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1 Foreword

In this report, we describe the DOpElib Differential Equations and Optimization Envi-
ronment project. Originally, the project was initiated in the year 2009 at the University
of Heidelberg (Germany) in the numerical analysis group of Rolf Rannacher.

The main feature of DOpElib is to give a unified interface to high level algorithms
such as time-stepping methods, nonlinear solvers and optimization routines. DOpElib is
designed in such a way that the user only needs to write those parts of the code that
are problem dependent while all invariant parts of the algorithms are reusable without
any need for further coding. In particular, the user is enabled to switch between various
different algorithms without the need to rewrite the problem dependent code, though
obviously he or she will have to replace the algorithm object with an other one. This
replacement can be done by replacing the appropriate object at only one point in the
code. In addition to the finite element code provided by deal.Il —which at present is
the only FE-toolkit to which we provide an interface— the presented library DOpElib
is user-focused by delivering prefabricated tools which require adjustments by the user
only for parts connected to his specific problem. This is in contrast to deal.Il which
leaves the implementation of all high-level algorithms to the user.

An innovative feature of DOpElib is to provide a software toolkit to solve forward PDE
problems as well as optimal control problems constrained by PDE. DOpE1ib concentrates
on a unified approach for both linear and nonlinear problems by interpreting every PDE
problem as nonlinear and applying a Newton method to solve it. The focus is on the
numerical solution of both stationary and nonstationary problems which come from
different application fields, like elasticity and plasticity, fluid dynamics, and multiphysics
problems such as fluid-structure interactions.

At the present stage the following features are supported by the library

e Solution of stationary and nonstationary PDEs in 1d, 2d, and 3d.

e Various time stepping schemes (based on finite differences), such as forward Euler,
backward Euler, Crank-Nicolson, shifted Crank-Nicolson, and Fractional-Step-©
scheme.

e All finite elements of from deal.Il including hp-support.

e Self-written line search and trust region newton algorithms for the solution of
optimization problems with PDEs [12]

e Interface to SNOPT for the solution of optimization problems with PDEs and
additional other constraints.
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e Several examples showing how to solve various kinds of optimization problems
involving stationary PDE constraints.

e Mesh adaptation and goal-oriented error estimation with the dual-weighted resid-
ual (DWR) method.

e Different spatial triangulations for control and state variables.

e Several examples showing the solution of several PDEs including Poisson, Navier-
Stokes, plasticity, fluid-structure interaction problems, a coupled Biot-Lamé-Navier
system, and finally from financial mathematics the Black-Scholes equations.

The rest of this document is structured as follows: We start with an introduction
in Chapter [2| where you will learn what is needed to run DOpElib. Further you will
learn what problems we can solve and how all the different classes work together for this
purpose. This should help you figure out what the different classes do if you are in need
of writing your own algorithm.

Then assuming that you can work to your satisfaction with the algorithms already
implemented we will show you how to create your own running example in Chapter
This will be followed by a detailed description of all examples already shipped with the
library. You can find the examples for the solution of PDEs in Chapter [5| and those for
the solution of optimization problems with PDEs in Chapter [6

These notes conclude with a section that explains how we do automated testing of the
implementation in Chapter [/} This chapter will be of interest only if you are trying to
implement some new features to the library so that you can check that the new code did
not break anything.

Thanks: The DOpElib project is mainly based on the deal.Il finite element library
which has been developed initially by W. Bangerth, R. Hartmann, and G. Kanschat [I]
and now maintained by [2]. Special thanks go to them!

In addition to deal.Il, the authors gratefully acknowledge their past experience as well
as discussions with the authors of the software toolkits Gascoigne and RoDoBo [10] and
[14], from which some of the ideas to modularize the algorithms have arisen. Similar
thanks go to the developers of Ipopt, [16].

Last, but not least, we would like to express our gratitude to all contributors listed in
Section for their respective contribution to the library.

Special thanks go to Christian Goll who has been a great help in maintaining and
developing this library from 2009 until 2015.



2 Introduction

2.1 How to get DOpElib

There are two ways to obtain a copy of DOpElib:

A) You can obtain a copy of DOpElib from the developers svn repository using
svn co --username=[your username] \
https://svn.dopelib.net/dope
(The backslash in the first line means that the line will be continued as one!)

Note that you need a valid username and password. If you have none, please contact
the maintainers by sending an EMail to dope@dopelib.netl

B) You can download the sources as a tar-ball from the project website
http://wuw.dopelib.net!.

2.2 License information

Copyright (C) 2012-2014 by the DOpElib authors
This file is part of DOpElib

DOPpElib is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

DOpElib is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more de-
tails.

Please refer to the file LICENSE.TXT included in this distribution for further informa-
tion on this license.


dope@dopelib.net
http://www.dopelib.net
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2.3 References

If you like the library and use it for your own projects, please give credits by referencing
the project DOpElib [9] using the following bibtex entry:

@QMISC{dope ,
key = {DOpElib},
title = {The {D}ifferential {E}quation and
{O}ptimization {E}nvironment: \textsc{DOpElib}},
url {http://www.dopelib.net},
note = {\texttt{http://www.dopelib.net}}

2.4 Contributors & Developers

The library is currently maintained by
e Christian Goll (Heidelberg University)

e Thomas Wick (Johann Radon Institute for Computational and Applied Mathe-
matics (RICAM))

e Winnifried Wollner (Technische Universitt Darmstadt)
We would like to express our gratitude to the former maintainer
e Christian Goll (Maintainer from 2009-2015)
Furthermore, there are more highly appreciated contributions made by

e Michael Geiger (Examples for Plasticity, and Documentation of several PDE-
Examples)

e Masoud Ghaderi (Augmenting the Documentation)
e Uwe Kocher (Makefile compatibility)
e Francesco Ludovici (Augmenting the Documentation)

e Matthias Maier (CMake)

2.5 Software requirements

The library DOpE has been tested to work on both Linux and MAC OSX. See also the
README. 0SX file
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251 g++

DOpElib requires a recent g++ (at least 4.4.3) due to some new C++ features imple-
mented in C++0x and C++11. You can check the version number using the command-line
argument g++ -v.

Under Linux-systems this typically means that you have to do nothing if you have
a recent version number. Otherwise you can either install the required version of g++
using the appropriate software installation tool, or you can build the required version
from source gcc.gnu.org.

Under MAC OSX, you need to install the XCode tools delivered with the operating
system or available for free developer.apple.com/xcode. Unfortunately, the delivered
version of g++ is too old, so you need to install the real thing. To do so, download
MacPorts from macports.org. Once you have installed MacPorts you can use it to
install additional Linux software. First, update the MacPorts installation sudo port
selfupdate after that you can install a new version of g++ using for instance sudo
port install gcc4b to install version 4.5 of the compiler. Afterwards, you need to set
the search path appropriate to find the macports version of g++, to check if this has
been done use g++ -v.

2.5.2 deal.ll

This library is mainly based upon deal.II hence in order to run DOpElib you need a
running copy of deal.II.

The deal.II library is open source and is freely available for noncommercial project.
It can be downloaded from http://www.dealii.org/. On this homepage, one also finds
lots of further information on deal.Il as well as an extensive tutorial where many features
of deal .IT are discussed in a well-documented example framework. In order to use DOpE,
it is recommendable to be roughly acquainted with deal.Il.

When installing deal.II you should take care to configure it to use UMFPACK, i.e.,
./configure --with-umfpack in version up to 7.3.0. From 8.0.0 on, deal.Il is compiled
with cmake, which makes the inclusion of external packages easier. Detailed installing
instructions for deal.IT (here the last version 8.1.0) can be found on
http://www.dealii.org/8.1.0/readme.html.

2.5.3 ThirdPartyLibraries

In order for DOpPE to be able to auto-detect some of the installed Third Party Libraries you
should generate according links in the ThirdPartyLibs. See also ThirdPartyLibs/README.

SNOPT

If you would like to use the features offered in our SNOPT wrapper. You will need to
obtain a license for SNOPT http://www.sbsi-sol-optimize.com/asp/sol_product_
snopt.htm. Unfortunately this is at present not available for free, but you should check
if there is a department license already available. For further information you should


http://www.dealii.org/
http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm
http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm
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consult the file ThirdPartyLibs/SNOPT.INSTALLNOTES. In particular you need to con-
figure deal.II with at least the following options:

./configure --with-umfpack --with-blas --with-lapack (up to 7.3.0) or enabling
UMFPACK in the ccmake options from version 8.0.0 on.

IPOPT

If you would like to use the optimization routines offered by IPOPT https://projects.
coin-or.org/Ipopt| you can install this yourself and add a symlink as described in
ThirdPartyLibs/README.

Alternatively, you can use installation script ThirdPartyLibs/install-free-libs.sh.
Note that to use all available linear solvers you may have to obtain a corresponding li-
cense manually. This is true in particular for the HSL solvers MA27, . ... For information
on these see the information provided by the installation script.

The installation is straighforward and has been tested on openSUSE 12.1 machines
as well as on MAC. At the end of the installtion do not forget to add ipopt to your
LD LIBRARY PATH:

s o o o o o 3 KKK KKK K K R K oK o o KKK KKK K K oK oK oK o 3 KKK KKK K R K oK ok o KK K KK KK K
Installation complete!
Add /home /..../ dopelib —2.0/ ThirdPartyLibs/ipopt/lib64
to your LD\ _LIBRARY\PATH variable

3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk skosk sk sk sk skosk sk sk sk skosk sk skosk skosk sk sk sk skosk sk osk sk sk sk sk sk sk skosk sk skosk skoskosk sk sk sk skok sk kosk ok k

2.6 Installation
2.6.1 Until Version 2.0

To work with DOpElib, your need necessarily deal.Il, which installation we describe first.
Afterwards, the DOpEIlib installation is described and finally other optional packages
might be installed.

e Install deal.II to your home directory, i.e., it should be located in
~/deal.Il.
If you would like to have another path you will either have to manually edit the files
DOpEsrc/source/Makefile and Examples/Make.global options and replace the
line
D = $(HOME)/deal.II with the appropriate path.
Detailed installing instructions for deal.Il (here the last version 8.1.0) can be
found on http://www.dealii.org/8.1.0/readme.html. The deal.Il installation
instructions are descriptive enough and we omit any further comments and refer
to their webpage.

e Get a copy of DOpElib, see Section for details.

10
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Unpack in your preferred directory:

“/Software/> tar —xzf dopelib —2.0.tar.gz
to get
“/Software/dopelib —2.0

To build the DOpElib you have to change to the directory DOpEsrc where you can
call

“/Software/dopelib —2.0/DOpEsrc> make all

to build the library. You also get various installation options by just typing make.
To generate documentation, please go into:

“/Software/dopelib —2.0/Examples

Here, you get all options by typing:

make

Specifically, you can create and run all examples, running a test suite, and gener-
ating documentation:

= Makefile for the DOpE documentation

The following targets exist:

= all : Make all examples (in optimized mode)

z allignore : Make all examples (in optimized mode), ignore errors.
z clean :  Cleaning up all examples

i tests : Run all test param data.

z cat : Run clean, run all, run tests (combine these commands)
z catignore : Same as cat, but ignores compiler errors.

i pdf—doc :  Create documentation in pdf file format via latexmk

z doc : Create documentation in pdf file format via latexmk

z distclean : Cleaning up, including documentation

i warncheck : Checks whether all Examples compile without warnings

11
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For html documentation, change into:

“/Software/dopelib —2.0/doxygen

and then typing make. Doxygen documentation will require either latex or doxygen
to be installed on your computer.

e If you wish to test if everything worked. To do so you can change to the Examples
directory and make tests which will give you a list of all the examples and whether
they behave as expected by the library, see also Chapter

e If you want to use some of the supported third party libraries install them and
follow the instructions in ThirdPartyLibs/README. There may be further informa-
tion in some ThirdPartyLibs/*.INSTALLNOTES that you may want to consider.

As example, the installation of ipopt works as follows:
In the path /dope/ThirdPartyLibs> type in the terminal
./install-free-libs.sh

2.6.2 After Version 2.0 - CMake build system

To work with DOpElib, your need necessarily deal.Il, which installation we describe first.
Afterwards, the DOpElib installation is described and finally other optional packages
might be installed.

e Install deal.II to your home directory, i.e., it should be located in
~/deal.Il.

If you prefer another position you can install it anywhere but need to set the
DEAL_II_DIR environment variable, so that it will be found by cmake, i.e.,

export DEAL_II_DIR=[path to deal.ii]

Detailed installing instructions for deal.Il (here the last version 8.1.0) can be
found on http://www.dealii.org/8.1.0/readme.html. The deal.Il installation
instructions are descriptive enough and we omit any further comments and refer
to their webpage.

e Get a copy of DOpElib, see Section for details.

e Unpack in your preferred directory:

“/Software/> tar —xzf dopelib —3.0.tar.gz

to get
“/Software/dopelib —3.0

To build the DOpElib you have to change to the directory DOpEsrc where you can
call

12
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“/Software/dopelib —3.0/DOpEsrc> make c—all

to build and configure the library using cmake. You also get various installation
options by just typing make.

