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1 Foreword

In this report, we describe the DOpElib Differential Equations and Optimization Envi-
ronment project. Originally, the project was initiated in the year 2009 at the University
of Heidelberg (Germany) in the numerical analysis group of Rolf Rannacher.

The main feature of DOpElib is to give a unified interface to high level algorithms
such as time-stepping methods, nonlinear solvers and optimization routines. DOpElib is
designed in such a way that the user only needs to write those parts of the code that
are problem dependent while all invariant parts of the algorithms are reusable without
any need for further coding. In particular, the user is enabled to switch between various
different algorithms without the need to rewrite the problem dependent code, though
obviously he or she will have to replace the algorithm object with an other one. This
replacement can be done by replacing the appropriate object at only one point in the
code. In addition to the finite element code provided by deal.Il —which at present is
the only FE-toolkit to which we provide an interface— the presented library DOpElib
is user-focused by delivering prefabricated tools which require adjustments by the user
only for parts connected to his specific problem. This is in contrast to deal.Il which
leaves the implementation of all high-level algorithms to the user.

An innovative feature of DOpElib is to provide a software toolkit to solve forward PDE
problems as well as optimal control problems constrained by PDE. DOpE1ib concentrates
on a unified approach for both linear and nonlinear problems by interpreting every PDE
problem as nonlinear and applying a Newton method to solve it. The focus is on the
numerical solution of both stationary and nonstationary problems which come from
different application fields, like elasticity and plasticity, fluid dynamics, and multiphysics
problems such as fluid-structure interactions.

At the present stage the following features are supported by the library

e Solution of stationary and nonstationary PDEs in 1d, 2d, and 3d.

e Various time stepping schemes (based on finite differences), such as forward Euler,
backward Euler, Crank-Nicolson, shifted Crank-Nicolson, and Fractional-Step-©
scheme.

e All finite elements of from deal.Il including hp-support.

e Self-written line search and trust region newton algorithms for the solution of
optimization problems with PDEs [12]

e Interface to SNOPT for the solution of optimization problems with PDEs and
additional other constraints.
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e Several examples showing how to solve various kinds of optimization problems
involving stationary PDE constraints.

e Mesh adaptation and goal-oriented error estimation with the dual-weighted resid-
ual (DWR) method.

e Different spatial triangulations for control and state variables.

e Several examples showing the solution of several PDEs including Poisson, Navier-
Stokes, plasticity, fluid-structure interaction problems, a coupled Biot-Lamé-Navier
system, and finally from financial mathematics the Black-Scholes equations.

The rest of this document is structured as follows: We start with an introduction
in Chapter [2| where you will learn what is needed to run DOpElib. Further you will
learn what problems we can solve and how all the different classes work together for this
purpose. This should help you figure out what the different classes do if you are in need
of writing your own algorithm.

Then assuming that you can work to your satisfaction with the algorithms already
implemented we will show you how to create your own running example in Chapter
This will be followed by a detailed description of all examples already shipped with the
library. You can find the examples for the solution of PDEs in Chapter [5| and those for
the solution of optimization problems with PDEs in Chapter [6

These notes conclude with a section that explains how we do automated testing of the
implementation in Chapter [/} This chapter will be of interest only if you are trying to
implement some new features to the library so that you can check that the new code did
not break anything.

Thanks: The DOpElib project is mainly based on the deal.Il finite element library
which has been developed initially by W. Bangerth, R. Hartmann, and G. Kanschat [I]
and now maintained by [2]. Special thanks go to them!

In addition to deal.Il, the authors gratefully acknowledge their past experience as well
as discussions with the authors of the software toolkits Gascoigne and RoDoBo [10] and
[14], from which some of the ideas to modularize the algorithms have arisen. Similar
thanks go to the developers of Ipopt, [16].

Last, but not least, we would like to express our gratitude to all contributors listed in
Section for their respective contribution to the library.

Special thanks go to Christian Goll who has been a great help in maintaining and
developing this library from 2009 until 2015.



2 Introduction

2.1 How to get DOpElib

There are two ways to obtain a copy of DOpElib:

A) You can obtain a copy of DOpElib from the developers svn repository using
svn co --username=[your username] \
https://svn.dopelib.net/dope
(The backslash in the first line means that the line will be continued as one!)

Note that you need a valid username and password. If you have none, please contact
the maintainers by sending an EMail to dope@dopelib.netl

B) You can download the sources as a tar-ball from the project website
http://wuw.dopelib.net!.

2.2 License information

Copyright (C) 2012-2014 by the DOpElib authors
This file is part of DOpElib

DOPpElib is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

DOpElib is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more de-
tails.

Please refer to the file LICENSE.TXT included in this distribution for further informa-
tion on this license.


dope@dopelib.net
http://www.dopelib.net
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2.3 References

If you like the library and use it for your own projects, please give credits by referencing
the project DOpElib [9] using the following bibtex entry:

@QMISC{dope ,
key = {DOpElib},
title = {The {D}ifferential {E}quation and
{O}ptimization {E}nvironment: \textsc{DOpElib}},
url {http://www.dopelib.net},
note = {\texttt{http://www.dopelib.net}}

2.4 Contributors & Developers

The library is currently maintained by
e Christian Goll (Heidelberg University)

e Thomas Wick (Johann Radon Institute for Computational and Applied Mathe-
matics (RICAM))

e Winnifried Wollner (Technische Universitt Darmstadt)
We would like to express our gratitude to the former maintainer
e Christian Goll (Maintainer from 2009-2015)
Furthermore, there are more highly appreciated contributions made by

e Michael Geiger (Examples for Plasticity, and Documentation of several PDE-
Examples)

e Masoud Ghaderi (Augmenting the Documentation)
e Uwe Kocher (Makefile compatibility)
e Francesco Ludovici (Augmenting the Documentation)

e Matthias Maier (CMake)

2.5 Software requirements

The library DOpE has been tested to work on both Linux and MAC OSX. See also the
README. 0SX file
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251 g++

DOpElib requires a recent g++ (at least 4.4.3) due to some new C++ features imple-
mented in C++0x and C++11. You can check the version number using the command-line
argument g++ -v.

Under Linux-systems this typically means that you have to do nothing if you have
a recent version number. Otherwise you can either install the required version of g++
using the appropriate software installation tool, or you can build the required version
from source gcc.gnu.org.

Under MAC OSX, you need to install the XCode tools delivered with the operating
system or available for free developer.apple.com/xcode. Unfortunately, the delivered
version of g++ is too old, so you need to install the real thing. To do so, download
MacPorts from macports.org. Once you have installed MacPorts you can use it to
install additional Linux software. First, update the MacPorts installation sudo port
selfupdate after that you can install a new version of g++ using for instance sudo
port install gcc4b to install version 4.5 of the compiler. Afterwards, you need to set
the search path appropriate to find the macports version of g++, to check if this has
been done use g++ -v.

2.5.2 deal.ll

This library is mainly based upon deal.II hence in order to run DOpElib you need a
running copy of deal.II.

The deal.II library is open source and is freely available for noncommercial project.
It can be downloaded from http://www.dealii.org/. On this homepage, one also finds
lots of further information on deal.Il as well as an extensive tutorial where many features
of deal .IT are discussed in a well-documented example framework. In order to use DOpE,
it is recommendable to be roughly acquainted with deal.Il.

When installing deal.II you should take care to configure it to use UMFPACK, i.e.,
./configure --with-umfpack in version up to 7.3.0. From 8.0.0 on, deal.Il is compiled
with cmake, which makes the inclusion of external packages easier. Detailed installing
instructions for deal.IT (here the last version 8.1.0) can be found on
http://www.dealii.org/8.1.0/readme.html.

