Projection onto the k-Cosparse Set is NP-hard

Andreas M. Tillmann (TUD) Rémi Gribonval (INRIA) Marc E. Pfetsch (TUD)

Cosparse Analysis Model

Typical sparse recovery approach: For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ ($m < n$), solve

$$\min_{x \in \mathbb{R}^n} \|x\|_0 \quad \text{s.t.} \quad Ax = b \quad \text{(or } \|Ax - b\|_2 \leq \delta). \quad (P_0)$$

Alternative cosparse analysis model:
Assume Ω is sparse, where Ω is an analysis operator:

$$\min_{x \in \mathbb{R}^n} \|\Omega x\|_0 \quad \text{s.t.} \quad Ax = b \quad (C_0)$$

Cosparse projection onto the k-Cosparse Set

Assume Ωx is sparse, where Ω is an analysis operator:

$$\min_{x \in \mathbb{R}^n} \|\Omega x\|_0 \quad \text{s.t.} \quad Ax = b \quad (C_0)$$

Computational Complexity of k-Cosparse Projection Problems

Theorem

Given $\Omega \in \mathbb{R}^{r \times n}$ ($r > n$), $\omega \in \mathbb{R}^r$, and a positive integer $k \in \mathbb{N}$, it is NP-hard in the strong sense to solve the k-cosparse ℓ_p-norm projection problem

$$\min_{x \in \mathbb{R}^n} \|\omega - z\|_p \quad \text{s.t.} \quad \|\Omega z\|_0 \leq k. \quad (k\text{-CoSP}_p)$$

for any $p \in \mathbb{R} \cup \{\infty\}, p > 1$, where $q = p$ if $p < \infty$ and $q = 1$ if $p = \infty$. The problem remains strongly NP-hard even if ω has only binary coefficients in $\{0, 1\}$ (with exactly one entry nonzero) and Ω has only ternary or bipolar coefficients in $\{-1, 0, 1\}$ or $\{-1, 1\}$, respectively.

Proof idea. Reduction from MinULRn(A,K): Given a matrix $A \in \mathbb{Q}^{r \times n}$ and a positive integer $K \in \mathbb{N}$, decide whether there exists a vector $z \in \mathbb{R}^n$ such that $z \neq 0$ and at most K of the r equalities in the system $Az = 0$ are violated. Known to be strongly NP-complete even for ternary or bipolar A (Amaldi & Kann, 1995).

Given an instance (A,K) of MinULRn$(w.l.o.g. r > n)$, we reduce it to n instances of $(k\text{-CoSP}_p)$:

- For all $i = 1, \ldots, n$, define a k-cosparse projection instance by $\Omega = A, \omega = e_i$ and $k = K$ (where e_i denotes the i-th unit vector).

Observe that since $z = 0$ is always a feasible point, $r(i) = \min_{x \in \mathbb{R}^n} \{e_i - z : ||\Omega z||_0 \leq k\} \leq 1$ for all i, hence $r(i) = \min_{x \in \mathbb{R}^n} r(i) \leq 1$.

Claim: $r(i) < 1$ if and only if $\text{MinULR}^n(A,K)$ has a positive answer. (Verifying the claim proves the Theorem. \square)

Consequences, Conclusions & Open Questions

Strong NP-hardness \Rightarrow no Fully Polynomial-Time Approximation Scheme (FPTAS), no Pseudo-Polynomial Exact Algorithm (unless P=NP)!

(FPTAS: given $\epsilon > 0$, finds value $\leq (1 + \epsilon) \text{-min. value in time polynomially depending on input encoding length and } 1/\epsilon$)
(Pseudo-Poly. Alg.: finds exact optimum in time polynomial in the numeric value of the input, but not its encoding length)

\Rightarrow existence of other approximation algorithms? (may still be useful in practice despite bad theoretical running time bounds, i.e., at least exponential in $1/\epsilon$)

Easier special cases: Ω unitary \Rightarrow hard-thresholding achieves k-cosparse projection w.r.t. any ℓ_p-norm:

Ω 1D finite difference or fused Lasso operator \Rightarrow Euclidean projection achieved using dynamic programming

Future Challenges: Complexity of $(k\text{-CoSP}_p)$ for $0 < p \leq 1$?
Finding (practically) efficient approximation schemes for $(k\text{-CoSP}_p)$, or establishing further (perhaps negative) approximability results!