To generate documentation, please go into:
“/Software/dopelib —3.0/Examples
Here, you get all options by typing:

make

Specifically, you can create and run all examples, running a test suite, and gener-
ating documentation:

= Makefile for the DOpE documentation

= The following targets exist:

= all :  Make all examples (in optimized mode)

z c—all : Make all examples using cmake

z allignore : Make all examples (in optimized mode), ignore errors.
z clean :  Cleaning up all examples

z tests : Run all test param data.

z cat : Run clean, run all, run tests (combine these commands)
z c—cat : Run clean, run c—all, run tests (combine these commands)=
= catignore : Same as cat, but ignores compiler errors.

z pdf—doc : Create documentation in pdf file format via latexmk

z doc : Create documentation in pdf file format via latexmk

z distclean : Cleaning up, including documentation

z warncheck : Checks whether all Examples compile without warnings

The new options are ¢ — all and ¢ — cat utilizing the cmake build system. For html
documentation, change into:

“/Software/dopelib —3.0/doxygen

13
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and then typing make. Doxygen documentation will require either latex or doxygen
to be installed on your computer.

e If you wish to test if everything worked. To do so you can change to the Examples
directory and make tests which will give you a list of all the examples and whether
they behave as expected by the library, see also Chapter

e If you want to use some of the supported third party libraries install them and
follow the instructions in ThirdPartyLibs/README. There may be further informa-
tion in some ThirdPartyLibs/*.INSTALLNOTES that you may want to consider.

As example, the installation of ipopt works as follows:
In the path /dope/ThirdPartyLibs> type in the terminal
./install-free-libs.sh

2.7 FAQs

1.) When building the library | get an error message:

e unrecognized command line option ”-std=gnu-+-+0x”
This means that your compiler is too old. You can check the version of your
compiler using g++ -v. If the version is lower than 4.5 you need to get a newer
compiler version.

2.) | have installed a new g++ compiler but g++ -v still finds the old one :

This means that your computer does not find the new compiler. Try which g++ to see
whether it appears in the list of available compilers (but is maybe too far in the back
of the list.) Then you should modify your $PATH environment variable so that the new
g++ compiler appears.

If which g++ only returns one g++ compiler, then probably you need to set an ap-
propriate symlink. Or more robust, you can configure deal.II to use the compiler you
intend by configuring deal with the right compiler. To do so adjust the CC and CXX
environment variable appropriately before configuring deal.II

For example on Mac OSX you will find only one g++ compiler /usr/bin/g++ which
is in fact a symlink to /usr/bin/g++-4.2. So that you need to install a newer compiler.
You can do so, for instance using macports. Then you can find, e.g., g++ version 4.5
on OSX Lion in /opt/local/bin/g++-mp-4.5.

14



3 The Structure of DOpElib

This library is designed to allow easy implementation and numerical solutions of prob-
lems involving partial differential equations (PDEs). The easiest case is that of a PDE
in weak form to find some u

a(u)(¢) =0 Vo eV,

with some appropriate space V. More complex cases involve optimization problems given
in the form (OPT)

min J(q,u)
sit.a(q,u)(¢) =0 Vo eV,
a<qg<hb,
9(q;u) <0,
where u is a FE-function and ¢ can either be a FE-function or some fixed number of

parameters, a and b are constraint bounds for the control ¢, and g¢(-) is some state
constraint.

3.1 Problem description

In order to allow our algorithms the automatic assembly of all required data we need
to have some container which contains the complete problem description in a common
data format. For this we have the following classes in DOpEsrc/container

e pdeproblemcontainer.h Is used to describe stationary PDE problems.

e instatpdeproblemcontainer.h This will be implemented once we have nonsta-
tionary optimization problems running to avoid error duplication in the coding
process.

e optproblemcontainer.h Is used to describe OPT problems governed by stationary
PDEs.

e instatoptproblemcontainer.h Is used to describe OPT problems governed by
nonstationary PDEs. The only difference to the stationary case is that we need to
specify a time-stepping method.

In order to fill these containers there are two things to be done, first we need to actually
write some data, for instance, the semilinear form a(-)(-), a target functional J(-), etc.,

15
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which describe the problem. Then we have to select some numerical algorithm com-
ponents like finite elements, linear solvers .... The latter ones should be written such
that when exchanging these components none of the problem descriptions should require
changes. Note that it still may be necessary to write some additional descriptions, e.g.,
if you solve the PDE with a fix point iteration you don’t need derivatives but if you want
to use Newton’s method, derivatives are needed.

We will start by discussing the problem description components implemented so far

3.2 Numeric components

These are the components from which a user needs to select some in order to actu-
ally solve the given problem. They will not require any rewriting, but sometimes it is
advisable to write other than the default parameter into the param file for the solution.

3.2.1 Space-time handler

First we need to select a method how to handle all dofs in space and time.

e basic/spacetimehandler base.h This class is used to define an interface to the
dimension independent functionality of all space time dof handlers.

e basic/statespacetimehandler.h Another intermediate interface class which adds
the dimension dependent functionality if only the variable u is considered, i.e., a
PDE problem.

e basic/spacetimehandler.h Same as above but with both ¢ and u, i.e., for OPT
problems.

e basic/mol_statespacetimehandler.h Implementation of a method of line space
time dof handler for PDE problems. It has only one spatial dofhandler that is used
for all time intervals.

e basic/mol_spacetimehandler.h Same as above for OPT problems. A separate
spatial dof handler for each of the variables ¢ and u is maintained but only one
triangulation.

e basic/mol_multimesh_spacetimehandler.h Same as above, but now in addition
the triangulations for ¢ and w can be refined separately from one common ini-
tial coarse triangulation. Note that this will in addition require the use of the
multimesh version for integrator and face- as well as elementdatacontainer.

Note that we use these for stationary problems as well, but then you don’t have to
specify any time information.

16
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3.2.2 Container classes

Second you will need to specify some container classes to be used to pass data between
objects. At present you don’t have much choice, but you may wish to reimplement some
of these if you need data that is not currently included in the containers.

container/elementdatacontainer.h This object is used to pass data given on
the current element of the mesh to the functions in PDE, functional, .. ..

container/facedatacontainer.h This object is used to pass data given on the
current face of the mesh to the functions in PDE, functional, .. ..

container/multimesh elementdatacontainer.h This is the same as the ele-
mentdatacontainer, but it is capable to handle data defined on an alternative
triangulation.

container/multimesh facedatacontainer.h This is the same as the facedata-
container, but it is capable to handle data defined on an alternative triangulation.

container/integratordatacontainer.h This contains some data that should be
passed to the integrator like quadrature formulas and the above element and face
data container.

container/refinementcontainer.h The classes defined herein are given to the
RefineSpace method of the SpaceTimeHandler and determine how we define the
spatial mesh (i.e. globally or locally with a fixed fraction, fixed number or ’opti-
mized’ strategy).

3.2.3 Time stepping schemes

Third, at least for nonstationary PDEs we need to select a time stepping scheme the file
names of which are mostly self explanatory:

tsschemes/forward_euler problem.h
tsschemes/shifted_crank nicolson_problem.h
tsschemes/backward_euler_problem.h

tsschemes/fractional_ step_theta problem.h Note that the use of this scheme
requires a special Newton solver, which is, however, already implemented for the
convenience of the user!

tsschemes/crank nicolson_problem.h

17



3 The Structure of DOpElib

3.2.4 Integrator routines

Finally, we need to select a way how to integrate and solve linear and nonlinear equations

e templates/integrator.h This class computes integrals over a given triangulation
(including its faces).

e templates/integrator multimesh.h The same as above but it is possible that
some of the FE functions are defined on an other triangulation as long as the have
a common coarse triangulation.

e templates/integratormixeddims.h This is used to compute integral which are
given in another (larger) dimension than the current variable. (This is exclusively
used if the control variable is given by some parameters. Which means dopedim

== 0).

3.2.5 Nonlinear solvers

e templates/newtonsolver.h This solves some nonlinear equation using a line-
search Newton method.

e templates/newtonsolvermixeddims.h The same but in the case when there is
another variable in a (larger) dimension is involved. See integratormixeddims.h.

e templates/instat_step_newtonsolver.h This is a Newton method as above to
invert the next time-step. It differs from the plain vanilla version in that it com-
putes certain data from the previous time step only once and not in every Newton
iteration.

e templates/fractional step_theta_ step newtonsolver.h This is the Newton
solver for the time step in a fractional-step-theta scheme. It combines the compu-
tation of all three sub steps.

3.2.6 Linear solvers

e templates/cglinearsolver.h This is a wrapper for the cg solver implemented in
deal.II. The solver will build and store the stiffness matrix for the PDE.

e templates/gmreslinearsolver.h This is a wrapper for the GMRES solver im-
plemented in deal.II. The solver will build and store the stiffness matrix for the
PDE.

e templates/directlinearsolver.h This is a wrapper for the direct solver imple-
mented in deal.II using UMFPACK. The solver will build and store the stiffness
matrix for the PDE.
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3 The Structure of DOpElib

e templates/voidlinearsolver.h This is a wrapper for certain cases when we

3.3

know that the matrix to be inverted is the identity. It simply copies the right hand
side to the left hand side. This is only needed for compatibility reasons some other
components.

Problem specific classes

The following classes are used to describe the problem and will usually require some
implementation.

3.4

basic/constraints.h This is used by the spacetimehandlers to compute the num-
ber of constraints from the control and state vectors. It must not be reimplemented
by the user, but needs to be properly initialized if OPT is used with box control
constraints or g(q,u) < 0.

interfaces/functionalinterface.h This gives an interface for the functional
J(-) and any other functional you may want to evaluate. In general this can be
used as a base class to write your own functionals in examples. We note that we
only need to write the integrands on elements or faces the loop over elements will
be taken care of in the integrator. Specifically, derivatives are written therein, too.

interfaces/constraintinterface.h This gives an interface for both the con-
trol box constraints as well as the general constraint ¢ < 0. This needs to be
specified if constraints are to be used. If they are not needed a default class
problemdata/noconstraints.h can be used. We note that we only need to write
the integrands on elements or faces the loop over elements will be taken care of in
the integrator.

interfaces/pdeinterface.h This defines an interface for the partial differential
equation a(q,u)(¢) = 0. This needs to be written by the user. We note that we
only need to write the integrands on elements or faces the loop over elements will
be taken care of in the integrator. Specifically, derivatives are written therein, too.

interfaces/dirichletdatainterface.h This gives an interface to the Dirichlet
data for a problem. If the Dirichlet data are simply a function (and do not depend
on the control ¢) one can use the default class
problemdata/simpledirichletdata.h.

Reduced problems (Solve the PDE)

At times it is nice to remove the PDE constraint in (OPT). This is handled by so called
reduced problems (for algorithmic aspects we refer the reader to [4]). This means that
the reduced problem implicitly solves the PDE whenever required and eliminates the
variable u from the problem.
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reducedproblems/statpdeproblem.h This is used to remove the variable v in a
stationary PDE problem. This means that call the method

StatPDEProblem: : ComputeReducedFunctionals will evaluate the functionals de-
fined in the problem description, i.e., in PDEProblemContainer, in the solution of
the given PDE.

reducedproblems/statreducedproblem.h This eliminates u from the OPT prob-
lem with a stationary PDE.

reducedproblems/instatreducedproblem.h The same as above but for a non-
stationary PDE.

reducedproblems/ipopt_problem.h A wrapper file required when solving opti-
mization problems using the reduced_ipopt_algorithm. This file hides the interface
to IPOPT.

Optimization algorithms

Now, in order to solve optimization algorithms we need to define some algorithms. At
present we offer a selection of algorithms that solve the reduced optimization problem
where the PDE constraint has been eliminated as explained in the previous section.

opt_algorithms/reducedalgorithm.h An interface for all optimization problems
in the reduced formulation. It offers some test functionality to assert that the
derivatives of the problem are computed correctly.

opt_algorithms/reducednewtonalgorithm.h A line-search Newton algorithm us-
ing a cg method to invert the reduced hessian. Implementation ignores any addi-
tional constraints.

opt_algorithms/reducedtrustregionnewton.h A trust region Newton algorithm
using a cg method to invert the reduced hessian. Implementation ignores any ad-
ditional constraints.

opt_algorithms/reduced_snopt_algorithm.h An algorithm to solve reduced op-
timization problems with additional control constraints using the third-party li-
brary SNOPT. ((reduced) state constraints are not yet implemented.)

opt_algorithms/reduced_ipopt_algorithm.h An algorithm to solve reduced op-
timization problems with additional control constraints. using the third-party li-
brary IPOPT. ((reduced) state constraints are not yet implemented.)

opt_algorithms/reducednewtonalgorithmwithinverse.h Line-search Newton al-
gorithm that assumes there exists a method in the reduced problem that can invert
the reduced hessian. (This usually makes sense only if there is no PDE constraint.)
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3.6 Other Components

Beyond these clearly structured groups before there are some classes remaining that do
not fit the above but are important for the user to know.

3.6.1 Vectors

e include/statevector.h This stores all dofs in space and time for the state vari-
able uw. It is possible to select whether all this should be kept in memory or or
unused parts can be written to the hard disk.

e include/controlvector.h This stores all dofs in space and time for the control
variable ¢q. At present no time dependence is implemented.

e include/constraintvector.h This stores all dofs in space and time for the non
PDE constraints (and corresponding multipliers). At present no time dependence
is implemented.

Remark 3.6.1. We notice that the behavior of the statevector can be chosen as fullmem,
only_recent, or store_on_disc. In the first state, the RAM memory of the computer
is used. In the second state, only the spatial vectors at the current time step (and the
preious one) are stored. This reduces memory requirements, but also prohibits access
to the whole space-time trajectory after the computation. In the third state, all vectors
are written on disc, to avoid the RAM. This might take some time at the beginning
of a new executing program (cleary depending on the number of spatial and temporal
unknowns and the capabilities of your local machine). In addition, if the program aborts
abnormally in the using store_on_disc behavior, please make sure to remove manually
the tmp_state folder in your Results folder.

3.6.2 Parameter handling

e include/parameterreader.h This file is used to define a parameter reader that
is used to read run time parameters from a given file.

3.6.3 Exception handling

e include/dopeexception.h Defines some Exceptions that are thrown by the pro-
gram should it encounter any unexpected errors.

e include/dopeexceptionhandler.h This class is used to write information con-
tained in the exceptions to the output in a uniform manner.