2.5.3 ThirdPartyLibraries

In order for DOpPE to be able to auto-detect some of the installed Third Party Libraries you
should generate according links in the ThirdPartyLibs. See also ThirdPartyLibs/README.

SNOPT

If you would like to use the features offered in our SNOPT wrapper. You will need to
obtain a license for SNOPT http://www.sbsi-sol-optimize.com/asp/sol_product_
snopt.htm. Unfortunately this is at present not available for free, but you should check
if there is a department license already available. For further information you should


http://www.dealii.org/
http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm
http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm
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consult the file ThirdPartyLibs/SNOPT.INSTALLNOTES. In particular you need to con-
figure deal.II with at least the following options:

./configure --with-umfpack --with-blas --with-lapack (up to 7.3.0) or enabling
UMFPACK in the ccmake options from version 8.0.0 on.

IPOPT

If you would like to use the optimization routines offered by IPOPT https://projects.
coin-or.org/Ipopt| you can install this yourself and add a symlink as described in
ThirdPartyLibs/README.

Alternatively, you can use installation script ThirdPartyLibs/install-free-libs.sh.
Note that to use all available linear solvers you may have to obtain a corresponding li-
cense manually. This is true in particular for the HSL solvers MA27, . ... For information
on these see the information provided by the installation script.

The installation is straighforward and has been tested on openSUSE 12.1 machines
as well as on MAC. At the end of the installtion do not forget to add ipopt to your
LD LIBRARY PATH:

s o o o o o 3 KKK KKK K K R K oK o o KKK KKK K K oK oK oK o 3 KKK KKK K R K oK ok o KK K KK KK K
Installation complete!
Add /home /..../ dopelib —2.0/ ThirdPartyLibs/ipopt/lib64
to your LD\ _LIBRARY\PATH variable

3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk skosk sk sk sk skosk sk sk sk skosk sk skosk skosk sk sk sk skosk sk osk sk sk sk sk sk sk skosk sk skosk skoskosk sk sk sk skok sk kosk ok k

2.6 Installation
2.6.1 Until Version 2.0

To work with DOpElib, your need necessarily deal.Il, which installation we describe first.
Afterwards, the DOpEIlib installation is described and finally other optional packages
might be installed.

e Install deal.II to your home directory, i.e., it should be located in
~/deal.Il.
If you would like to have another path you will either have to manually edit the files
DOpEsrc/source/Makefile and Examples/Make.global options and replace the
line
D = $(HOME)/deal.II with the appropriate path.
Detailed installing instructions for deal.Il (here the last version 8.1.0) can be
found on http://www.dealii.org/8.1.0/readme.html. The deal.Il installation
instructions are descriptive enough and we omit any further comments and refer
to their webpage.

e Get a copy of DOpElib, see Section for details.

10
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Unpack in your preferred directory:

“/Software/> tar —xzf dopelib —2.0.tar.gz
to get
“/Software/dopelib —2.0

To build the DOpElib you have to change to the directory DOpEsrc where you can
call

“/Software/dopelib —2.0/DOpEsrc> make all

to build the library. You also get various installation options by just typing make.
To generate documentation, please go into:

“/Software/dopelib —2.0/Examples

Here, you get all options by typing:

make

Specifically, you can create and run all examples, running a test suite, and gener-
ating documentation:

= Makefile for the DOpE documentation

The following targets exist:

= all : Make all examples (in optimized mode)

z allignore : Make all examples (in optimized mode), ignore errors.
z clean :  Cleaning up all examples

i tests : Run all test param data.

z cat : Run clean, run all, run tests (combine these commands)
z catignore : Same as cat, but ignores compiler errors.

i pdf—doc :  Create documentation in pdf file format via latexmk

z doc : Create documentation in pdf file format via latexmk

z distclean : Cleaning up, including documentation

i warncheck : Checks whether all Examples compile without warnings

11
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For html documentation, change into:

“/Software/dopelib —2.0/doxygen

and then typing make. Doxygen documentation will require either latex or doxygen
to be installed on your computer.

e If you wish to test if everything worked. To do so you can change to the Examples
directory and make tests which will give you a list of all the examples and whether
they behave as expected by the library, see also Chapter

e If you want to use some of the supported third party libraries install them and
follow the instructions in ThirdPartyLibs/README. There may be further informa-
tion in some ThirdPartyLibs/*.INSTALLNOTES that you may want to consider.

As example, the installation of ipopt works as follows:
In the path /dope/ThirdPartyLibs> type in the terminal
./install-free-libs.sh

2.6.2 After Version 2.0 - CMake build system

To work with DOpElib, your need necessarily deal.Il, which installation we describe first.
Afterwards, the DOpElib installation is described and finally other optional packages
might be installed.

e Install deal.II to your home directory, i.e., it should be located in
~/deal.Il.

If you prefer another position you can install it anywhere but need to set the
DEAL_II_DIR environment variable, so that it will be found by cmake, i.e.,

export DEAL_II_DIR=[path to deal.ii]

Detailed installing instructions for deal.Il (here the last version 8.1.0) can be
found on http://www.dealii.org/8.1.0/readme.html. The deal.Il installation
instructions are descriptive enough and we omit any further comments and refer
to their webpage.

e Get a copy of DOpElib, see Section for details.

e Unpack in your preferred directory:

“/Software/> tar —xzf dopelib —3.0.tar.gz

to get
“/Software/dopelib —3.0

To build the DOpElib you have to change to the directory DOpEsrc where you can
call

12
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“/Software/dopelib —3.0/DOpEsrc> make c—all

to build and configure the library using cmake. You also get various installation
options by just typing make.

To generate documentation, please go into:
“/Software/dopelib —3.0/Examples
Here, you get all options by typing:

make

Specifically, you can create and run all examples, running a test suite, and gener-
ating documentation:

= Makefile for the DOpE documentation

= The following targets exist:

= all :  Make all examples (in optimized mode)

z c—all : Make all examples using cmake

z allignore : Make all examples (in optimized mode), ignore errors.
z clean :  Cleaning up all examples

z tests : Run all test param data.

z cat : Run clean, run all, run tests (combine these commands)
z c—cat : Run clean, run c—all, run tests (combine these commands)=
= catignore : Same as cat, but ignores compiler errors.

z pdf—doc : Create documentation in pdf file format via latexmk

z doc : Create documentation in pdf file format via latexmk

z distclean : Cleaning up, including documentation

z warncheck : Checks whether all Examples compile without warnings

The new options are ¢ — all and ¢ — cat utilizing the cmake build system. For html
documentation, change into:

“/Software/dopelib —3.0/doxygen

13
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and then typing make. Doxygen documentation will require either latex or doxygen
to be installed on your computer.

e If you wish to test if everything worked. To do so you can change to the Examples
directory and make tests which will give you a list of all the examples and whether
they behave as expected by the library, see also Chapter

e If you want to use some of the supported third party libraries install them and
follow the instructions in ThirdPartyLibs/README. There may be further informa-
tion in some ThirdPartyLibs/*.INSTALLNOTES that you may want to consider.

As example, the installation of ipopt works as follows:
In the path /dope/ThirdPartyLibs> type in the terminal
./install-free-libs.sh

2.7 FAQs

1.) When building the library | get an error message:

e unrecognized command line option ”-std=gnu-+-+0x”
This means that your compiler is too old. You can check the version of your
compiler using g++ -v. If the version is lower than 4.5 you need to get a newer
compiler version.

2.) | have installed a new g++ compiler but g++ -v still finds the old one :

This means that your computer does not find the new compiler. Try which g++ to see
whether it appears in the list of available compilers (but is maybe too far in the back
of the list.) Then you should modify your $PATH environment variable so that the new
g++ compiler appears.

