RIP Certification

Theorem 2 (RIP Certification I) (T. & Pfetsch)

Given a matrix A ∈ Qm×n and a positive integer k , deciding whether there exists
some constant δk < 1 such that A satisfies the (k , δk )-RIP is coNP-complete.

Theorem 3 (RIP Certification II) (T. & Pfetsch)∗

Given a matrix A ∈ Qm×n, a positive integer k , and some constant δk ∈ (0, 1),
deciding whether A satisfies the (k , δk )-RIP is (co)NP-hard.

∗ independently obtained by [Bandeira et al.], using Khachiyan’s spark result (i.e., k = m).

07/08/2013 | TU Darmstadt | A. M. Tillmann | 15



Complexity of RIC Computation

Corollary

Computation of the RIC δk is NP-hard.

Proof: A polynomial algorithm to compute the RIC could be used to decide
RIP CERTIFICATION (I or II) in polynomial time. �
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A Useful Lemma

Lemma 1
Let A = (aij ) ∈ Qm×n and define α := max |aij |, C := 2dlog2(α

√
mn)e, and Ã := 1

C A.
Then

‖Ã x‖2
2 ≤ (1 + δ)‖x‖2

2 for all x ∈ Rn and δ ≥ 0.

Why useful?

(k , δk )-RIP for Ã reduces to “(1− δk )‖x‖2
2 ≤ ‖Ãx‖2

2 ∀ k -sparse x”, i.e.,
only the lower RIP inequality is relevant!
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Proof of Theorem 2 (RIP CERTIFICATION I)

(“(k, δk)-RIP for some δk < 1”?)

Reduction from SPARK (“spark(A) ≤ k?”):

. instance for RIP-problem: Ã = 1
C A, k (noteM(A) =M(Ã))

. If spark(A) ≤ k , there exists k -sparse x 6= 0 with Ãx = 0. Then

(1− δk )‖x‖2
2 ≤ ‖Ãx‖2

2 = 0 ⇒ δk ≥ 1.

. Conversely, suppose there is no δk < 1 s.t. Ã is (k , δk )-RIP. Then

∃ x with 1 ≤ ‖x‖0 ≤ k s.t. 0 ≥ (1− δk )‖x‖2
2 = ‖Ãx‖2

2 ≥ 0,

hence Ãx = 0. ⇒ ∃ circuit (⊆supp(x)) of size at most k , thus spark(A) ≤ k .

. RIP CERTIFICATION I ∈ coNP: certificate is x with 1 ≤ ‖x‖0 ≤ k which
tigthly satisfies the (k , 1)-RIP; implies Ax = 0 (so can assume x ∈ Qn). �
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Another Useful Lemma

Lemma 2
Given a matrix A ∈ Qm×n and a positive integer k ≤ n, if spark(A) > k , there
exists a rational constant ε > 0 such that

‖Ax‖2
2 ≥ ε ‖x‖2

2 for all x with 1 ≤ ‖x‖0 ≤ k .

Why useful?

reveals a “rationality gap”: δk < 1 ⇔ δk ≤ 1− ε
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Complexity of RIP CERTIFICATION II

(“(k, δk)-RIP with δk ≤ δ for given δ ∈ (0, 1)”?)

Proof Sketch:

. essentially extend the proof of Theorem 2 by means of previous Lemma:

spark(A) ≤ k ⇔ Ã not (k , δk )-RIP with some δk < 1 (Theorem 2)

⇔ Ã not (k , 1− ε)-RIP (Theorem 3)

Remark: Containment in coNP not known.

(rationality of the certificate x is not obvious, since no longer Ax = 0)
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The Nullspace Property (NSP)

Definition
A matrix A ∈ Rm×n satisfies the NSP of order k with constant αk if

‖x‖k ,1 := max
S:|S|=k

∑
i∈S

|xi | ≤ αk‖x‖1 ∀ x : Ax = 0. (k ,αk )-NSP

Nullspace Constant (NSC): αk := min{ αk : A satisfies (k ,αk )-NSP }

why care?

. `0-`1-equivalence if and only if αk < 1/2
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Complexity of the NSP

Theorem 4 (T. & Pfetsch)

Given a matrix A ∈ Qm×n and a positive integer k , deciding whether there exists
some constant αk < 1 such that A satisfies the (k ,αk )-NSP is coNP-complete.

Corollary

Computation of the NSC αk is NP-hard.
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Proof of Theorem 4

Reduction from SPARK (“spark(A) ≤ k?”):

. instance for NSP-decision problem: A, k

. If spark(A) ≤ k , there exists x with Ax = 0 and 1 ≤ ‖x‖0 ≤ k . Then,
‖x‖k ,1 = ‖x‖1, and therefore αk ≥ 1 (in fact, αk = 1).

. Conversely, suppose there is no αk < 1 s.t. A satisfies the (k ,αk )-NSP.
Then there is some x with Ax = 0 and 1 ≤ ‖x‖0 ≤ k such that ‖x‖k ,1 = ‖x‖1

(otherwise αk < 1 was possible).
⇒ ∃ circuit (⊆supp(x)) of size at most k , whence spark(A) ≤ k .

. ∈coNP: αk ≤ 1 (trivially)⇒ “no”-certificate is a k -sparse x ∈ Qn s.t. Ax = 0
and ‖x‖k ,1 ≤ αk‖x‖1 with αk = 1 is tightly satisfied, i.e., ‖x‖k ,1 = ‖x‖1 �
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Concluding Remarks

. Suspicions confirmed: Spark, RIP, and NSP are all NP-hard indeed

CLIQUE SPARK

Spark computation

RIP-CERT. I

RIP-CERT. II

RIC computation

NSP NSC computation
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Concluding Remarks

. Suspicions confirmed: Spark, RIP, and NSP are all NP-hard indeed

. Existing approximation/relaxation algorithms well justified

. More work on exact algorithms desirable
I NP-hardness means not all instances can be solved efficiently

– existence of practically efficient methods not necessarily excluded!

. Still open: Complexity of verifying (e.g.) δk < 0.307, αk < 1/2, ... ?
Complexity of approximating δk or αk ?

. Details, and more results, in our paper

arXiv: 1205.2081 (new version v4!)
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