3.6.4 Output handling

e include/outputhandler.h This file defines an outputhandler object which can
be used to decide whether some information should be written to screen or file. In
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addition it can format output according to some run time parameters given by a
parameter file.

3.7 Data Access

e include/solutionextractor.h This class is used to gain access to the finite ele-
ment solutions stored in the reduced problems.

3.7.1 Constraints and system matrix

e include/userdefineddofconstraints.h This class sets the constraints on the
DOFs of the state and/or control FE solution. DOpE itself builds the hanging-
node-constraints, but the user can reimplement this class and thus include other
constraints as well (for example periodic BC). Note, that the hanging-node-constraints
come first (in case of conflicting constraints.)

e include/sparsitymaker.h This class sets the sparsity pattern for the state FE
solution. The standard implementation is just a wrapper for dealii: :DoFTools: :
make_sparsity_pattern, but the user can reimplement this class to allow for more
sophisticated sparsity patterns.

e include/pointconstraintsmaker.h This class allows to set homogeneous Dirich-
let values at given points/components.

3.7.2 HP components

e interfaces/active fe index setter interface.h In the case of hp finite el-
ements, one has to specify for each element which finite element to use. This is
done via this interface.

3.8 Internal structures

3.8.1 Interface Classes

e interfaces/transposeddirichletdatainterface.h This provides an interface
to the functionality required by transposed Dirichlet data. Usually when one applies
Dirichlet data g to a function one has to calculate a continuation Bg which is
defined on the whole domain. In optimization problems when the Dirichlet data
depends on the control one has to evaluate the dual operator B* in order to obtain
a representation for the reduced gradient of the objective J. This is done using
the transposed Dirichlet data.

e interfaces/reducedprobleminterface.h In order to allow all algorithms to be
written independent of the given (OPT) problem (and not requiring the problem
as template argument) there is a common base class which defines the required
interfaces.
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interfaces/pdeprobleminterface.h The same as above but for (PDE) prob-
lems.

3.8.2 Default Classes

problemdata/noconstraints.h A class that can be used for optimization prob-
lems having only a PDE constraint but no further constraints.

problemdata/simpledirichletdata.h A class that can be used to implement
Dirichlet data that are given as a fixed function (independent of the control).

3.8.3 Auto-generated Problem Descriptions

problemdata/stateproblem.h This is the problem description for the (forward/pri-
mal) PDE constraint. Similar descriptors will be build for the other prob-
lems (adjoint, tangent, ...) when time allows.

problemdata/initialproblem.h This is the problem descriptor to compute the
finite element representation of the initial values. This is generated by the different
time-stepping schemes based upon the defined representation by the PDE, which
is set to the component wise L? projection by default.

problemdata/primaldirichletdata.h This class contains the Dirichlet data for
the forward/primal PDE.

problemdata/tangentdirichletdata.h This class contains the Dirichlet data for
the tangent PDE;, i.e., the first derivative of the Dirichlet data.

problemdata/transposedgradientdirichletdata.h This contains the transposed
Dirichlet data needed to calculate the gradient of the reduced objective functional,
for detail see interfaces/transposeddirichletdatainterface.h.

problemdata/transposedhessiandirichletdata.h This contains the transposed
Dirichlet data needed to calculate the hessian of the reduced objective functional,
for detail see interfaces/transposeddirichletdatainterface.h.

3.8.4 Management of Time Dependent Problems

include/timedofhandler.h DoFHandler responsible for the management of the
timedofs (this is a part of the SpaceTimeDoFHandler-classes). Basically a wrapper
for a 1d deal.II-DoFHandler.

include/timeiterator.h This class works as an iterator on the TimeDoFHandler.
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Wrapper classes

wrapper/dofhandler wrapper.h A wrapper class for the deal.II DoFHandlers.
This class is needed to provide support for the dim = 0 case and to have a uniform
interface to DoFHandler and HPDoFHandler.

wrapper/fevalues_wrapper.h Will be removed soon!

wrapper/function wrapper.h An interface that allows to use functions that de-
pend not only on space but also on time.

wrapper/mapping wrapper.h An interface that allows to use deal.II-mappings
as well as deal.II-mapping collections depending of the DoFHandler in use. To
this end, the class has a template parameter DOFHANDLER.

wrapper/preconditioner wrapper.h Contains wrappers for several of the pre-
conditioners in deal.II. This is required since unfortunately the preconditioners
in deal.II have different interfaces for their initialization.

wrapper/snopt_wrapper.h An interface to the FORTRAN library SNOPT. This
is an additional wrapper to the one provided by SNOPT to allow automatic con-
struction of the functions required by SNOPT using our library.

wrapper/solutiontransfer_wrapper.h A wrapper for the SolutionTransfer class
from deal.II.

wrapper/dataout_wrapper.h A wrapper for the DataOut class from deal.IT.

3.10 Other

basic/dopetypes.h This file contains type definitions used in the library.

basic/sth_internals.h Wrapper for the MapDoFsToSupportPoints function. The
implementation of this changes with the deal.II version in use.

include/helper.h Collection of various small helper functions.

reducedproblems/problemcontainer_internal.h Houses some functions and vari-
ables common in the various problemcontainer.

tsschemes/primal ts_base.h This class contains the methods which all primal
time stepping schemes share.

tsschemes/ts _base.h This class contains the methods which all time stepping
schemes share.
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4 Example Handling, Creating new
Examples

4.1 Getting started

Beside the fact that DOpELlib is still under development, it offers already various different
(linear and nonlinear) examples for a lots of different applications in two and three
dimensions; we refer the reader to the next two Chapters [5] and [6]

To implement new examples or to use existing examples from the library for own
research, the user can simply copy an existing example. In this new example, own code
and changes can be compiled. Here is some advice to get started:

e If you are a first time user of DOpElib with some numerics background, you might
be familiar with the Poisson (or more general Laplace) equation. DOpElib has it
too. Check-out Example to see how DOpElib implements this well-known
equation in two dimensions or for its three-dimensional version.

e Before you implement a new example, please check which existing example might
be similar to your goals and get familiar to it. Then, proceed as described in

Section (4.2

4.2 Creating new examples

Before being able to change and compile the new code, the user must follow some easy
steps in order to modify the information related to the old code. In this section we
explain how to modify such information using as model PDE/StatPDE/Examplel.

1. In afirst step, we copy Examplel and renamed it, e.g., MyWonderfulFirstExample.
At the same time it is important to remove the repository information that it is
stored in the directory .svn/.
After having reached the folder of the example in question in the terminal, PDE/StatPDE
in our case, we perform these operation writing the following:

cp —-r Examplel MyWonderfulFirstExample
cd MyWonderfulFirstExample

rm -rf .svn

cd Test

rm -rf .svn
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Please note that removing the .svn sub-directories is important, as otherwise
your files may be replaced or changed during your next update. Also, if you can
submit information to the subversion repository you might accidentally overwrite
the original example, here Examplel.

. We now have to change the target in the Makefile, otherwise our new example
will refer to the executable of the old one.

Thus we open the Makefile in the directory MyWonderfulFirstExample to change
the name of the executable. In our example you will find a line

target = $(BINDIR)/DOpE-PDE-StatPDE-Examplel-$
(dope_dimension)d-$(deal_II_dimension)d

Here we need to replace the target to a new name to avoid any possible complica-
tion. Thus for example we change the line to

target = $(BINDIR)/MyWonderfulFirstExample

This will build the executable file in the standard binary directory of DOpElib,
i.e., $(DOpE) /bin, under the name MyWonderfulFirstExample.

Note that you should use a different name for all your examples as otherwise you
may experience a lot of strange behavior, as the executable will be overwritten by
all your examples!

. If you want to run automated tests on you program so that you can verify whether
your code is running as expected after updating the library you may want to update
the sub-directory Test as well, see also Chapter Otherwise you may skip this
step.

Change to the Test sub-directory. And then modify the test-script to contain
the new name of the executable. Assuming you want to use Emacs, open the file
test.sh

PDE/StatPDE/Examplel/Test> emacs test.sh

where, in our example you find the line

PROGRAM=. . /DOpE-PDE-StatPDE-Examplel-2d-2d

if you made a copy of an other example the part DOpE-PDE-StatPDE-Examplel-2d-2d
may differ. These lines need to be replaced with the new name of the executable,

i.e., for our given example

PROGRAM=. .//MyWonderfulFirstExample
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4. Now, you are prepared to change any of the problem dependent data in information
in the files

main.cc, localpde.h, functionals.h, localfunctional.h, etc

5. Once you have finished and are sure that your example is running correctly and
you want to use the automated test scripts —see 3) above— You need to store new
test information to account for your changes.

To do so, change to the Test sub-directory and run the test:
./test.sh Test

Note that this should fail, otherwise you have not changed anything in the program,
or forgot part 3) of this description.

If it failed have a look into the file dope.log and see whether you like the output.
If you do not like it you may wish to update the file test.prm that takes care of
the parameters for the test run.

Once your satisfied with what you see in the log-file dope.log you need to store
that information using

./test.sh Store
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5.1 Stationary PDEs

5.1.1 Stationary Stokes Equations
General problem description

In this example we consider the stationary incompressible Stokes equation . Here, we use
the symmetric stress tensor which has a little consequence when using the do-nothing
outflow condition. In strong formulation we have

1
—§v-(w+wT) +Vp=f (5.1)
V-v=0

on the domain ©Q = [—6,6] x [0,2]. We split 0 = I'p U Ty, The right hand side of
the channel is ',y on which we describe the free outflow condition, on the rest of the
boundary we prescribe Dirichlet values (An parabolic inflow on the left hand side and
zero on the upper and lower channel walls). We choose for simplicity f = 0.

As code verification, we evaluate two different types of functionals. First a point
functional measuring the z-velocity and a flux functional

/ v-nds,
l_‘out

on the outflow boundary. Both a described in the functionals.h file as described below.

Program structure

In all examples, the whole program is split up into several files for the sake of readability.
These files are always denoted in the same way, so we only have to explain the general
structure in this first example, whereas in the following examples, we will only point out
differences to the current one. The content of the single files will be described in more
detail below.

If we do not use one of the standard grids given in the deal.Il library, we can read
a grid from an input file. In our example, the domain Q = [—6,6] x [0,2] is given in
the channel.inp file, where all nodes, elements and boundary lines are listed explicitly
and the boundary is divided into disjoint parts by attributing different colors to the
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boundary lines.

Certain parameters occurring during the solution process, e.g. error tolerances or the
maximum number of iterations in an iterative solution procedure, are fixed in a parame-
ter file called dope.prm. This parameter file comprises several subsections corresponding
to different solver components.

In the functionals.h file we declare classes for different scalar quantities of interest (de-
scribed mathematically as functionals) which we want to evaluate during the solution
process.

The localfunctional.h file is relevant only if we want to solve an optimal control prob-
lem. In this case, it contains the cost functional, whereas the file is not needed for the
forward solution of PDEs. We will get back to this later in the context of optimal control
problems.

All information about the PDE problem (in the optimal control case about the con-
straining PDE) is included in the localpde.h file. In a class called LocalPDE, we build
up the element equation, the element matrix and element right hand side as well as
the boundary equation, boundary matrix and boundary right hand side. Later on, the
integrator collects this local information and creates the global vectors and matrices.

The most important part of each example is the main.cc file which contains the int
main() function. Here we create objects of all classes described above and actually solve
the respective problem.

The functionals.h file

Here, we declare all quantities of interest (functionals), e.g. point values, drag, lift,
mean values of certain quantities over a subdomain etc.
Each of these functionals is declared as a class of its own, but in DOpElib all classes are
derived from a so-called FunctionalInterface class.
As already mentioned previsously, in the current example we declare functionals for
point values of the velocity and for the flux at the outflow boundary of the channel.

The localpde.h file

The LocalPDFE is derived from a PDEInterface class. It comprises several functions
which build up the element and boundary equations, matrices and right hand sides. The
weak formulation of problem (5.1) with f =0 is

(V0. Vg)a + (V7 Vo)a — (b,V @)+ (V-0,0)a — (n- Vo7 d)r,,, = 0. (5.2)
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Remark 5.1.1. Note the additional term on I'y,;, which is a consequence of the use of
the symmetric stress tensor together with the free outflow condition.

This problem is vector valued, i.e. the velocity variable v has two components and the
pressure variable p is a scalar. For the implementation, we use a vector valued solution
variable with three components, where the distinction between velocity and pressure is
done by use of the deal.ll FEValuesExtractors class.

Furthermore, in DOpElib we always interpret the problems in the context of a Newton
method. Usually, a PDE in its weak formulation is given as

a(u; ) = f(p).

The left hand side is implemented in the ElementEquation function, the right hand
side is implemented in the ElementRightHandSide function (which is unused in this
example, because f = 0).

Remark 5.1.2. The weak formulation might contain some terms on faces or (parts of) the
boundary. DOpE is able to handle these via BoundaryEquation, BoundaryRightHandSide
etc.. To keep things simple, we neglect these terms in this introduction.

To apply Newton’s method, this problem is linearized: on the left hand side, we have
the derivative of the (semilinear) form a(-;-) with respect to the solution variable u, and
the right hand side is the residual of the weak formulation:

ay (usu™, @) = —a(u; @) + f(p).

In the ElementMatrix function, we implement the following matrix A as representation
of the derivative on the left hand side:

A = (d),(w; 05, 05)) s

with the number N of the degrees of freedom. Similarly, the ElementEquation contains
the vector

N
a = a(u; pi)il,
and the ElementRightHandSide in the case f # 0 would contain a vector
7 N
f=(f Soi)i:1~
The system of equations which is then actually solved is

Aut = —a+ f.

Because of the linearity of equation (5.2)), there is almost no difference between the two
functions.