If which g++ only returns one g++ compiler, then probably you need to set an ap-
propriate symlink. Or more robust, you can configure deal.II to use the compiler you
intend by configuring deal with the right compiler. To do so adjust the CC and CXX
environment variable appropriately before configuring deal.II

For example on Mac OSX you will find only one g++ compiler /usr/bin/g++ which
is in fact a symlink to /usr/bin/g++-4.2. So that you need to install a newer compiler.
You can do so, for instance using macports. Then you can find, e.g., g++ version 4.5
on OSX Lion in /opt/local/bin/g++-mp-4.5.

14



3 The Structure of DOpElib

This library is designed to allow easy implementation and numerical solutions of prob-
lems involving partial differential equations (PDEs). The easiest case is that of a PDE
in weak form to find some u

a(u)(¢) =0 Vo eV,

with some appropriate space V. More complex cases involve optimization problems given
in the form (OPT)

min J(q,u)
sit.a(q,u)(¢) =0 Vo eV,
a<qg<hb,
9(q;u) <0,
where u is a FE-function and ¢ can either be a FE-function or some fixed number of

parameters, a and b are constraint bounds for the control ¢, and g¢(-) is some state
constraint.

3.1 Problem description

In order to allow our algorithms the automatic assembly of all required data we need
to have some container which contains the complete problem description in a common
data format. For this we have the following classes in DOpEsrc/container

e pdeproblemcontainer.h Is used to describe stationary PDE problems.

e instatpdeproblemcontainer.h This will be implemented once we have nonsta-
tionary optimization problems running to avoid error duplication in the coding
process.

e optproblemcontainer.h Is used to describe OPT problems governed by stationary
PDEs.

e instatoptproblemcontainer.h Is used to describe OPT problems governed by
nonstationary PDEs. The only difference to the stationary case is that we need to
specify a time-stepping method.

In order to fill these containers there are two things to be done, first we need to actually
write some data, for instance, the semilinear form a(-)(-), a target functional J(-), etc.,

15
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which describe the problem. Then we have to select some numerical algorithm com-
ponents like finite elements, linear solvers .... The latter ones should be written such
that when exchanging these components none of the problem descriptions should require
changes. Note that it still may be necessary to write some additional descriptions, e.g.,
if you solve the PDE with a fix point iteration you don’t need derivatives but if you want
to use Newton’s method, derivatives are needed.

We will start by discussing the problem description components implemented so far

3.2 Numeric components

These are the components from which a user needs to select some in order to actu-
ally solve the given problem. They will not require any rewriting, but sometimes it is
advisable to write other than the default parameter into the param file for the solution.

3.2.1 Space-time handler

First we need to select a method how to handle all dofs in space and time.

e basic/spacetimehandler base.h This class is used to define an interface to the
dimension independent functionality of all space time dof handlers.

e basic/statespacetimehandler.h Another intermediate interface class which adds
the dimension dependent functionality if only the variable u is considered, i.e., a
PDE problem.

e basic/spacetimehandler.h Same as above but with both ¢ and u, i.e., for OPT
problems.

e basic/mol_statespacetimehandler.h Implementation of a method of line space
time dof handler for PDE problems. It has only one spatial dofhandler that is used
for all time intervals.

e basic/mol_spacetimehandler.h Same as above for OPT problems. A separate
spatial dof handler for each of the variables ¢ and u is maintained but only one
triangulation.

e basic/mol_multimesh_spacetimehandler.h Same as above, but now in addition
the triangulations for ¢ and w can be refined separately from one common ini-
tial coarse triangulation. Note that this will in addition require the use of the
multimesh version for integrator and face- as well as elementdatacontainer.

Note that we use these for stationary problems as well, but then you don’t have to
specify any time information.

16
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3.2.2 Container classes

Second you will need to specify some container classes to be used to pass data between
objects. At present you don’t have much choice, but you may wish to reimplement some
of these if you need data that is not currently included in the containers.

container/elementdatacontainer.h This object is used to pass data given on
the current element of the mesh to the functions in PDE, functional, .. ..

container/facedatacontainer.h This object is used to pass data given on the
current face of the mesh to the functions in PDE, functional, .. ..

container/multimesh elementdatacontainer.h This is the same as the ele-
mentdatacontainer, but it is capable to handle data defined on an alternative
triangulation.

container/multimesh facedatacontainer.h This is the same as the facedata-
container, but it is capable to handle data defined on an alternative triangulation.

container/integratordatacontainer.h This contains some data that should be
passed to the integrator like quadrature formulas and the above element and face
data container.

container/refinementcontainer.h The classes defined herein are given to the
RefineSpace method of the SpaceTimeHandler and determine how we define the
spatial mesh (i.e. globally or locally with a fixed fraction, fixed number or ’opti-
mized’ strategy).

3.2.3 Time stepping schemes

Third, at least for nonstationary PDEs we need to select a time stepping scheme the file
names of which are mostly self explanatory:

tsschemes/forward_euler problem.h
tsschemes/shifted_crank nicolson_problem.h
tsschemes/backward_euler_problem.h

tsschemes/fractional_ step_theta problem.h Note that the use of this scheme
requires a special Newton solver, which is, however, already implemented for the
convenience of the user!

tsschemes/crank nicolson_problem.h
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3.2.4 Integrator routines

Finally, we need to select a way how to integrate and solve linear and nonlinear equations

e templates/integrator.h This class computes integrals over a given triangulation
(including its faces).

e templates/integrator multimesh.h The same as above but it is possible that
some of the FE functions are defined on an other triangulation as long as the have
a common coarse triangulation.

e templates/integratormixeddims.h This is used to compute integral which are
given in another (larger) dimension than the current variable. (This is exclusively
used if the control variable is given by some parameters. Which means dopedim

== 0).

3.2.5 Nonlinear solvers

e templates/newtonsolver.h This solves some nonlinear equation using a line-
search Newton method.

e templates/newtonsolvermixeddims.h The same but in the case when there is
another variable in a (larger) dimension is involved. See integratormixeddims.h.

e templates/instat_step_newtonsolver.h This is a Newton method as above to
invert the next time-step. It differs from the plain vanilla version in that it com-
putes certain data from the previous time step only once and not in every Newton
iteration.

e templates/fractional step_theta_ step newtonsolver.h This is the Newton
solver for the time step in a fractional-step-theta scheme. It combines the compu-
tation of all three sub steps.

3.2.6 Linear solvers

e templates/cglinearsolver.h This is a wrapper for the cg solver implemented in
deal.II. The solver will build and store the stiffness matrix for the PDE.

e templates/gmreslinearsolver.h This is a wrapper for the GMRES solver im-
plemented in deal.II. The solver will build and store the stiffness matrix for the
PDE.

e templates/directlinearsolver.h This is a wrapper for the direct solver imple-
mented in deal.II using UMFPACK. The solver will build and store the stiffness
matrix for the PDE.
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3 The Structure of DOpElib

e templates/voidlinearsolver.h This is a wrapper for certain cases when we

3.3

know that the matrix to be inverted is the identity. It simply copies the right hand
side to the left hand side. This is only needed for compatibility reasons some other
components.

Problem specific classes

The following classes are used to describe the problem and will usually require some
implementation.

3.4

basic/constraints.h This is used by the spacetimehandlers to compute the num-
ber of constraints from the control and state vectors. It must not be reimplemented
by the user, but needs to be properly initialized if OPT is used with box control
constraints or g(q,u) < 0.

interfaces/functionalinterface.h This gives an interface for the functional
J(-) and any other functional you may want to evaluate. In general this can be
used as a base class to write your own functionals in examples. We note that we
only need to write the integrands on elements or faces the loop over elements will
be taken care of in the integrator. Specifically, derivatives are written therein, too.

interfaces/constraintinterface.h This gives an interface for both the con-
trol box constraints as well as the general constraint ¢ < 0. This needs to be
specified if constraints are to be used. If they are not needed a default class
problemdata/noconstraints.h can be used. We note that we only need to write
the integrands on elements or faces the loop over elements will be taken care of in
the integrator.

interfaces/pdeinterface.h This defines an interface for the partial differential
equation a(q,u)(¢) = 0. This needs to be written by the user. We note that we
only need to write the integrands on elements or faces the loop over elements will
be taken care of in the integrator. Specifically, derivatives are written therein, too.

interfaces/dirichletdatainterface.h This gives an interface to the Dirichlet
data for a problem. If the Dirichlet data are simply a function (and do not depend
on the control ¢) one can use the default class
problemdata/simpledirichletdata.h.