At this point, it is important to note that DOpE interprets any given problem as a
nonlinear one which is solved by Newton’s method; the special case of linear problems is
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included into this general framework.
The main.cc file

First of all, several header files have to be included that are needed during the solution
process. We divide these includes into blocks corresponding to DOpE headers, deal.ll
headers, C++ headers and header files of the example itself (like the ones mentioned
above).

Furthermore, we define names for certain objects via typedef which act as abbreviations
in order to keep the code readable. In our case, these are 0P, IDC, INTEGRATOR,
LINEARSOLVER, NLS, SSOLVER and STH.

In the int main() function, we first create a possibility to read the parameter values
from the dope.prm file. Then there are several standard steps for finite element codes
like

e definition of a triangulation and create a grid object (which we read from the
channel.inp file)

e creation of finite element objects for the state and the control and of quadrature
formula objects

and in addition, we

e create objects of the LocalPDE class and of the different functional classes declared
in the functionals.h file.

Remark 5.1.3. Up to now we have to create a pseudo time even for stationary problems.
The

MethodOfLines_StateSpaceTimeHandler object (DOFH) which is needed for the initial-
ization of OP requires a vector in which timepoints are specified. However, this is again
merely a dummy variable, for we do not actually apply a time stepping method in the
stationary case. This will also be removed in future versions of DOpE.

Before we initialize the SSolver object and actually solve the problem, we have to set
the correct boundary conditions. Via the compmask vector, we ensure that the boundary
conditions are set only for the velocity components of our solution vector. We set
homogeneous Dirichlet values at the upper and lower boundaries of the channel. The
inflow is described by a parabolic profile at the left boundary (the corresponding function
class is declared in the myfunctions.cc file), whereas we do not prescribe anything at the
outflow boundary (so-called do-nothing condition).

The output of the program (the two functional values) is rather unspectacular; as the
problem is linear, the solution is computed within one Newton step.
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5.1.2 Laplace equation with periodic BC
General problem description

We solve the vector values Laplace equation on a quadratic domain 2 with a circular
hole in the middle, i.e. in strong formulation we look for u = (u1,u2) s.t.

~V - (Vu)=f in Q.

We set zero Dirichlet values on the circular boundary in the middle of the domain and
periodic boundary conditions on the other parts of the boundary. We choose the flux
over the right hand side boundary as functional. We choose

flz,y) = (cos (exp(10z)) y*x + sin(y), cos (exp(10 x y)) 2y + Sin(a:))

for the right hand side. As code verification, the mass flux on one boundary part is
evaluated.

Program description

This example show how to implement user defined DoF constraints. DOpElib has an
interface for this, namely UserDefinedDoFConstraints. In our case, we derive the class
PeriodicityConstraints, overwrite the method MakeStateDoFConstraints and give
an instance of this class to SpaceTimeHandler at hand:

PeriodicityConstraints<DOFHANDLER, DIM> constraints_mkr;
STH DOFH(triangulation, state_fe);
DOFH.SetUserDefinedDoFConstraints (constraints_mkr) ;

This is all it takes. We refer to myconstraintsmaker.h for the details of the implementa-
tion of the periodicity-constraints.
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5.1.3 Stationary Stokes Equations with hp-Elements
General problem description

In this example we consider the same setting as in subsection the only difference
is that we want to employ the hp-Finite-Elements. So the equation we solve is still the
stationary incompressible Stokes equation . Here, we use the symmetric stress tensor
which has a little consequence when using the do-nothing outflow condition. In strong
formulation we have

1
—5V (Vo + Vol ) + Vp=f (5.3)
V-v=0

on the domain ©Q = [—6,6] x [0,2]. We split 9 = I'p U5y The right hand side of
the channel is I'y,; on which we describe the free outflow condition, on the rest of the
boundary we prescribe Dirichlet values (An parabolic inflow on the left hand side and
zero on the upper and lower channel walls). We choose for simplicity f = 0..

Adding hp-Elements

One sees by comparing the main. cc-file of this problem with the one of subsection
that the change to hp-Elements is really easy, so we will keep the description short. In
comparison to example the localpde.h and functionals.h have not changed, but we
have one additional file, namely indezsetter.h, in which the class ActiveFEIndexSetter
is defined.

In the hp-framework we have a stack of finite elements (a hp: :FECollection) given.
We assign each element of the triangulation an fe-index which determines which finite
element we use on this element. The ActiveFEIndexSetter class manages these indices,
see there for more information.

The changes in main.cc are also minimal and are highlighted in the source code.
Obviously, we use FECollection and QCollection as well as a different DoFHandler.

#define DOFHANDLER hp::DoFHandler
#define FE hp::FECollection

typedef hp::QCollection<DIM> QUADRATURE;
typedef hp::QCollection<DIM - 1> FACEQUADRATURE;

Apart from that we have only to tell the space time handler the distribution of the finite
element indices:

ActiveFEIndexSetter<2> indexsetter (pr);
STH DOFH(triangulation, state_fe_collection, indexsetter);
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5.1.4 Laplace Equation in 2D
General problem description

In this problem we solve the simple vector valued Laplace equation in 2d on the unit
square 2 = [0,1]?, i.e. in strong formulation we look for u = (u1, ug) s.t.

—Au=f in Q.

We set zero Dirichlet values on 0I' and choose f = (1,1). The classical example of a
PDE.

Remark 5.1.4 (Why this example?). Originally, DOpE1ib was designed for coupled and
nonlinear problems with possible PDE-based optimization extensions. Later, we decided
to add the most simplest PDE (the Laplace/Poisson equation) in order to demonstrate
how DOpE treats this well-known example. In addition, the first-time user might start
here to get a feeling for DOpElib and its capabilities.
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5.1.5 Adaptive Solution of Laplace Equation in 2D
General problem description

This example shows the use of the adaptive grid refinement and error estimation by the
DWR method (For a description of the method, see [3].) applied to the Laplace equation

—Au=f inQ
with the analytical solution
) 7
u = sin (M) ,
the corresponding right hand side f = —Awu and appropriate Dirichlet Conditions on

0%}, where the domain is given by
Q = [-2,2]*\ Bos(0).
We want to estimate the error in the following functional of interest

J : HY{(Q) — R

1
(TR — ﬁfrudx

where I' = {(z,y) e R? |2 =0,-2 < y < 0.5}.
For this setting, we have the error representation

J(e) = Z {(Rh, z— wh)K + (Th, z— ¢h)3K} (5.4)

KeTy

with the error e = u — up, the Triangulation Ty, the dual solution z, arbitrary function
on € Vj, (the ansatz space) and the element- and edge-residuals:

Rp| e = f+ Auy, (5.5)

resp.

$0pun], if T C Ok \ O,
Tl = :
0, if ¥ C 99.

It holds J(u) ~ 0.441956231972232.

Program description

In this section we want to focus on what you have to do if you want to enhance your
existing code to use the DWR method.

First, additionally to all the things one has to do when just solving the equation, we
have to include the file
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higher_order_dwrc.h

As we approximate the so called ’weights’ z — ¢, in the error representation by a
patchwise higher order interpolation of zj, (the computed dual solution), we have to
enforce patch-wise refinement of the grid by giving the flag

Triangulation<2>::MeshSmoothing: :patch_level_1

to the triangulation.
To be able to solve the adjoint equation for the error estimation one needs to implement
some methods regarding the equation as well es the functional of interest:
e In pdeinterface.h
— ElementEquation_U: Weak form of the adjoint equation.
— ElementMatrix_T: The FE matrix for the adjoint problem.
— FaceEquation_U: This one is needed in this case here because we have a
functional of interest that lives on faces.
e functionalinterface.h

— FaceValue_U: This is the right hand side of the adjoint equation.
During the evaluation of ([5.4), the following methods are needed
e StrongElementResidual: The element residual, see .
e StrongFaceResidual: The terms in that lies in the interior (i.e. the jumps).

e StrongBoundaryResidual:The terms in (5.4) that lies on the boundary (There are
none in this case).

Note that in the above three functions we always apply the method ResidualModifier
both to the residual as well as to the jumps on the faces. This is done to assert that we
can apply both a DWR-~error estimator where the residual should be multiplied with the
computed weights (then this function does not do anything) as well as Residual Type
error estimator for the L? or H' norm where we need to calculate element wise norms of
the residual and the jumps. Then this function calculates the appropriate local terms,
e.g., the square of the residual scaled with appropriate powers of the local mesh size.

After this, we tell the problem which functional we want to use for the error estimation,
this is done via

P.SetFunctionalForErrorEstimation (LFF.GetName())

where P is of type PDEProblemContainer and LFF is the desired functional of interest.
The next thing we need is an object of the type

HigherOrderDWRContainer
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This container takes care of the computation of the weights.
To build this, we need the following:

e DOFH_higher_order: With some higher order Finite Elements and the already
defined triangulation, we build this SpaceTimeHandler. This is needed because
we want to use the patch-wise higher order interpolation of the weights.

e idc_high: A IntegratorDataContainer in which we put some (face)quadrature
formulas for the evaluation of the error Identity.

e A string which indicates how we want to store the weight-vectors (here: "fullmem").
e pr: The ParameterReader which we have already defined.

e A enum of type EETerms that tells the container, which error terms we want to
compute (primal error indicators vs. dual error indicators, see [3]).

The last preparation step is now to initialize the DWRDataContainer with the problem
in use:

solver.InitializeHigherOrderDWRC (dwrc) ;

Succeeding the solution of the state equation
solver.ComputeReducedFunctionals();
we compute the error indicators by calling
solver.ComputeRefinementIndicators(dwrc);
We can now get the error indicators (with signs!) out of dwrc by
dwrc.GetErrorIndicators();

With these indicators, we are now able to refine our grid adaptively (there are several
mesh adaption strategies implemented, like 'RefineOptimized’, 'RefineFixedNumber’ or
'RefineFixedFraction’)

DOFH.RefineSpace (RefineOptimized (optimized, error_ind));

Note, that one has to take the norm of each entry in the vector of the error indicators
before feeding them into the RefineSpace method.
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5.1.6 Laplace Equation in 3D
General problem description

In this problem we solve the simple vector valued Laplace equation in 3d on the unit
square © = [0,1]3, i.e. in strong formulation we look for u = (u1, us,u3) s.t.

—Au=f in Q.

We set zero Dirichlet values on OI' and choose f = (1,1,1).

Program description

The PDE is discretized with Q3-elements on a series of locally refined grids (we use the
KellyErrorEstimator). The algebraic equations are solved with different iterative lin-
ear solvers acting on different vector and matrix-structures (i.e. we use dealii::BlockVector
and dealii::Vector plus the appropriate matrix classes).

To switch the linear solver is pretty easy since the newton solver has a template for
the linear solver. Thus changing this template is all that is required.

To change the structure of the vectors and matrices involves also only the change of
some template parameters. Our example programs are mostly build such that only a
change of some typedefs is required, i.e. one has to interchange the lines

typedef SparseMatrix<double> MATRIX;
typedef SparsityPattern SPARSITYPATTERN;
typedef Vector<double> VECTOR;

with

typedef BlockSparseMatrix<double> MATRIX;
typedef BlockSparsityPattern SPARSITYPATTERN;
typedef BlockVector<double> VECTOR;

to switch between the block and non-block structures.

After solving the equation, we want to apply local mesh refinement. So first we
extract with the help of the SolutionExatractr-class the vector solution representing
the finite element solution

SolutionExtractor<SSolverl, VECTORBLOCK> al(solverl);
const StateVector<VECTORBLOCK> &gul = al.GetUQ);
solution = gul.GetSpacialVector();

With this vector we estimate the error via KellyErrorEstimator and get a vector
holding the estimated error per element. After choosing a refinement criterion (see
refinementcontainer.h, we opt here for refining the top 20% of the elements), we give
the SpaceTimeHandler an object of type RefinementContainer which holds all the
information needed for the local mesh refinement. This is done via the RefineSpace
method.
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DOFH1.RefineSpace(
RefineFixedNumber (estimated_error_per_element, 0.2, 0.0));

This method transfers our solution onto the new mesh. The transferred solution is then
taken as the starting guess of the newton method in the next solution cycle. This is
especially helpful for nonlinear problems.
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5.1.7 Stationary Elasticity Benchmark
General problem description

In this example we consider the following benchmark problem from elasticity theory:

(0(u),e(¢)) = (9, #)ry- (5.7)

Here € is a quadratic domain with side length 200 mm, where a circular hole with radius
10 mm around the center is cut out. Using symmetries of the domain, we restrict our
actual computational domain € to the upper left quarter of Q.

In the above equation, e(v) := %(Vv + VoT) is the symmetric strain tensor, and

o(v) :=2ue(v)? + ptr(e(v))I = 2us(v) + Mr(e(v)),

denotes the symmetric stress tensor. Here 77 is the deviatoric part of a tensor 7, in two
dimensions defined as

1
=7 5257“(7')17

and the parameters p and p are chosen as p = 80193.800283 resp. p = (u+ A) =
190937.589172. We notice that 4 and A denote the usual Lamé parameters.

The corner points of our computational domain are in anticlockwise order: (0, 0), (90, 0),
(100, 10), (100, 100) and (0,100). We prescribe homogeneous Dirichlet boundary con-
ditions in y-direction between (0,0) and (90,0) (lower boundary part), homogeneous
Dirichlet boundary conditions in z-direction between (100,10) and (100,100) (right
boundary part), and we interpret the right hand side of equation (1) with g = 450
as a boundary condition between (0,100) and (100, 100) (upper boundary part).

The goal of our computations is to match the following functional reference values taken
from E. Stein (editor), Error-controlled Adaptive Finite Elements in Solid Mechanics,
Wiley (2003), pp. 386 - 387:

Functional up at (90,0) o092 at (90,0) w9 at (100, 100)
Reference value 0.021290 1388.732343 0.20951
Functional uy at (0,100) f((100,(1)0100)0) U2

Reference value 0.076758 20.40344

Program description

From the previous examples we know how to read a grid from an .inp file. The grid of
our current example comes from the above mentioned benchmark problem.

Apart from different point values of derivatives of the solution, we want to evaluate an
integral over part of the boundary. This is newly implemented in functionals.h.

In principle, everything is clear from the preceding examples. We refine the grid glob-
ally instead of using an error estimator for local refinement. The output of the program
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reflects again the linearity of the problem (only one Newton step is needed for solution).
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5.1.8 Stationary Plasticity Benchmark
General problem description

Similar to the previous example, we consider the following benchmark problem from
plasticity theory:
(I(o(u)),e(¢)) = (9, ©)ry- (5.8)

Here Q is again the quadratic domain with a circular hole around the center cut out.
Again, we restrict our actual computational domain {2 to the upper left quarter of Q for
reasons of symmetry.
We use the symmetric strain tensor e(v) := %(VU + VoT), and the symmetric stress
tensor o is defined as

o(v) == 2ue(v)? + ptr(e(v))I = 2ue(v) + Mr(e(v))1,

where 7P is the deviatoric part of a tensor 7, in two dimensions defined as
1
=7 §tr(7—)l'

Furthermore, the (standard) Lamé parameters are denoted by p and A and which are
more conveniently (here and in the code) expressed through p = p+ X\ and kK = 2u + .
The main difference with respect to the elastic case is the projection operator II in
equation (1). It is defined as follows:

1(r) = T |TD] < oy
) oo|tP|7 P+ %tT‘(T)I |7P| > og

In our computations, we choose oy = \/g - 450, and the above parameters u, A and p as
p = 80193.800283, A = 110743.788889, and p = 190937.589172, respectively. The corner
points of our computational domain are the same as before, and the boundary conditions
are not altered, either.

The goal of our computations is to detect a subdomain in €2 where plastic behavior
occurs (compare E. Stein (editor), Error-controlled Adaptive Finite Elements in Solid
Mechanics, Wiley (2003), pp. 386 - 389). This subdomain depends on the right hand
side g in equation (1) which we write as g = A - p with p = 100 and A € [1.5;4.5].

Program description

The code of the current example is nearly identical to the code of the previous one. The
only difference worth mentioning is the change of the equations which leads to different
implementations of the ElementEquation, ElementMatrix and BoundaryEquations
functions in localpde.h.

Furthermore, the elasticity equations solved in the last example are linear, whereas the
plasticity equations are nonlinear; this difference is evident also from the output (here,
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we need several Newton steps until convergence).

The functionals that appear in the output yield additional information and are not re-
quired in the above problem setting. The subdomain with plastic behavior we want to
detect can be visualized from the .vtk files written to the Results/Mesh subfolders.
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5.1.9 Stationary FSI with Stokes and INH Material
General problem description

In this example we consider a simple stationary FSI problem. The fluid is given as
an incompressible Newtonian fluid modeled by the Stokes equation. Here, we use the
symmetric stress tensor which has a little consequence when using the do-nothing outflow
condition, see also section The computation domain is = [—6,6] x [0, 2] and we
choose for simplicity f = 0.

The fluid reads:

Problem 5.1.5 (Variational fluid problem, Eulerian framework). Find {vs,ps} € {v]l? +
V'} x L¢, such that,

(05, V), = (ng-gJ,0")r, Vo' € Vy,
(diV Uf,¢p)Qf =0 V¢p€Lf.
The Cauchy stress tensor oy is given by
of:=—prl + prrvy(Voy + VU?), (5.9)

with the fluid’s density py and the kinematic viscosity vy. By ny we denote the outer
normal vector on I'; and by g% is a function which describes forces acting on the interface.
These will be specified in the context of fluid-structure interaction models.

We define: ) R A A X
T:=id+a, F:=1+Va, J:=det(I+ Va).

The structure equations are given by incompressible neo-Hookean material

Problem 5.1.6 (Incompressible neo-Hookean Model (Lagrangian)).

(js&sF;T,ﬁév)Qs = < Asﬁs : Q?FQT,&?”%Z. V(ng € Vs
(Bs,6")g, =0 Vo € Vi,
(j - 17§£p)§25 =0 vép € IA/sa

where ps is the solid’s density, pus the Lamé coefficient, ng the outer normal vector at
T';, g7 the force on the interface and with

Gy = —ps] + ps(FFT = 1).
The resulting FSI problem is then given by:
Problem 5.1.7 (Stationary Fluid-Structure Interaction (ALE)).
(Jo, BT, %v)ﬂf + (Jo 7T, V) =0 Vg eV,
(0,6, + (Vi V') =0 Vo' eV,
(%(jﬁ—lﬁf),ép)ﬁf +(J 1,7 =0 VP e,
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Remark 5.1.8. In the problems above and the code, we implement the term
(05, 9",

although this is not physically necessary. It is first for computational convenience in
order to extend the fluid velocity variable to the whole domain. This could be resolved
by using the FE Nothing element. Second, using 0s; here makes it easier to understand
the nonstationary FSI problem.

Program description

In the localpde.h file, all functions of the LocalPDE class have to be adjusted to the current
FSI problem. This only makes the equations and matrices a little more complicated,
and our solution vector now consists of five components (two velocity components of
the fluid, the pressure component, and two additional displacement components for the
structure variables). Otherwise, everything is analogous to the former example.

In the main.cc we only have to add two components to the compmask vector and prescribe
boundary conditions for the structure variables. Apart from that, we define objects for
the same classes as before that are even named equally and use the same solvers.
Again, the solution is reached within one Newton step, and all we see from the program
output is the values of the functionals.
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5.1.10 Stationary FSI with Navier-Stokes and STVK Material
General problem description

This example is an extension the previous one. We solve an stationary FSI problem either
with INH material (see Problem definition before) or St. Venant Kirchhoff material
STVK:

Problem 5.1.9 (Compressible Saint Venant-Kirchhoff, Lagrangian framework). Find
{as} € {aP +V}, such that

(Jooslis) Fy T,V ) g, = (Johs - g7F; T, 0%, VoY € Vi (5.10)

where pg is the density of the structure, us and As the Lamé coefficients, ns the outer
normal vector at I';, g7 some forces on the interface. The properties of the STVK
material is specified by the constitutive law

6s(lis) == JYF(\(trE)T + 2u, E)FT. (5.11)

Remark 5.1.10. In the code, we also implement

(Vs @),

although this is not physically necessary. It is first for computational convenience in
order to extend the fluid velocity variable to the whole domain. This could be resolved
by using the FE Nothing element. Second, using 05 here makes it easier to understand
the nonstationary FSI problem. The same holds for the (artificial) pressure variable in
the STVK case.

Often, the elasticity properties of structure materials is characterized by Poisson’s ratio
vs (Vs < % for compressible materials) and the Young modulus E . The relationship to
the Lamé coefficients us and A; is given by:

As F = fs(As + 2ps)

BETeRaTn i vy (5.12)

Vg
On fluid side, we extend the problem from Stokes flow to stationary Navier-Stokes flow
considering the convection term

v- Vo

which reads in transformed form [17]
Pl s 0y
(JprF™ 70 -V, ¢ )Qf‘

The whole equation system is solved on the benchmark configuration domain. For
details on parameters and geometry, we refer to the numerical FSI benchmark proposal
from Hron and Turek [2006].

The code is established by computing the stationary FSI benchmark example FSI 1
with the following values of interest: x-displacement, y-displacement, drag, and lift.
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Program description

Compared to the previous Example there are some differences which we will
briefly discuss in the following. First of all, the problem is nonlinear in contrast to
the former ones. We work on a different domain (given in the benchfst0100tw.inp file),
namely a channel with a cylinder put at half height near the inflow boundary; further
.inp files yield the possibility to vary the domain.

Furthermore, in the dope.prm parameter file there are two additional subsections which
are added only for the current problem. From the denotation of these subsections one
can immediately see where in the code the parameters are used.

As we want to compute certain benchmark quantities, we have to regard corresponding
functionals in the functionals.h file. The pressure at a point as well as the displacement
in z- and y-directions are point values; furthermore we implement the drag and lift func-
tionals (for which we need the additionally defined problem parameters).

As before, we build up the element and boundary equations and matrices in the localpde.h
file. Apart from using the additionally defined problem parameters and modeling com-
pressible STVK material instead of INH material (which leads to changes in the weak
formulation of the equations), there are no major differences to the corresponding file in
the last example.

In the main.cc file, we have to include additional header files from the deal.Il library
concerning error estimation and grid refinement. Further on, everything is pretty much
the same as in the last example, but we have to use the SetBoundaryFunctionalColors
function of the PDEProblemContainer class to be able to compute drag and lift in the
respective functional classes in functionals.h.

The main innovation in contrast to the preceding examples is the refinement of the grid
combined with a simple error estimator given in the deal.Il KellyErrorEstimator class.
If we look at the output of our program, everything is computed several times (once on
each refinement level). Furthermore, we see that several Newton steps are needed on
each refinement level; this is due to the nonlinearity of the current problem.
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5.1.11 Usage of Higher Order Mappings: Approximation of 7
General problem description

This example shows the use higher order mappings in DOpElib. To this end, we solve a
simple Laplace equation

—Au=-4 inQ
with the analytical solution
uw=a" 4y

and the Dirichlet Conditions on u = 1, where the domain is given by a circle with radius
1 and the center located in the origin.

We compute the L?-norm of the error and, additionally, we evaluate a functional
which does not depend on the solution at all. We integrate the constant % once over the
boundary of the domain. The result is an approximation of .

All this is standard and would not justify an additional example, however we solve the
equation and the functional not one but two times. First with the standard Q1-mapping,
the second time we use a higher order mapping. The exact order can be determined by
the parameter file, the preset is Q2-mapping. At the end, we gather the errors and
convergence rates over some refinement cycles in a nice table and notice the higher order
of convergence for the higher order mapping solutions. This is due to the fact that we
can approximate the circular boundary much better by a quadratic mapping.

Program description

In this section we want to focus on what you have to do if you want to enhance your
existing code to use higher order mappings, which is actually pretty simple.
You have to include the file

mapping_wrapper.h
and create a mapping of the desired order by
DOpEWrapper: :Mapping<dim, DOFHANDLER> mapping(order_of_mapping) ;
The last step is to give the mapping to the DoFHandler:

MethodOfLines_StateSpaceTimeHandler<FE, DOFHANDLER, SPARSITYPATTERN,VECTOR, 2>
DOFH(triangulation, mapping, state_fe);

The rest of the program is as usual.
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5.1.12 Use of Raviart-Thomas element; Special linear solvers
General problem description

This example shows the use of the Raviart-Thomas (RT) element in DOpElib. The
example is taken from dealii step-20 and shows how this step can be implemented in
DOpElib. The vector valued laplace equation is solved in the mixed formulation.

Most things are identical to all the other programs. However there is a subtle difference
in localpde.h: Although the element used has 3 components (two for the RT-Element
and 1 for the pressure) the block_component vector mapping blocks to components has
only 2 entries. 1 for each finite element used!

The second difference is that we have to initialize the mapping explicitly. This is due
to the fact that the default

DOpEWrapper : :Mapping<DIM,DOFHANDLER> mapping(1l,false);

is not working with the RT-element and leads to elements on which the divergence is
NaN.

An additional feature of this example is that for the solution of the PDE in mixed
form we are using the Schur complement solver provided in dealii step-20. Hence
this example shows how simple it is to use self-made linear solvers within the DOpElib
framework.
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5.1.13 Discontinuous Galerkin
General problem description

Within this example, we demonstrate how to use the dG (discontinuous Galerkin)
method for the solution of a transport equation. The example corresponds to the dealii
step-12. Here we want to solve the transport equation

V- (fu)=0 in Q,
u=g onI'_ :={z € 09| B(x) - n(z) < 0}.

Where n is the outward unit normal, Q = (0,1)? and

Bla) = — [ 72).
2| \ 71

For the numerical solution, as in dealii step 12, we use the upwind discontinuous
Galerkin . Hence we solve the problem of finding uy such that

— Z (unB - Vup)r + Z (uy, , [B - nup])p + (up, B - nop)r, = —(g,6 - nop)r_

TeTh FeF,

where I'y = {x € 9Q | B(x) -n(x) > 0}, T, and Fj, denote the elements and interior faces
of the mesh, respectively. The jump is defined as

[B-nvp] = (vt —v7)B-nT

where the superscript + or — denotes the dependence on the upstream + or downstream
— element.

Implementational Details

Within this program, we need to make use of the additional Face* and Interface*
methods as given in the PDEInterface class. The Face* methods define all integrals on
F in which the element interacts with it self. The Interface* methods are used for the
coupling between the two neighboring elements over the given face.