Reduced problems (Solve the PDE)

At times it is nice to remove the PDE constraint in (OPT). This is handled by so called
reduced problems (for algorithmic aspects we refer the reader to [4]). This means that
the reduced problem implicitly solves the PDE whenever required and eliminates the
variable u from the problem.
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reducedproblems/statpdeproblem.h This is used to remove the variable v in a
stationary PDE problem. This means that call the method

StatPDEProblem: : ComputeReducedFunctionals will evaluate the functionals de-
fined in the problem description, i.e., in PDEProblemContainer, in the solution of
the given PDE.

reducedproblems/statreducedproblem.h This eliminates u from the OPT prob-
lem with a stationary PDE.

reducedproblems/instatreducedproblem.h The same as above but for a non-
stationary PDE.

reducedproblems/ipopt_problem.h A wrapper file required when solving opti-
mization problems using the reduced_ipopt_algorithm. This file hides the interface
to IPOPT.

Optimization algorithms

Now, in order to solve optimization algorithms we need to define some algorithms. At
present we offer a selection of algorithms that solve the reduced optimization problem
where the PDE constraint has been eliminated as explained in the previous section.

opt_algorithms/reducedalgorithm.h An interface for all optimization problems
in the reduced formulation. It offers some test functionality to assert that the
derivatives of the problem are computed correctly.

opt_algorithms/reducednewtonalgorithm.h A line-search Newton algorithm us-
ing a cg method to invert the reduced hessian. Implementation ignores any addi-
tional constraints.

opt_algorithms/reducedtrustregionnewton.h A trust region Newton algorithm
using a cg method to invert the reduced hessian. Implementation ignores any ad-
ditional constraints.

opt_algorithms/reduced_snopt_algorithm.h An algorithm to solve reduced op-
timization problems with additional control constraints using the third-party li-
brary SNOPT. ((reduced) state constraints are not yet implemented.)

opt_algorithms/reduced_ipopt_algorithm.h An algorithm to solve reduced op-
timization problems with additional control constraints. using the third-party li-
brary IPOPT. ((reduced) state constraints are not yet implemented.)

opt_algorithms/reducednewtonalgorithmwithinverse.h Line-search Newton al-
gorithm that assumes there exists a method in the reduced problem that can invert
the reduced hessian. (This usually makes sense only if there is no PDE constraint.)
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3.6 Other Components

Beyond these clearly structured groups before there are some classes remaining that do
not fit the above but are important for the user to know.

3.6.1 Vectors

e include/statevector.h This stores all dofs in space and time for the state vari-
able uw. It is possible to select whether all this should be kept in memory or or
unused parts can be written to the hard disk.

e include/controlvector.h This stores all dofs in space and time for the control
variable ¢q. At present no time dependence is implemented.

e include/constraintvector.h This stores all dofs in space and time for the non
PDE constraints (and corresponding multipliers). At present no time dependence
is implemented.

Remark 3.6.1. We notice that the behavior of the statevector can be chosen as fullmem,
only_recent, or store_on_disc. In the first state, the RAM memory of the computer
is used. In the second state, only the spatial vectors at the current time step (and the
preious one) are stored. This reduces memory requirements, but also prohibits access
to the whole space-time trajectory after the computation. In the third state, all vectors
are written on disc, to avoid the RAM. This might take some time at the beginning
of a new executing program (cleary depending on the number of spatial and temporal
unknowns and the capabilities of your local machine). In addition, if the program aborts
abnormally in the using store_on_disc behavior, please make sure to remove manually
the tmp_state folder in your Results folder.

3.6.2 Parameter handling

e include/parameterreader.h This file is used to define a parameter reader that
is used to read run time parameters from a given file.

3.6.3 Exception handling

e include/dopeexception.h Defines some Exceptions that are thrown by the pro-
gram should it encounter any unexpected errors.

e include/dopeexceptionhandler.h This class is used to write information con-
tained in the exceptions to the output in a uniform manner.

3.6.4 Output handling

e include/outputhandler.h This file defines an outputhandler object which can
be used to decide whether some information should be written to screen or file. In
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addition it can format output according to some run time parameters given by a
parameter file.

3.7 Data Access

e include/solutionextractor.h This class is used to gain access to the finite ele-
ment solutions stored in the reduced problems.

3.7.1 Constraints and system matrix

e include/userdefineddofconstraints.h This class sets the constraints on the
DOFs of the state and/or control FE solution. DOpE itself builds the hanging-
node-constraints, but the user can reimplement this class and thus include other
constraints as well (for example periodic BC). Note, that the hanging-node-constraints
come first (in case of conflicting constraints.)

e include/sparsitymaker.h This class sets the sparsity pattern for the state FE
solution. The standard implementation is just a wrapper for dealii: :DoFTools: :
make_sparsity_pattern, but the user can reimplement this class to allow for more
sophisticated sparsity patterns.

e include/pointconstraintsmaker.h This class allows to set homogeneous Dirich-
let values at given points/components.

3.7.2 HP components

e interfaces/active fe index setter interface.h In the case of hp finite el-
ements, one has to specify for each element which finite element to use. This is
done via this interface.

3.8 Internal structures

3.8.1 Interface Classes

e interfaces/transposeddirichletdatainterface.h This provides an interface
to the functionality required by transposed Dirichlet data. Usually when one applies
Dirichlet data g to a function one has to calculate a continuation Bg which is
defined on the whole domain. In optimization problems when the Dirichlet data
depends on the control one has to evaluate the dual operator B* in order to obtain
a representation for the reduced gradient of the objective J. This is done using
the transposed Dirichlet data.

e interfaces/reducedprobleminterface.h In order to allow all algorithms to be
written independent of the given (OPT) problem (and not requiring the problem
as template argument) there is a common base class which defines the required
interfaces.
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interfaces/pdeprobleminterface.h The same as above but for (PDE) prob-
lems.

3.8.2 Default Classes

problemdata/noconstraints.h A class that can be used for optimization prob-
lems having only a PDE constraint but no further constraints.

problemdata/simpledirichletdata.h A class that can be used to implement
Dirichlet data that are given as a fixed function (independent of the control).

3.8.3 Auto-generated Problem Descriptions

problemdata/stateproblem.h This is the problem description for the (forward/pri-
mal) PDE constraint. Similar descriptors will be build for the other prob-
lems (adjoint, tangent, ...) when time allows.

problemdata/initialproblem.h This is the problem descriptor to compute the
finite element representation of the initial values. This is generated by the different
time-stepping schemes based upon the defined representation by the PDE, which
is set to the component wise L? projection by default.

problemdata/primaldirichletdata.h This class contains the Dirichlet data for
the forward/primal PDE.

problemdata/tangentdirichletdata.h This class contains the Dirichlet data for
the tangent PDE;, i.e., the first derivative of the Dirichlet data.

problemdata/transposedgradientdirichletdata.h This contains the transposed
Dirichlet data needed to calculate the gradient of the reduced objective functional,
for detail see interfaces/transposeddirichletdatainterface.h.

problemdata/transposedhessiandirichletdata.h This contains the transposed
Dirichlet data needed to calculate the hessian of the reduced objective functional,
for detail see interfaces/transposeddirichletdatainterface.h.

3.8.4 Management of Time Dependent Problems

include/timedofhandler.h DoFHandler responsible for the management of the
timedofs (this is a part of the SpaceTimeDoFHandler-classes). Basically a wrapper
for a 1d deal.II-DoFHandler.

include/timeiterator.h This class works as an iterator on the TimeDoFHandler.
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Wrapper classes

wrapper/dofhandler wrapper.h A wrapper class for the deal.II DoFHandlers.
This class is needed to provide support for the dim = 0 case and to have a uniform
interface to DoFHandler and HPDoFHandler.

wrapper/fevalues_wrapper.h Will be removed soon!

wrapper/function wrapper.h An interface that allows to use functions that de-
pend not only on space but also on time.

wrapper/mapping wrapper.h An interface that allows to use deal.II-mappings
as well as deal.II-mapping collections depending of the DoFHandler in use. To
this end, the class has a template parameter DOFHANDLER.

wrapper/preconditioner wrapper.h Contains wrappers for several of the pre-
conditioners in deal.II. This is required since unfortunately the preconditioners
in deal.II have different interfaces for their initialization.

wrapper/snopt_wrapper.h An interface to the FORTRAN library SNOPT. This
is an additional wrapper to the one provided by SNOPT to allow automatic con-
struction of the functions required by SNOPT using our library.

wrapper/solutiontransfer_wrapper.h A wrapper for the SolutionTransfer class
from deal.II.

wrapper/dataout_wrapper.h A wrapper for the DataOut class from deal.IT.

3.10 Other

basic/dopetypes.h This file contains type definitions used in the library.

basic/sth_internals.h Wrapper for the MapDoFsToSupportPoints function. The
implementation of this changes with the deal.II version in use.

include/helper.h Collection of various small helper functions.

reducedproblems/problemcontainer_internal.h Houses some functions and vari-
ables common in the various problemcontainer.

tsschemes/primal ts_base.h This class contains the methods which all primal
time stepping schemes share.

tsschemes/ts _base.h This class contains the methods which all time stepping
schemes share.
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4 Example Handling, Creating new
Examples

4.1 Getting started

Beside the fact that DOpELlib is still under development, it offers already various different
(linear and nonlinear) examples for a lots of different applications in two and three
dimensions; we refer the reader to the next two Chapters [5] and [6]

To implement new examples or to use existing examples from the library for own
research, the user can simply copy an existing example. In this new example, own code
and changes can be compiled. Here is some advice to get started:

e If you are a first time user of DOpElib with some numerics background, you might
be familiar with the Poisson (or more general Laplace) equation. DOpElib has it
too. Check-out Example to see how DOpElib implements this well-known
equation in two dimensions or for its three-dimensional version.

e Before you implement a new example, please check which existing example might
be similar to your goals and get familiar to it. Then, proceed as described in

Section (4.2

4.2 Creating new examples

Before being able to change and compile the new code, the user must follow some easy
steps in order to modify the information related to the old code. In this section we
explain how to modify such information using as model PDE/StatPDE/Examplel.

1. In afirst step, we copy Examplel and renamed it, e.g., MyWonderfulFirstExample.
At the same time it is important to remove the repository information that it is
stored in the directory .svn/.
After having reached the folder of the example in question in the terminal, PDE/StatPDE
in our case, we perform these operation writing the following:

cp —-r Examplel MyWonderfulFirstExample
cd MyWonderfulFirstExample

rm -rf .svn

cd Test

rm -rf .svn
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Please note that removing the .svn sub-directories is important, as otherwise
your files may be replaced or changed during your next update. Also, if you can
submit information to the subversion repository you might accidentally overwrite
the original example, here Examplel.

. We now have to change the target in the Makefile, otherwise our new example
will refer to the executable of the old one.

Thus we open the Makefile in the directory MyWonderfulFirstExample to change
the name of the executable. In our example you will find a line

target = $(BINDIR)/DOpE-PDE-StatPDE-Examplel-$
(dope_dimension)d-$(deal_II_dimension)d

Here we need to replace the target to a new name to avoid any possible complica-
tion. Thus for example we change the line to

target = $(BINDIR)/MyWonderfulFirstExample

This will build the executable file in the standard binary directory of DOpElib,
i.e., $(DOpE) /bin, under the name MyWonderfulFirstExample.

Note that you should use a different name for all your examples as otherwise you
may experience a lot of strange behavior, as the executable will be overwritten by
all your examples!

. If you want to run automated tests on you program so that you can verify whether
your code is running as expected after updating the library you may want to update
the sub-directory Test as well, see also Chapter Otherwise you may skip this
step.

Change to the Test sub-directory. And then modify the test-script to contain
the new name of the executable. Assuming you want to use Emacs, open the file
test.sh

PDE/StatPDE/Examplel/Test> emacs test.sh

where, in our example you find the line

PROGRAM=. . /DOpE-PDE-StatPDE-Examplel-2d-2d

if you made a copy of an other example the part DOpE-PDE-StatPDE-Examplel-2d-2d
may differ. These lines need to be replaced with the new name of the executable,

i.e., for our given example

PROGRAM=. .//MyWonderfulFirstExample
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4. Now, you are prepared to change any of the problem dependent data in information
in the files

main.cc, localpde.h, functionals.h, localfunctional.h, etc

5. Once you have finished and are sure that your example is running correctly and
you want to use the automated test scripts —see 3) above— You need to store new
test information to account for your changes.

To do so, change to the Test sub-directory and run the test:
./test.sh Test

Note that this should fail, otherwise you have not changed anything in the program,
or forgot part 3) of this description.

If it failed have a look into the file dope.log and see whether you like the output.
If you do not like it you may wish to update the file test.prm that takes care of
the parameters for the test run.

Once your satisfied with what you see in the log-file dope.log you need to store
that information using

./test.sh Store
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5.1 Stationary PDEs

5.1.1 Stationary Stokes Equations
General problem description

In this example we consider the stationary incompressible Stokes equation . Here, we use
the symmetric stress tensor which has a little consequence when using the do-nothing
outflow condition. In strong formulation we have

1
—§v-(w+wT) +Vp=f (5.1)
V-v=0

on the domain ©Q = [—6,6] x [0,2]. We split 0 = I'p U Ty, The right hand side of
the channel is ',y on which we describe the free outflow condition, on the rest of the
boundary we prescribe Dirichlet values (An parabolic inflow on the left hand side and
zero on the upper and lower channel walls). We choose for simplicity f = 0.

As code verification, we evaluate two different types of functionals. First a point
functional measuring the z-velocity and a flux functional

/ v-nds,
l_‘out

on the outflow boundary. Both a described in the functionals.h file as described below.

Program structure

In all examples, the whole program is split up into several files for the sake of readability.
These files are always denoted in the same way, so we only have to explain the general
structure in this first example, whereas in the following examples, we will only point out
differences to the current one. The content of the single files will be described in more
detail below.

If we do not use one of the standard grids given in the deal.Il library, we can read
a grid from an input file. In our example, the domain Q = [—6,6] x [0,2] is given in
the channel.inp file, where all nodes, elements and boundary lines are listed explicitly
and the boundary is divided into disjoint parts by attributing different colors to the
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boundary lines.

Certain parameters occurring during the solution process, e.g. error tolerances or the
maximum number of iterations in an iterative solution procedure, are fixed in a parame-
ter file called dope.prm. This parameter file comprises several subsections corresponding
to different solver components.

In the functionals.h file we declare classes for different scalar quantities of interest (de-
scribed mathematically as functionals) which we want to evaluate during the solution
process.

The localfunctional.h file is relevant only if we want to solve an optimal control prob-
lem. In this case, it contains the cost functional, whereas the file is not needed for the
forward solution of PDEs. We will get back to this later in the context of optimal control
problems.