The program requires the following changes in contrast to the prior examples:

main.cc We utilize Block Preconditioners for the solution of the resulting system. To

this end we included the line

typedef DOpEWrapper::PreconditionBlockSSOR_Wrapper<MATRIX,4>
PRECONDITIONERSSOR;

In contrast to all other preconditioners, we need to specify the block size. This number
needs to correspond to the number of unknowns per elements; here 4 since we use Q1-
elements. Note that this works for dG elements only.
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The next important change is that we now not only use a discontinuous element, but
we will need to assemble terms on faces between elements that couple the unknowns in
the different elements together. For this, the matrix needs to have the corresponding
non-zero entries specified in the sparsity pattern. To do this, the space time handler has
an argument bool flux pattern in the constructor that needs to be set to true, i.e.,
we instantiate as follows:

STH DOFH(triangulation, state_fe, true);

Finally, the integration will utilize a special function to be declared in the LocalPDE,
hence all objects must use the LocalPDE and not the PDEInterface. To make sure that
this is the case, the PDEProblemContainer needs to be initialized with the following
arguments

typedef PDEProblemContainer<LocalPDE<CDC, FDC, DOFHANDLER, VECTOR, DIM>,
SimpleDirichletData<VECTOR, DIM>, SPARSITYPATTERN, VECTOR, DIM> 0OP;

localpde.h In order to integrate the PDE above, we have to deal with one term that
has not been considered before

> (uy, (8- non))F

FeFy,

Since internally all terms by sums over elements we split this term into contributions
on the element edges K. On an element K a face F', with outward normal n connects
to another element K’, depending on the sign of 3 - n we have two cases. §-n > 0 in
which case u; = uy, or 3-n < 0 in which case u, = uj = up|g-, i.e. the value from the
neighbor. The jump always contains the values v;, and vy

Let now 8 -n > 0. Then we assemble the contributions coming only from this element
in the FaceEquation (and FaceMatrix), i.e.,

(un, B -nvp)p

The other part of the jump, namely

—(Uh, ﬁ . TZU;:)F

is not assembled here, since the test functions do not live on the selected element K.
These contributions will be assembled once the element K’ is selected (and hence on the
same face - n < 0. Once this is the case, i.e. §-n < 0, we assemble the other part of
the jump, which is now

(up, B - nop)F.

This is done in the InterfaceEquation (and InterfaceMatrix) since we couple un-
knowns for the neighboring element K* (the values of ) with those on K (the values
of vp). Note that in contrast to the view on the element with 8 -n > 0 the term has
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apparently switched signs. This is no typo, but due to the fact, that the outward normal
has changed direction.

The precise assembly is analogous to the usual integrals, hence we don’t provide more
details. The only thing different in the InterfaceEquation and InterfaceMatrix we
need to access the values on the element on the other side of the face. To this end,
all Get* functions used, such as GetFEFaceValuesState, have a counterpart GetNbr*
i.e., GetNbrFEFaceValuesState, to access the corresponding values on the neighboring
element.

Naturally the two functions

bool HasFaces() const;
bool HasInterfaces() const;

need to return true.
A last and important change is that we now need to implement the method

template<typename ELEMENTITERATOR>
bool AtInterface(ELEMENTITERATOR& element, unsigned int face) const
{
if (element[0]->neighbor_index(face) != -1)
return true;
return false;

}

that returns true whenever we are on an interior face and false otherwise.
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5.2 Nonstationary PDEs

Until now, DOpElib provides various time-stepping schemes that are based on finite
differences. Specifically, the user can choose between the

e Forward Euler scheme (FE), which is an explicit timestepping scheme. Here, one
as to take into account that k < ch? where k denotes the timestep size and h the
local mesh cell diameter.

e Backward Euler scheme (BE), which is an implicit timestepping scheme. It is
strongly A-stable but only from first order and very dissipative. The BE-scheme
is well suited for stationary numerical examples.

e Crank-Nicolson scheme (CN), which is of second order, A-stable, has very little
dissipation but suffers from case to case from instabilities caused by rough initial-
and/or boundary data. These properties are due to weak stability (it is not strongly
A-stable).

e Shifted (or stabilized) Crank-Nicolson scheme (CN shifted), which is also of second
order, but provides global stability.

e Fractional-step-6 scheme (FS). It has second-order accuracy and is strongly A-
stable, and therefore well-suited for computing solutions with rough data.

5.2.1 Nonstationary Navier-Stokes Equations
General problem description

In this example we consider the nonstationary incompressible Navier-Stokes equation.
As in the stationary PDE Example we use the symmetric fluid stress tensor, i.e.
in strong formulation we deal with

pdyv — pV - (Vo + Vol ) + p(v- Vv + Vp = f
V-ouv=0
on time interval I = [0,7] (with 7' = 80) and the fluid benchmark domain (Schaefer /-
Turek 1996). Here, we set f = 0 and the flow is driven by a Dirichlet inflow condition.
As introduced earlier, we formulate the time stepping scheme as One-step-6 scheme,
which are based on finite difference schemes. In order to keep the presentation simple,
we describe the scheme using the stokes equation and thus neglecting the nonlinearity.
Note that in the program we use the full Navier-Stokes operator.
The time interval is given by I = [0, T]. Let v™,p™ and the time step k = t"*! —¢" be
given. Find v™*!, p"*! such that:

o kg (v (Vo 4 vt T 4 vp"+1) kO™ 4 k(1 — 0) "
+0" 4+ k(1-6) (V (Vo + V()T + Vp")
V.ot =0
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In the case of the BE-scheme, # = 1, and the equation is reduced to

Un+1 _ k:(V . (V’Un+1 + an+1T) + vpn) _ k:fn+1 4+
Voutth =0

Note, that one should prefer a complete implicit treatment of the pressure p. Instead of
using Op"*t! + (1 — 0)p™, the pressure appears only with gp"+1,

After discretization in time, the space is treated, as usually, with a Galerkin finite
element scheme, here based on the Taylor-Hood element @Q$/QY.

The variational formulation reads:

Problem 5.2.1 (Backward Euler (BE) timestepping problem). Let § = 1. Find v :=
V"t eV oand p :=p"tt € L:

(v, ¢°) + kO(Vv + Vol ,Ve?) — k(p, V- ¢¥) = kO(f*11, ¢%) + (v, ¢Y) (5.13)
(V-v,¢") =0 (5.14)

for all suitable test functions ¢¥, ¢P € V x L.
Derivation of the other timestepping problems is analogous.

Remark 5.2.2. Note that because of the zero right hand side we are allowed to multiply

(5.14) by k6. So that we solve
kO(V -v,¢P) =0

instead of (V - v,¢P) = 0.

Specific features for solving nonstationary problems

In the following, we explain in more detail the different member functions that are
required to implement nonstationary equations.

void ElementEquation (..., double scale, double scale_ico)

The two arguments are used to distinguish between explicit components and fully implicit
components. For standard equations (such as the heat equation and the wave equation),
there is no special treatment required needed.

However, solving the Navier-Stokes equations or multi-physics problems (like fluid-
structure interaction), parts of the equations are treated with a fully implicit time-
stepping scheme.

Thus, the argument

double scale

is used to indicate that the present term can be used for implicit/explicit or mixed
discretization (such as time discretization with the Crank-Nicolson.
The other argument

double scale_ico
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is used to indicate that the present term only is treated in a fully implicit manner. For
example, the pressure term (which is of course a Lagrange multiplier of the incompress-
ibility term of the fluid). It is recommended to treat this term in a time discretization
in a fully implicit manner.

void ElementMatrix (..., double scale, double scale_ico)

The directional derivatives of the state equation are implemented in the present function.
As before, the last two parameters

double scale, double scale_ico

are used to distinguish between fully implicit are other behavior.
void ElementTimeEquation (...)

This function is used to implement the time derivative in weak formulation

(O, P)q.
This term is time discretized via
" =0 )q.
Here, it suffices to implement the term

(vn7¢)97

because the already known term v" !

ping scheme.
In contrast to this behavior, the user has the possibility to write all terms of Jyv
explicitly. In this case, we use the

is automatically treated by the specific time step-

void ElementTimeEquationExplicit (...)

and we write
-1
(,Un - Un ) ¢)Q

This behavior is useful for multi-physics problems where other solutions variables have
to be considered around dyv. The user should have a look in the second Example
for nonstationary problems for an illustration of this function.

Consequently, the directional derivatives of the element terms are implemented in the
corresponding matrix functions, i.e.,

void ElementTimeMatrix (...), void ElementTimeMatrixExplicit
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5.2.2 Nonstationary FSI Problem
General problem description

In the present example, we solve a nonstationary fluid-structure interaction problem in
arbitrary Lagrangian-Eulerian (ALE) coordinates. The mesh motion model is based on
solving a biharmonic equation [I7] rather than a linear-elastic model. The underlying
equations are stated in the following:

Problem 5.2.3 (FSI with biharmonic mesh motion). Find {0,4,w,p} € {oP + V') x
{aP +V°} x V x L, such that 9(0) = ©° and 4(0) = 4, for almost all time steps t, and

(Jp7000, 40", + (prd (F~H(0 = 040) - V)0), 0",

+H(JorFT V), — (3,

H(Ps000, 9" ), + (Jou BT Vi
(duﬁ),¢w)gf+(d Vi, Vi ) +(

ps(Orte — 0 w“» +(

(div(JE o5), 4)

)o =0 Vi e VO,
)g =0 VU eV,
+ (6, Vi, Vi) =0 Vit e VO,
, (s dP)g, =0 VP EL
with the densities py and ps, the wviscosity vy, the Lamé parameters js, As and the

deformation gradient 13', and its determinant J. The stress tensors for the fluid and
structure are implemented by

&p = —pI + prrp(VoE + F-TvaT),

and
s = F(AstrET + 2usF)
with B = %(FTF — I). Finally, we notice that this problem is driven by a Dirichlet
inflow condition. It is possible to add a gravity term ff or fs, which would enter as a
right hand side force o o
_(PAfJffvdjv)Qf - ([)stﬂ/’v)fzs
into the problem.

The ALE approach belongs to interface-tracking methods in which the mesh is moved
such that it fits in all time steps with the FSl-interface. However, this leads to a de-
generation of the ALE map. Methods to circumvent such as degeneration as long as
possible are re-meshing techniques or to use (as suggested here) a biharmonic mesh
motion technique.

Code validation for ALE-fluid and FSI problems

With the ALE code implemented in Example it is possible to treat fluid prob-
lems as well as F'SI computations. In the case of fluid problems the deformation gradient
and its determinant become:
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The code is validated by the well-known fluid- and FSI benchmark problems [15] [11].
For the FSI test cases, the basic configuration is sketched in Fig. [5.1] at which an elastic
beam is attached behind the rigid cylinder.

(0,0.41) Pwall (2.5,0.41)
> A=(0.6,0.2)
F,‘n O—‘ Pout
f—— ﬁ
(07 0) 1:‘wall (2.5, 0)

Figure 5.1: Flow around cylinder with elastic beam with circle-center C' = (0.2,0.2) and
radius r = 0.05.

The elastic beam has length [ = 0.35m and height h = 0.02m. The right lower end
is positioned at (0.6m,0.19m), and the left end is attached to the circle. Control points
A(t) (with A(0) = (0.6,0.2)) are fixed at the trailing edge of the structure, measuring
x- and y-deflections of the beam. Details on parameters and evaluation functionals and
other results can be found in [I1, 8, [I7]. The time-stepping scheme can be very easily
chosen in the main.cc function by choosing an appropriate time-stepping scheme as
explained at the beginning of this manual and detailed in the previous example.

The quantities of interest are evaluations of z- and y displacement at the point A(0) =
(0.6,0.2) and the drag and lift forces acting on the cylinder and the elastic beam:

(FD,FL)Z/ 6f-ﬁfd8+/ 0s-Ngds, (5.15)
Sy I
where Sy denotes the path over the cylinder in the fluid part and I'; the interface between
the elastic beam and the fluid.

Program description

The major difference to the first nonstationary program is the introduction of the
void ElementTimeEquationExplicit (...)

to write all time derivative terms explicitly:

(,Un - Un_lv ¢)Q

This behavior is useful since (as shown in the above equations) other solutions vari-
ables have to be considered around 0;v such as J := J(u). The same holds for the
corresponding matrix part.

Further, this example shows, how to change the vector behavior, from our default
option fullmem, where the whole vector is stored in the computers main memory. Here,
we are only interested in calculating the solution once, hence two vectors, one for the
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current time point and one for the previous one are sufficient. Hence we choose the
option only recent so that we don’t have to reserve unneccessary memory. If we need
to store the whole trajectory for some reason another option is available to circumvent
the restrictions due to the size of the main memory, it will be described in Example
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5.2.3 Black-Scholes Equation
General problem description

The problem under consideration is the so called multivariate Black-Scholes equation
arising from pricing European style options in finance.

To state the general form of the equation we need some nomenclature: We consider an
option on d risky assets with maturity T > 0 and strikeprice K > 0. For the sake of
simplicity we assume the interest rate r > 0 and the volatility of the i-th asset o; > 0,
1 <i < d, to be constant. Besides, we assume the matrix p = (p;;) of the correlation
factors p;; with —1 < p;; < 1 for 1 < 4,5 < d, to be positive definite. Of course p is
symmetric with p; = 1.

With (t,z) € I = (0,7] x RZ denoting the prices of the underlying assets at time ¢, the
problem of determining the fair price u of such an option is (after a time reversal) given
by the following equation:

d d
1
Oyu — 5 Z 005 i 0050z, Og ;U — TZxﬁxiu +ru=0 in (0,7] x Ri, (5.16a)
ij=1 i=1
u(0) =ug  in R, (5.16Db)

The initial condition ug € C° (Ri) (i.e. the payoff) is given depending of the type of
the option. For example

o = {max(zglzl Aizi — K,0), wisa Call, (5.17)

max(K — 2?21 Aizi,0), wis a Put,

for a plain vanilla European option on a basket of assets containing a share of 0 < \; <1
of the i-th asset. For the computation, we truncate the domain, i.e. we choose T € Ri
and consider the computational domain € := (z1,Z1) X -+ X (24, ZT4). On the new part
of the boundary I" with I" := {z € 99Q|31<i<qz; = T;}) we impose asymptotic values
as Dirichlet conditions. For a put, we take u|lp = 0. We emphasize that no boundary
conditions will be imposed on 92\ T.