All information about the PDE problem (in the optimal control case about the con-
straining PDE) is included in the localpde.h file. In a class called LocalPDE, we build
up the element equation, the element matrix and element right hand side as well as
the boundary equation, boundary matrix and boundary right hand side. Later on, the
integrator collects this local information and creates the global vectors and matrices.

The most important part of each example is the main.cc file which contains the int
main() function. Here we create objects of all classes described above and actually solve
the respective problem.

The functionals.h file

Here, we declare all quantities of interest (functionals), e.g. point values, drag, lift,
mean values of certain quantities over a subdomain etc.
Each of these functionals is declared as a class of its own, but in DOpElib all classes are
derived from a so-called FunctionalInterface class.
As already mentioned previsously, in the current example we declare functionals for
point values of the velocity and for the flux at the outflow boundary of the channel.

The localpde.h file

The LocalPDFE is derived from a PDEInterface class. It comprises several functions
which build up the element and boundary equations, matrices and right hand sides. The
weak formulation of problem (5.1) with f =0 is

(V0. Vg)a + (V7 Vo)a — (b,V @)+ (V-0,0)a — (n- Vo7 d)r,,, = 0. (5.2)
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Remark 5.1.1. Note the additional term on I'y,;, which is a consequence of the use of
the symmetric stress tensor together with the free outflow condition.

This problem is vector valued, i.e. the velocity variable v has two components and the
pressure variable p is a scalar. For the implementation, we use a vector valued solution
variable with three components, where the distinction between velocity and pressure is
done by use of the deal.ll FEValuesExtractors class.

Furthermore, in DOpElib we always interpret the problems in the context of a Newton
method. Usually, a PDE in its weak formulation is given as

a(u; ) = f(p).

The left hand side is implemented in the ElementEquation function, the right hand
side is implemented in the ElementRightHandSide function (which is unused in this
example, because f = 0).

Remark 5.1.2. The weak formulation might contain some terms on faces or (parts of) the
boundary. DOpE is able to handle these via BoundaryEquation, BoundaryRightHandSide
etc.. To keep things simple, we neglect these terms in this introduction.

To apply Newton’s method, this problem is linearized: on the left hand side, we have
the derivative of the (semilinear) form a(-;-) with respect to the solution variable u, and
the right hand side is the residual of the weak formulation:

ay (usu™, @) = —a(u; @) + f(p).

In the ElementMatrix function, we implement the following matrix A as representation
of the derivative on the left hand side:

A = (d),(w; 05, 05)) s

with the number N of the degrees of freedom. Similarly, the ElementEquation contains
the vector

N
a = a(u; pi)il,
and the ElementRightHandSide in the case f # 0 would contain a vector
7 N
f=(f Soi)i:1~
The system of equations which is then actually solved is

Aut = —a+ f.

Because of the linearity of equation (5.2)), there is almost no difference between the two
functions.

At this point, it is important to note that DOpE interprets any given problem as a
nonlinear one which is solved by Newton’s method; the special case of linear problems is
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included into this general framework.
The main.cc file

First of all, several header files have to be included that are needed during the solution
process. We divide these includes into blocks corresponding to DOpE headers, deal.ll
headers, C++ headers and header files of the example itself (like the ones mentioned
above).

Furthermore, we define names for certain objects via typedef which act as abbreviations
in order to keep the code readable. In our case, these are 0P, IDC, INTEGRATOR,
LINEARSOLVER, NLS, SSOLVER and STH.

In the int main() function, we first create a possibility to read the parameter values
from the dope.prm file. Then there are several standard steps for finite element codes
like

e definition of a triangulation and create a grid object (which we read from the
channel.inp file)

e creation of finite element objects for the state and the control and of quadrature
formula objects

and in addition, we

e create objects of the LocalPDE class and of the different functional classes declared
in the functionals.h file.

Remark 5.1.3. Up to now we have to create a pseudo time even for stationary problems.
The

MethodOfLines_StateSpaceTimeHandler object (DOFH) which is needed for the initial-
ization of OP requires a vector in which timepoints are specified. However, this is again
merely a dummy variable, for we do not actually apply a time stepping method in the
stationary case. This will also be removed in future versions of DOpE.

Before we initialize the SSolver object and actually solve the problem, we have to set
the correct boundary conditions. Via the compmask vector, we ensure that the boundary
conditions are set only for the velocity components of our solution vector. We set
homogeneous Dirichlet values at the upper and lower boundaries of the channel. The
inflow is described by a parabolic profile at the left boundary (the corresponding function
class is declared in the myfunctions.cc file), whereas we do not prescribe anything at the
outflow boundary (so-called do-nothing condition).

The output of the program (the two functional values) is rather unspectacular; as the
problem is linear, the solution is computed within one Newton step.
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5.1.2 Laplace equation with periodic BC
General problem description

We solve the vector values Laplace equation on a quadratic domain 2 with a circular
hole in the middle, i.e. in strong formulation we look for u = (u1,u2) s.t.

~V - (Vu)=f in Q.

We set zero Dirichlet values on the circular boundary in the middle of the domain and
periodic boundary conditions on the other parts of the boundary. We choose the flux
over the right hand side boundary as functional. We choose

flz,y) = (cos (exp(10z)) y*x + sin(y), cos (exp(10 x y)) 2y + Sin(a:))

for the right hand side. As code verification, the mass flux on one boundary part is
evaluated.

Program description

This example show how to implement user defined DoF constraints. DOpElib has an
interface for this, namely UserDefinedDoFConstraints. In our case, we derive the class
PeriodicityConstraints, overwrite the method MakeStateDoFConstraints and give
an instance of this class to SpaceTimeHandler at hand:

PeriodicityConstraints<DOFHANDLER, DIM> constraints_mkr;
STH DOFH(triangulation, state_fe);
DOFH.SetUserDefinedDoFConstraints (constraints_mkr) ;

This is all it takes. We refer to myconstraintsmaker.h for the details of the implementa-
tion of the periodicity-constraints.
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5.1.3 Stationary Stokes Equations with hp-Elements
General problem description

In this example we consider the same setting as in subsection the only difference
is that we want to employ the hp-Finite-Elements. So the equation we solve is still the
stationary incompressible Stokes equation . Here, we use the symmetric stress tensor
which has a little consequence when using the do-nothing outflow condition. In strong
formulation we have

1
—5V (Vo + Vol ) + Vp=f (5.3)
V-v=0

on the domain ©Q = [—6,6] x [0,2]. We split 9 = I'p U5y The right hand side of
the channel is I'y,; on which we describe the free outflow condition, on the rest of the
boundary we prescribe Dirichlet values (An parabolic inflow on the left hand side and
zero on the upper and lower channel walls). We choose for simplicity f = 0..

Adding hp-Elements

One sees by comparing the main. cc-file of this problem with the one of subsection
that the change to hp-Elements is really easy, so we will keep the description short. In
comparison to example the localpde.h and functionals.h have not changed, but we
have one additional file, namely indezsetter.h, in which the class ActiveFEIndexSetter
is defined.

In the hp-framework we have a stack of finite elements (a hp: :FECollection) given.
We assign each element of the triangulation an fe-index which determines which finite
element we use on this element. The ActiveFEIndexSetter class manages these indices,
see there for more information.

The changes in main.cc are also minimal and are highlighted in the source code.
Obviously, we use FECollection and QCollection as well as a different DoFHandler.

#define DOFHANDLER hp::DoFHandler
#define FE hp::FECollection

typedef hp::QCollection<DIM> QUADRATURE;
typedef hp::QCollection<DIM - 1> FACEQUADRATURE;

Apart from that we have only to tell the space time handler the distribution of the finite
element indices:

ActiveFEIndexSetter<2> indexsetter (pr);
STH DOFH(triangulation, state_fe_collection, indexsetter);
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5.1.4 Laplace Equation in 2D
General problem description

In this problem we solve the simple vector valued Laplace equation in 2d on the unit
square 2 = [0,1]?, i.e. in strong formulation we look for u = (u1, ug) s.t.

—Au=f in Q.

We set zero Dirichlet values on 0I' and choose f = (1,1). The classical example of a
PDE.

Remark 5.1.4 (Why this example?). Originally, DOpE1ib was designed for coupled and
nonlinear problems with possible PDE-based optimization extensions. Later, we decided
to add the most simplest PDE (the Laplace/Poisson equation) in order to demonstrate
how DOpE treats this well-known example. In addition, the first-time user might start
here to get a feeling for DOpElib and its capabilities.
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5.1.5 Adaptive Solution of Laplace Equation in 2D
General problem description

This example shows the use of the adaptive grid refinement and error estimation by the
DWR method (For a description of the method, see [3].) applied to the Laplace equation

—Au=f inQ
with the analytical solution
) 7
u = sin (M) ,
the corresponding right hand side f = —Awu and appropriate Dirichlet Conditions on

0%}, where the domain is given by
Q = [-2,2]*\ Bos(0).
We want to estimate the error in the following functional of interest

J : HY{(Q) — R

1
(TR — ﬁfrudx

where I' = {(z,y) e R? |2 =0,-2 < y < 0.5}.
For this setting, we have the error representation

J(e) = Z {(Rh, z— wh)K + (Th, z— ¢h)3K} (5.4)

KeTy

with the error e = u — up, the Triangulation Ty, the dual solution z, arbitrary function
on € Vj, (the ansatz space) and the element- and edge-residuals:

Rp| e = f+ Auy, (5.5)

resp.

$0pun], if T C Ok \ O,
Tl = :
0, if ¥ C 99.

It holds J(u) ~ 0.441956231972232.

Program description

In this section we want to focus on what you have to do if you want to enhance your
existing code to use the DWR method.

First, additionally to all the things one has to do when just solving the equation, we
have to include the file
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higher_order_dwrc.h

As we approximate the so called ’weights’ z — ¢, in the error representation by a
patchwise higher order interpolation of zj, (the computed dual solution), we have to
enforce patch-wise refinement of the grid by giving the flag

Triangulation<2>::MeshSmoothing: :patch_level_1

to the triangulation.
To be able to solve the adjoint equation for the error estimation one needs to implement
some methods regarding the equation as well es the functional of interest:
e In pdeinterface.h
— ElementEquation_U: Weak form of the adjoint equation.
— ElementMatrix_T: The FE matrix for the adjoint problem.
— FaceEquation_U: This one is needed in this case here because we have a
functional of interest that lives on faces.
e functionalinterface.h

— FaceValue_U: This is the right hand side of the adjoint equation.
During the evaluation of ([5.4), the following methods are needed
e StrongElementResidual: The element residual, see .
e StrongFaceResidual: The terms in that lies in the interior (i.e. the jumps).

e StrongBoundaryResidual:The terms in (5.4) that lies on the boundary (There are
none in this case).

Note that in the above three functions we always apply the method ResidualModifier
both to the residual as well as to the jumps on the faces. This is done to assert that we
can apply both a DWR-~error estimator where the residual should be multiplied with the
computed weights (then this function does not do anything) as well as Residual Type
error estimator for the L? or H' norm where we need to calculate element wise norms of
the residual and the jumps. Then this function calculates the appropriate local terms,
e.g., the square of the residual scaled with appropriate powers of the local mesh size.

After this, we tell the problem which functional we want to use for the error estimation,
this is done via

P.SetFunctionalForErrorEstimation (LFF.GetName())

where P is of type PDEProblemContainer and LFF is the desired functional of interest.
The next thing we need is an object of the type

HigherOrderDWRContainer
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This container takes care of the computation of the weights.
To build this, we need the following:

e DOFH_higher_order: With some higher order Finite Elements and the already
defined triangulation, we build this SpaceTimeHandler. This is needed because
we want to use the patch-wise higher order interpolation of the weights.

e idc_high: A IntegratorDataContainer in which we put some (face)quadrature
formulas for the evaluation of the error Identity.

e A string which indicates how we want to store the weight-vectors (here: "fullmem").
e pr: The ParameterReader which we have already defined.

e A enum of type EETerms that tells the container, which error terms we want to
compute (primal error indicators vs. dual error indicators, see [3]).

The last preparation step is now to initialize the DWRDataContainer with the problem
in use:

solver.InitializeHigherOrderDWRC (dwrc) ;

Succeeding the solution of the state equation
solver.ComputeReducedFunctionals();
we compute the error indicators by calling
solver.ComputeRefinementIndicators(dwrc);
We can now get the error indicators (with signs!) out of dwrc by
dwrc.GetErrorIndicators();

With these indicators, we are now able to refine our grid adaptively (there are several
mesh adaption strategies implemented, like 'RefineOptimized’, 'RefineFixedNumber’ or
'RefineFixedFraction’)

DOFH.RefineSpace (RefineOptimized (optimized, error_ind));

Note, that one has to take the norm of each entry in the vector of the error indicators
before feeding them into the RefineSpace method.
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5.1.6 Laplace Equation in 3D
General problem description

In this problem we solve the simple vector valued Laplace equation in 3d on the unit
square © = [0,1]3, i.e. in strong formulation we look for u = (u1, us,u3) s.t.

—Au=f in Q.

We set zero Dirichlet values on OI' and choose f = (1,1,1).

Program description

The PDE is discretized with Q3-elements on a series of locally refined grids (we use the
KellyErrorEstimator). The algebraic equations are solved with different iterative lin-
ear solvers acting on different vector and matrix-structures (i.e. we use dealii::BlockVector
and dealii::Vector plus the appropriate matrix classes).

To switch the linear solver is pretty easy since the newton solver has a template for
the linear solver. Thus changing this template is all that is required.

To change the structure of the vectors and matrices involves also only the change of
some template parameters. Our example programs are mostly build such that only a
change of some typedefs is required, i.e. one has to interchange the lines

typedef SparseMatrix<double> MATRIX;
typedef SparsityPattern SPARSITYPATTERN;
typedef Vector<double> VECTOR;

with

typedef BlockSparseMatrix<double> MATRIX;
typedef BlockSparsityPattern SPARSITYPATTERN;
typedef BlockVector<double> VECTOR;

to switch between the block and non-block structures.

After solving the equation, we want to apply local mesh refinement. So first we
extract with the help of the SolutionExatractr-class the vector solution representing
the finite element solution

SolutionExtractor<SSolverl, VECTORBLOCK> al(solverl);
const StateVector<VECTORBLOCK> &gul = al.GetUQ);
solution = gul.GetSpacialVector();

With this vector we estimate the error via KellyErrorEstimator and get a vector
holding the estimated error per element. After choosing a refinement criterion (see
refinementcontainer.h, we opt here for refining the top 20% of the elements), we give
the SpaceTimeHandler an object of type RefinementContainer which holds all the
information needed for the local mesh refinement. This is done via the RefineSpace
method.
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DOFH1.RefineSpace(
RefineFixedNumber (estimated_error_per_element, 0.2, 0.0));

This method transfers our solution onto the new mesh. The transferred solution is then
taken as the starting guess of the newton method in the next solution cycle. This is
especially helpful for nonlinear problems.
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5.1.7 Stationary Elasticity Benchmark
General problem description

In this example we consider the following benchmark problem from elasticity theory:

(0(u),e(¢)) = (9, #)ry- (5.7)

Here € is a quadratic domain with side length 200 mm, where a circular hole with radius
10 mm around the center is cut out. Using symmetries of the domain, we restrict our
actual computational domain € to the upper left quarter of Q.