In this particular example we examine the case of two uncorrelated stocks (with A\ =
Ay = %) and the following parameters:

2d-Put)
actual asset value xg (25,25)
strikeprice K 25
maturity date T’ 1
volatility o (3, 3)
cutoff T (100, 100)
interest rate r 0,05

option value u(T,zp) ca. 2,269172389
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Program description

Note that the initial conditions are only H'-regular. Because of this, the Crank-Nicolson
scheme, which is not strongly A-stable, is not suited to solve this problem. As we want
to use a second order accurate time stepping scheme, we use the shifted Crank-Nicolson
method. The rest of the program is as before.

In addition, this program shows how to change the vector behavior, from our default
option fullmem, where the whole vector is stored in the computers main memory. Here
the storage behavior is set to store_on disc, where only those unknowns are loaded
into main memory that are needed in the current time step, while all other unknowns
are stored on the hard drive.

This behavior is particularly useful, if many time steps are taken; so that the whole
set of unknowns can no longer be stored in main memory, but access to all parts of the
solution is required after the solution process and thus the option only recent used in
Example is not sufficient. Note that all vectors will allocate the required memory
when the vector is reinitialized to a new size. Hence, for large vectors this may need
some time.

To avoid multiple programs accessing the same files on the hard drive, a lock file is
initialized. Under normal conditions, this will be deleted once the program terminates.
However, should the program exit exceptionally, the lock file will still exist. Calling the
program in this case will produce an exception, with the following text:

Warning: During execution of ‘StateVector<VECTOR>::StateVector®
the following Problem occurred!
The directory Results/tmp_state/ is probably already in use.

To resolve the issue, you have to delete the named directory with the temporary storage
files manually.
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5.2.4 Heat Equation in 1D
General problem description

In this example we consider one of the prototypical nonstationary equations, the parabolic
heat equation, i.e. for x € Q C R% ¢t € I = [0,7],T € RT, we search for the unknown
solution u : I x 2 - R

Owu(t, x) — Au(t,x) = f(t,x),
u(t> x)|BQ = g(ta :E)v
u(0,x) = up(z).

In our example, we consider the simplest case d = 1, where the Laplacian A reduces
to 92. The computational domain is I x Q = [0,1] x [0,1]. For further simplification,
we choose the right hand side as f = 0 as well as homogeneous Dirichlet boundary
conditions (g = 0). The initial condition is given by ug(z) = min(z, 1 — z).

Program description

There are few new things compared to the other nonstationary examples. This is the
first time we solve an equation in one spatial dimension. In most cases, the dimension
dependence is covered by the LOCALDOPEDIM and LOCALDEALDIM variables (which are
defined at the beginning of the main.cc file), but there might be some places in the code
(especially your own code) where a concrete dimension number is given to an object.
There you have to replace it manually. Do not forget to insert the correct dimension in
the Makefile!

The most important feature of this example is the serial application of several time-
stepping schemes. At the moment, the following schemes are available (see also example
5.2.1)):

1. Forward Euler scheme (FE)

2. Backward Euler scheme (BE)

3. Crank-Nicolson scheme (CN)

4. shifted Crank-Nicolson scheme (sCN)
5. Fractional-Step-6 scheme (FS)

All these time-stepping methods are applied in the current example in order to check
them and to compare their characteristics. To keep the computing time acceptable, we
choose a one dimensional example.

One more innovation is the output format. We want to represent the output at single
timepoints as a function graph on the space interval [0, 1]; this can be done using GNU-
PLOT, for example, so instead of .vtk files as in all former examples, we now write out
.gpl files.
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5.2.5 Heat Equation in 2D with nonlinearity

General problem description

This example differs only slightly from the previous one. Again, we consider the heat
equation, this time with an additional nonlinear term

Ou(t, z,y) — Au(t, z,y) + u(t, m,y)2 = f(t,x,y),

but now in two space dimensions and with known solution

t

u(t,z,y) = e~ ’ sin(z) sin(y).

The computational domain is I x Q = [0,1] x [0, 7]2. From the known solution, we can
compute the appropriate data

ft,z,y)=(3- 2t)et*t2 sin(z) sin(y) + e(t=1%)? sin?(z) sin?(y),

uo(x,y) = sin(z) sin(y).

Furthermore, we have to prescribe homogeneous Dirichlet boundary conditions.

Program description

The new feature of this example is the nonhomogeneous right hand side. In examples
and we regarded stationary problems with nonhomogeneous right hand sides,
but up to now, we never involved the time variable into the nonhomogeneity. To do
this, DOpE1ib yields a SetTime () function which has to be applied in the localpde.h file
as well as at the place where the RightHandSideFunction class is declared (here the
myfunctions.h file.

62



5 Examples for PDE Solution

5.2.6 Biot-Lamé-Navier problem
General problem description

The modeling part of this example is based on the coupled Biot-Lamé-Navier system.
The Biot system itself is a standard model in subsurface modeling [5, [6, [7]. Here, a
reservoir (the pay-zone) is modeled as a poroelastic medium with the help of Biot’s
equations. A surrounding medium (the non-pay zone) is modeled as a static elastic
solid. In fact, the Biot system is a multi-scale problem which is identified on the micro-
scale as a fluid-structure interaction problem (details on the interface law are found
in Mikeli¢ and Wheeler (2011). This system is specifically suited for applications in
subsurface modeling for the poroelastic part, the so-called pay-zone. On the other hand,
surrounding rock (the non-pay zone) is modeled with the help of linear elasticity (Ciarlet
1984). Therefore, the final configuration belongs to a multiphysics problem in non-
overlapping domains. The nonstationary coupled system for the state is formulated
within a variational monolithically-coupled framework, which is known to be more robust
than partitioned solutions algorithms. Its discretization is carried out with help of the
Rothe method in which we first discretize in time and then in space. The configuration
is based on the augmented Mandel problem which shows the important Mandel-Cryer
effect: First increasing pressure and then decreasing pressure in time while applying
some traction force on the top boundary.

We begin by describing the setting for a pure poroelastic setting, the so-called pay-
zone. Let Qp the domain of interest and 0€2p its boundary with the partition:

8QB:FuUFt:FPUFf,

where I', denotes the displacement boundary (Dirichlet), I'; the total stress or traction
boundary (Neumann), I', the pore pressure boundary (Dirichlet), and I'¢ the fluid flux
boundary (Neumann). Concretely, we have for a material with the displacement variable
u and its Cauchy stress tensor o:

u=17u on Yy,

on=t only,

for given @ and ¢, and the normal vector n. For the pressure with the permeability tensor
K and fluid’s viscosity 7, we have the conditions:

p=p only,

K _
——(Vp— pfg> -n=¢q only,
Ny

for given p and ¢; and the density p; and the gravity g. For the initial conditions at
time 7 = 0, we prescribe
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In this case of this extension (if 5 is totally embedded in 2g) the boundary conditions
on 00 p reduce to interface conditions Qg :=T"; = Qp N Qg. Let I := [0,T] denote the
time interval.

Problem 5.2.4 (The Biot system). Find the pressure pp and displacement up such that
Oi(cBpB + apdivup)

1
—n—divK(VpB —prg) =q inQpxI,
f

—dz’v(oB(u)) +apVpg=fp inQpxI,
with
O'B(’LLB) = ,U,B(VUB + Vug) + Apdivupl,

and the coefficients cg > 0, the Biot-Willis constant ap € [0,1], (in fact, this constant
relates to the amount of coupling between the flow part and the elastic part) and the
permeability tensor K, fluid’s viscosity and its density ny and py, gravity g and a volume
source term q (i.e., usually, wells for oil production and fluid injection). In the second
equation, the Lamé coefficients are denoted by Ap > 0 and pup > 0 and fp is a volume
force.

The velocity vp in the porous medium is obtained with the help of Darcy’s law (Darcy
1856) and the Darcy equations which are obtained through homogenization of Stokes’s
equations It holds:

1
vp = ——K(Vps — prg).
nf
Usually the non-pay zone is described in terms of linear elasticity:

Problem 5.2.5. Find a displacement ug such that
fdz'v(as(us)) =fs inQgx1I,
with
os(ug) := pus(Vug + Vug) + Agdivugl,

with the Lamé coefficients pug and \g and a volume force fs. On the boundary 0Qdg 1=
I'p Uy, the conditions

ug = ug onl'p, O'S(US)TLS =ts on 'y,
are prescribed with given tg and tg.

It finally remains to describe the interface conditions on I'; between the two sub-
systems:
up = ugs,

op(up)np — os(us)ns = apens, (5.18)

1
——K(VpB — prg) -ns = 0.
ng
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Program description

In this example, the crucial aspect (from mathematical point of view as well as from the
implementation) are the interface conditions . Here, it is important to notice that
the second condition in , requires careful implementation on the interface, which is
carried out with the help of deal.Il’s FE Nothing element. Second, please do not forget
to activate the flag

HasFaces() const

{

return true;

}

The problem is driven by traction forces (Neumann conditions), which are imposed
via the

void
BoundaryEquation(...)
{

}

As functionals, we evaluate the pressure in two different points of the domain. The
observation should be that the pressure first starts increasing reaching a maximum and
then starts decaying. This is the so-called Mandel-Creyer effect.
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5.2.7 lIsothermal Euler equations
General problem description

This example solves the isothermal Euler equations
2 A !
0e(pv) + 0z (p(p) + pv7) = =5 vlvl = gh'p
Op + Oz (pv) =0

on the set t € (0,1), = € (0,2). The relation

RT p

depends on the user provided data for gas-constant R and temperature T as well as a
parameter o (o = 0 for ideal gases). The other parameters in the system to be provided
by the user are the friction parameter A, the diameter D of the pipe, the gravity g and
the slope I’ of the pipe.

The discretization is done by a dG-method in space for the variables w = pv and p.
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6.1 Subject to a Stationary PDE

6.1.1 Distributed control with a linear elliptic PDE
General problem description

This example solves a distributed minimization problem and shows how to estimate the
error in the cost functional for stationary optimization problems. The problem reads:

. 1 !
wmin J(g.u) = 5 u— | + gl
5:t.(Vu, Vo) = (¢4 f,6) ¥ ¢ € Hy(Q)
on the domain Q = [0,1]2, and the data is chosen as follows:

f= (20%2 sin(4rz) — ;Sin(ﬂ'l‘)) sin(27my)

ul = (57T2 sin(mzx) + sin(47m:)) sin(27y)
and o = 1073, Hence its solution is given by:
_ 1 :
g = — sin(mx) sin(27y)
a
u = sin(4mx) sin(27y).

Thus the exact optimal value of the cost functional can be calculated as

1 1
J =g = (2574 ),
@m) =5 (257" + -
In addition the following functionals are evaluated:

MidPoint: «(0.5;0.5)

MeanValue: / U
Q

Background information and program description

In the following, we describe all extensions to the previous problems relevant to solv-
ing PDE-based optimization with DOpElib. So far, we had only to implement the

67



6 Examples with Optimization

ElementEquation and the corresponding matrix ElementMatrix. Now, based on the
idea of the reduced cost functional, we have to compute certain additional equations
representing the adjoint, tangent, and adjoint hessian equations ElementEquation_U,
ElementEquation UT, ElementEquation UTT for the state equation and in the same
terms arising from the functional itself. Let us shed some light into all equations by
giving some background information and overview first.

In abstract form, we are given the following optimization problem:

J(g.u) = min, a(gu)(¥) =0 VeV

Lagrangian:
‘C(Qa u, Z) = ‘](qv ’U,) - a(Qv u) (Z)
Optimality system (KKT system):

or equivalently, in terms of the Lagrangian

L (q,u,2)(¢) =0 Vo eV (Adjoint Equation)
L (q,u,z)(x) =0 VYx €V (Gradient Equation)
L.(q,u,2) () =0 Vi€V (State Equation)

The continuous problem is discretized by a standard Galerkin method using finite di-
mensional subspaces Qp X V;, C Q x V:

J(g;u) = min, a(q,u)()) =0 VeV
Discrete saddle-point problems

y (Gh> un) (Bhs 2n) = Jy(qn, un)(dn) Vo € Vi
ag(qn, un)(Xns 21) = Jg(qns un)(xn)  Vxn € Qn
a(qn,un) (W) =0 Vi, €V

Solution process

In this section, we briefly discuss the solution process for the optimization problem. For
further details, we refer to the standard literature. The unconstrained optimal control
problem is reformulated as follows. We introduce the solution operator S : Q — V of
the state equation. Then:

j(q) = J(q,S(q)) — min, a(q,S(¢))(¥)=0 VVeV.

68



6 Examples with Optimization

The local existence and sufficient regularity of S is assumed. The necessary optimality
conditions of first and second order are

7'(@)(6q) =0, 5"(q)(dq,0q) >0 Viq e Q.

The derivatives of the reduced functional can be computed using the Lagrangian

‘C(q?u7 Z) = J((Lu) - a(Q7u)(z)

as already introduced. Let ¢ € @, and the corresponding state u = S(q) € V' be given.
To calculate the derivative of the reduced cost functional j, we introduce the dual vari-
able z € V solving the

Dual equation

Li(q,u,2)(h) =0 VeV

Then,
7'(@)(8q) = Li(q,u,2)(8q) for bq € Q.

To calculate the second derivatives, we need to solve additional equations.
Let g € Q be a given direction. Then we search du € V solving the

Tangent equation

Lq:(q,u,2)(8¢, d) + Ly (g, u, 2)(0u,¢) =0 Vo € V.
Further, we have an auxilliary

Dual for Hessian equation to find z € V solving

Lau(a,u,2)(8q,9) + Ly (q,u, 2)(0u, ¢) + L2,(q,u,2)(02,6) =0 Vo € V.
Then, for §r € ), we can express the second derivatives of j by
3" (q)(0q, 6r) = E;'q(q, u, z)(dq, or)
L1 (,u, ) (6u, 67)
+ qu(q, u, z)(0z,0r).

With these terms, we can calculate the Newton direction dq, at a given iterate ¢", as
solution to the problem

7"(@")(6q,x) = —j'(@")(x) Vxe€Q.