In the above equation, e(v) := %(Vv + VoT) is the symmetric strain tensor, and

o(v) :=2ue(v)? + ptr(e(v))I = 2us(v) + Mr(e(v)),

denotes the symmetric stress tensor. Here 77 is the deviatoric part of a tensor 7, in two
dimensions defined as

1
=7 5257“(7')17

and the parameters p and p are chosen as p = 80193.800283 resp. p = (u+ A) =
190937.589172. We notice that 4 and A denote the usual Lamé parameters.

The corner points of our computational domain are in anticlockwise order: (0, 0), (90, 0),
(100, 10), (100, 100) and (0,100). We prescribe homogeneous Dirichlet boundary con-
ditions in y-direction between (0,0) and (90,0) (lower boundary part), homogeneous
Dirichlet boundary conditions in z-direction between (100,10) and (100,100) (right
boundary part), and we interpret the right hand side of equation (1) with g = 450
as a boundary condition between (0,100) and (100, 100) (upper boundary part).

The goal of our computations is to match the following functional reference values taken
from E. Stein (editor), Error-controlled Adaptive Finite Elements in Solid Mechanics,
Wiley (2003), pp. 386 - 387:

Functional up at (90,0) o092 at (90,0) w9 at (100, 100)
Reference value 0.021290 1388.732343 0.20951
Functional uy at (0,100) f((100,(1)0100)0) U2

Reference value 0.076758 20.40344

Program description

From the previous examples we know how to read a grid from an .inp file. The grid of
our current example comes from the above mentioned benchmark problem.

Apart from different point values of derivatives of the solution, we want to evaluate an
integral over part of the boundary. This is newly implemented in functionals.h.

In principle, everything is clear from the preceding examples. We refine the grid glob-
ally instead of using an error estimator for local refinement. The output of the program
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reflects again the linearity of the problem (only one Newton step is needed for solution).
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5.1.8 Stationary Plasticity Benchmark
General problem description

Similar to the previous example, we consider the following benchmark problem from
plasticity theory:
(I(o(u)),e(¢)) = (9, ©)ry- (5.8)

Here Q is again the quadratic domain with a circular hole around the center cut out.
Again, we restrict our actual computational domain {2 to the upper left quarter of Q for
reasons of symmetry.
We use the symmetric strain tensor e(v) := %(VU + VoT), and the symmetric stress
tensor o is defined as

o(v) == 2ue(v)? + ptr(e(v))I = 2ue(v) + Mr(e(v))1,

where 7P is the deviatoric part of a tensor 7, in two dimensions defined as
1
=7 §tr(7—)l'

Furthermore, the (standard) Lamé parameters are denoted by p and A and which are
more conveniently (here and in the code) expressed through p = p+ X\ and kK = 2u + .
The main difference with respect to the elastic case is the projection operator II in
equation (1). It is defined as follows:

1(r) = T |TD] < oy
) oo|tP|7 P+ %tT‘(T)I |7P| > og

In our computations, we choose oy = \/g - 450, and the above parameters u, A and p as
p = 80193.800283, A = 110743.788889, and p = 190937.589172, respectively. The corner
points of our computational domain are the same as before, and the boundary conditions
are not altered, either.

The goal of our computations is to detect a subdomain in €2 where plastic behavior
occurs (compare E. Stein (editor), Error-controlled Adaptive Finite Elements in Solid
Mechanics, Wiley (2003), pp. 386 - 389). This subdomain depends on the right hand
side g in equation (1) which we write as g = A - p with p = 100 and A € [1.5;4.5].

Program description

The code of the current example is nearly identical to the code of the previous one. The
only difference worth mentioning is the change of the equations which leads to different
implementations of the ElementEquation, ElementMatrix and BoundaryEquations
functions in localpde.h.

Furthermore, the elasticity equations solved in the last example are linear, whereas the
plasticity equations are nonlinear; this difference is evident also from the output (here,
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we need several Newton steps until convergence).

The functionals that appear in the output yield additional information and are not re-
quired in the above problem setting. The subdomain with plastic behavior we want to
detect can be visualized from the .vtk files written to the Results/Mesh subfolders.
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5.1.9 Stationary FSI with Stokes and INH Material
General problem description

In this example we consider a simple stationary FSI problem. The fluid is given as
an incompressible Newtonian fluid modeled by the Stokes equation. Here, we use the
symmetric stress tensor which has a little consequence when using the do-nothing outflow
condition, see also section The computation domain is = [—6,6] x [0, 2] and we
choose for simplicity f = 0.

The fluid reads:

Problem 5.1.5 (Variational fluid problem, Eulerian framework). Find {vs,ps} € {v]l? +
V'} x L¢, such that,

(05, V), = (ng-gJ,0")r, Vo' € Vy,
(diV Uf,¢p)Qf =0 V¢p€Lf.
The Cauchy stress tensor oy is given by
of:=—prl + prrvy(Voy + VU?), (5.9)

with the fluid’s density py and the kinematic viscosity vy. By ny we denote the outer
normal vector on I'; and by g% is a function which describes forces acting on the interface.
These will be specified in the context of fluid-structure interaction models.

We define: ) R A A X
T:=id+a, F:=1+Va, J:=det(I+ Va).

The structure equations are given by incompressible neo-Hookean material

Problem 5.1.6 (Incompressible neo-Hookean Model (Lagrangian)).

(js&sF;T,ﬁév)Qs = < Asﬁs : Q?FQT,&?”%Z. V(ng € Vs
(Bs,6")g, =0 Vo € Vi,
(j - 17§£p)§25 =0 vép € IA/sa

where ps is the solid’s density, pus the Lamé coefficient, ng the outer normal vector at
T';, g7 the force on the interface and with

Gy = —ps] + ps(FFT = 1).
The resulting FSI problem is then given by:
Problem 5.1.7 (Stationary Fluid-Structure Interaction (ALE)).
(Jo, BT, %v)ﬂf + (Jo 7T, V) =0 Vg eV,
(0,6, + (Vi V') =0 Vo' eV,
(%(jﬁ—lﬁf),ép)ﬁf +(J 1,7 =0 VP e,
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Remark 5.1.8. In the problems above and the code, we implement the term
(05, 9",

although this is not physically necessary. It is first for computational convenience in
order to extend the fluid velocity variable to the whole domain. This could be resolved
by using the FE Nothing element. Second, using 0s; here makes it easier to understand
the nonstationary FSI problem.

Program description

In the localpde.h file, all functions of the LocalPDE class have to be adjusted to the current
FSI problem. This only makes the equations and matrices a little more complicated,
and our solution vector now consists of five components (two velocity components of
the fluid, the pressure component, and two additional displacement components for the
structure variables). Otherwise, everything is analogous to the former example.

In the main.cc we only have to add two components to the compmask vector and prescribe
boundary conditions for the structure variables. Apart from that, we define objects for
the same classes as before that are even named equally and use the same solvers.
Again, the solution is reached within one Newton step, and all we see from the program
output is the values of the functionals.
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5.1.10 Stationary FSI with Navier-Stokes and STVK Material
General problem description

This example is an extension the previous one. We solve an stationary FSI problem either
with INH material (see Problem definition before) or St. Venant Kirchhoff material
STVK:

Problem 5.1.9 (Compressible Saint Venant-Kirchhoff, Lagrangian framework). Find
{as} € {aP +V}, such that

(Jooslis) Fy T,V ) g, = (Johs - g7F; T, 0%, VoY € Vi (5.10)

where pg is the density of the structure, us and As the Lamé coefficients, ns the outer
normal vector at I';, g7 some forces on the interface. The properties of the STVK
material is specified by the constitutive law

6s(lis) == JYF(\(trE)T + 2u, E)FT. (5.11)

Remark 5.1.10. In the code, we also implement

(Vs @),

although this is not physically necessary. It is first for co