Moreover, we would like to work in the Hilbert space Q. However, the derivative
j'(q) € H* only. Hence, we need to calculate the Riesz representation for the gradient
Vj(q) € H using the definition:

(Vi(q),09)q = j'(q9)(dq) Vg € Q.
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In the given example, @ = L?(Q) and hence the scalar product will be the standard
L2-inner product. Simillarly, we can define the Hessian operator H(q) € L(Q,Q) by
defining

(H(q)Tq,0q9)q = 7" (q)(7q,0q) Vdq,7q € Q.

Implementation in DOpElib

From the previous details, and the definition of the Lagrangian and its derivatives it
is clear, that the user has to provide the respective derivatives. Since the Lagrangian
consists of the PDE and the cost functional it is sufficient to provide the respective
derivatives, while DOpE1ib will assemble them as required. Test functions for vector
valued terms will be denoted by an index ¢ while matrix valued terms are indexed in ¢
and j. Test functions in the control space @ are denoted as ¢! while those in the state
space V are denoted as ¢;.
To solve the linear equations the following matrices are needed

Elementifatr ix & s = dya, W)@, 6)
ControlElementMatrix & a;=( ?,gbg)Q.

The first one is required for all primal and dual PDE solves, while the second one is
needed to calculate the Riesz representation of the derivatives of j. If desired, the matrix
for the adjoint PDESs can be provided separately as ElementMatrix_T, but otherwise this
will be calculated automatically from the primal matrix.

Additional terms are needed to calculate the corresponding right hand sides. These
are for the PDE the following:

ElementEquation (state) & a(q,u)(¢i),
ElementRightHandSide (state) < f(¢i),
ControlElementEquation (gradient or hessian) & (Vi) ¢,
as well as
ElementEquation U (adjoint) s al(q,u)(gs,2)
ElementEquation_ Q (gradient) & a;(q,u)( 7 2),
the terms
ElementEquation UU (adjoint hessian) & ab . (q,u)(du, ¢, 2),
ElementEquation_UQ (hessian) & aﬁq(q, w)(du, ¢}, 2),
ElementEquation_ QU (adjoint hessian) & a;/u(q, u)(dq, ¢i, 2),
ElementEquation_QQ (hessian) & ag,(q,u)(8q, ¢!, 2),
ElementEquation UT (tangent) & al(q,u)(du, ¢;),
ElementEquation_ QT (tangent) 2N a;(q,u)(&], oi),
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and finally
ElementEquation UTT (adjoint hessian) & a,(q,u)(¢:,d2),
ElementEquation QTT (hessian) & ag(q,u)(¢],02).

As for PDE problems, it is up to the user to decide if the ElementRightHandSide is
used, or if the terms are included in the ElementEquation.
For the cost functional, we have to provide

ElementValue (all) & J(q,u),
ElementValue_ U (all) & T, (g, u)(¢),
ElementValue_Q (all) & Jo(g,u) (i),
ElementValue UU (all) s JU(q,u)(0u, ),
ElementValue UQ (all) & Ty (q,u)(0u, ¢F),
ElementValue QU (all) & J” (g, u)(0q, ¢i),
ElementValue QQ (all) < J” q(2:u) (g, o).

Clearly, if the PDE or cost functional contains other terms, such as boundary or face
integrals corresponding derivatives must be provided as well.

Back to the specific equations in this example

We have

Vu, Vo) — (¢ + f,¢),

) = (

a&( )( ,2) = (V¢,Vz),
ay (g, u)(du, ¢) = (Vou, Vo),
ay (g, u)(¢,02) = (V¢, Viz),

ag(q,u)(0q, ¢) = —(z,¢7),
aq(q,u)(6q,¢) = (6q,9),
ag(q,u)(8q,02) = —(dz,97).

For the cost functional, we have the following terms:

Ta,w) = gllu— w1 + 5 al
Ji(gu)(@) = (u—u’, ),
Jola,w)(6) = alg. ¥7),

T, ) (,6) = (3u, 9).

All other terms, specifically mixed terms with QU etc. are zero in this example.
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main.cc

Finally, the main file of the optimization examples does not look very much different than
for pure PDE computations - which is one of the crucial aims of our library. Here, instead
of using a pdeproblemcontainer, we use now an optproblemcontainer which can as-
semble all additionally needed informations, such as adjoint and tangent PDEs. Further-
more, we define ReducedNewtonAlgorithm and ReducedTrustregion NewtonAlgorithm
to solve the optimization problem with a linesearch and a trust-region Newton algorithm.
Of course one would be sufficient, but we wanted to show how to change optimization
solvers easily using DOpElib.

Next, in the body of the main file, we introduce a second FE function for the control
variable. Then, we define a COSTFUNCTIONAL. Finally, the problem is either solved by
calling Alg.Solve(q) and/or the user might check if the derivatives are implemented
correctly by calling Alg.CheckGrads or Alg.CheckHessian. The latter two function-
alities are highly recommended to check your implementation before wondering about
your results.

Finally, this example uses a DWR-error estimator to estimate the error made in the cost
functional. In contrast to the error estimation for PDEs here, we have to include the
error in the control by using the HigherOrderDWRContainerControl.
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6.1.2 Parameter control with a linear elliptic PDE
General problem description

This example solves the following pointwise minimization problem

2
: 1 a2
min q,u — u — u —|— —
(q,u)€R3XH&(Q;R2 2 ZO‘ 9 HqH

st (Vu, Vo) = (f(a),9) Vo € Hy(%R?)
on the domain Q = [0, 1)2, with zero Dirichlet boundary conditions and

e the observation points

20 = (0.5,0.5), x1 =(0.5,0.25), a2 = (0.25,0.25),

e the regularization parameter o = 0,

e the right hand side
272 sin () sin (7
f(Q)—QO< (0) ( y))

572 sin(7x) sin(27
o () sin( y))

(s
(

0
T2 g sin(27z) sin(27ry)>

e and the exact solution given by

7=(1;05;1)
_ sin(7zx) (sin(my) + 0.5 sin(27y))
sin(2mx) sin(27y) '

Program description

In contrast to the first example, the control is now a discrete quantity (for the three
observation points) where we use the FENothing element to assign the three controls.
Here, the number of components equals the number of controls. In addition, notice that
the cost functional is of mixed type (from our computational point of view), i.e. the
first part is a pointfunctional whereas the regularization part requires the evaluation
of a domain integral. To handle this, we need a special integrator as well as a special

newtonsolver. Additionally, our LocalFunctional returns as his type:
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string
GetType() const
{
return "point domain";

}

Indicating, we have both some point values in the functional, as well as a domain contri-
bution, i.e., we calculate ||¢|| = [, [q| dz, even though this in not necessary, since a = 0
and the euclidean norm of ¢ € R3 could be evaluated more easily using an AlgebraicValue
in the functional.

This brings along that we have not only to implement the methods

ElementValue, ElementValue U,
ElementValue_Q, ElementValue UU,
ElementValue_UQ, ElementValue_QU,

ElementValue QQ,

from FunctionalInterface, but also all the aforementioned methods with a preceding
Point (PointValue etc.).
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6.1.3 Parameter control with a nonlinear PDE from fluid dynamcis
General problem description

In this example, we solve a optimization problems from fluid dynamics. The configu-
ration is similar to the fluid optimization problem proposed by Roland Becker “Mesh
adaption for stationary flow control” (2000).

The configuration comes from the original fluid benchmark problem and has been
modified to reduce drag around the cylinder. To gain the solvability of the optimization
problem we add a quadratic regularization term to the cost functional.

— -

| S -

Figure 6.1: Configuration of the cylinder-drag minimization problem. By sucking out
the fluid (right the y-velocity), the force on the cylinder is reduced. At left,
the x-velocity field is shown. Behind the cylinder, almost no fluid goes from
left to right, which is shown in blue color.

The computational domain is denoted by © with the boundary 92 = I';n U T'yut U
I'g UTy, where I';n and I'yut denote the inflow and outflow boundaries, respectively.
On I'jn, we prescribe a fixed parabolic inflow profile. The part(s) I'y, denote the top
and bottom boundaries. Finally, I'g, represent Neumann control boundaries. Here, we
prescribe

prOpv —pn =qn on g

where n denotes the outer unit normal to I'g.
The state equations are given by: Find v and p such that

-V -o(v,p) +v-Vuv=0,
V-v=0

with o (v,p) = —pl + pv(Vo + VoT).

Remark 6.1.1. Since, we use the symmetric stress tensor, we need to subtract the non-
symmetric part on the outflow boundary, related to the do-nothing condition. ¢

The control g enters via the weak formulation. It reads,

a(q,v,p)(¢) = (U(U,p),¢) + (U : V’U,qf)) + <Q7¢' ’I’L> + (v : UaX) = 07

The target functional is considered as
bop) = [ neatwp) - dds
To

where I'o denotes the cylinder boundary, and d is a vector in the direction of the mean
flow. For theoretical and numerical reasons, this functional needs to be regularized,
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including the control variable ¢, such that
Q
K(q,v,p) = k(v,p) + 5 la — qoll

where « is the Tikhonov parameter and ¢y some reference control.
The rest of the program is similar to the previous optimization problems where we
formulate the state equation in a weak form a(v, p)(¢) such that the final problem reads

K(g,v,p) » min s.t. a(qg,v,p)(¢)=0.

Program description

The implementation of this example does not introduce any new DOpElib-specific fea-
tures but shows that more complicated equations such as the Navier-Stokes system can
be used as forward problem for the optimization process. This example builds on the
previous Example [6.1.2
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6.1.4 Control in the dirichlet boundary values
General problem description

This example solves the minimization problem

min J(q,u) = 3 Ju— ) + 3 lg|?
st (Vu, V) = (f.¢) V¢ € Hj (% R?)

on the domain = [0,1]?. In addition, we set the Dirichlet data of the state on the
boundary as follows

UO(Oyy) = qo, U()(l,y) =dq1, uo(x,O) = q2, ’U,()(.%', 1) = g3,

3

The data is chosen as follows:

f

(207r2 sin(mx) sin(wy))
1

u
x

d (sin(m:) sin(7y) * :n)

with o = 10.

Program description

The control in the Dirichlet boundary values is incorporated via the class LocalDirichletData
which is defined in the file localdirichletdata.h. The class is then given to the OptProblemContainer
as a template argument. This is all that is needed to use the control in the Dirichlet
boundary values. In the main file and the localpde program, we work still with the
FENothing element to assign the five controls.
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6.1.5 Distributed Control with Different Meshes for Control and State
General problem description

This example solves the distributed minimization problem

. 1 o
min J(g,u) = gllu— >+ 5 ol
5:t.(Vu, Vo) = (¢+ f,6) ¥¢ € Hy(9)
on the domain Q = [0,1]2, and the data is chosen as follows:

1

f= (2071'2 sin(4mz) — — sin(m)> sin(2my)

ul = (5772 sin(mzx) + sin(47rx)) sin(2my)
and o = 1073, Hence its solution is given by:

1

q = —sin(mz) sin(27y)
a

u = sin(4mx) sin(27y)

In addition, the following functionals are evaluated:
MidPoint: up(0.125;0.75) L1-Value: / lup,|
Q

QError: /|qh—q|2 UError: /|uh—u]2
Q Q

The important new feature is that we can now use two different meshes for control
and state variable. This is tested first for globally refined meshes, and then for locally
refined meshes with different refinements for the control and state variable.

Program description

In order to use different meshes for control and state we need to use the multimesh
variants of ElementDataContainer, FaceDataContainer and Integrator and we have
to choose a space time handler capable of managing multiple meshes, so we use

MethodOfLines_MultiMesh_SpaceTimeHandler.

The requirement for the control and state mesh is that they have a common coarse
grid, so the space time handler gets only one mesh (to ensure a common coarse grid),
but this gets copied internally so that we have two separate meshes for control and state.
We can then separately refine the mesh for control and state (see RefineControlSpace
and RefineStateSpace).
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6.1.6 Distributed control with a linear elliptic PDE using IPOPT/SNOPT
General problem description

This example solves the distributed minimization problem

. 1 Q
wmin J(g.u) = 5 ju— | + gl

st.(Vu, Vo) = (¢ + f,¢) V¢ € Hy(Q)
s.t. — 500 < ¢ <500 a.e. in 2

on the domain Q = [0, 1]?, and the data is chosen as follows:

f= (20%2 sin(4rx) — ;sin(ﬂx)> sin(27y)

u? = (5#2 sin(mz) + Sin(47m;)> sin(2my)

and a = 1073,
In addition the following functionals are evaluated:

MidPoint: %(0.125;0.75)

MeanValue: / lul
Q

Program description

The Problem is similar to that of OPT/StatPDE/Examplel except for the box control
constraints. The implementation of these constraints is taken care of in the main file
(where we add a constrained description lcc) and in the localconstraints.h file. This
files serves to implement the actual constraints.

In this example, we introduce the handling of local constraints whereas the mixture of
local and global constraints will be discussed in the Example [6.1.7] First, we implement
the upper and lower control bounds in localconstraints.h, i.e,

Gmin < ¢ < Gmax-

with ¢min = —500 and gmax = 500. The constraints are ‘local’, by which we mean the
constraints are imposed on the nodal values of the control vector. Thus, in the constraint
description localconstraints.h, these vectors are manipulated directly without addi-
tional integration. We note that the constraints need to be written such, that a feasible
control generates non positive entried, i.e., we calculate the vector

C _ Gmin — ¢ )
(Q) (q - Qmax>

Second, the lcc vector is used to describe the amount of unknowns that need to be
reserved to store the constraints, and, eventually, corresponding Lagrange multipliers.
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Further information can be found in basic/constraints.h. In our example, we have
only one block in the control (The control is stored in a deal.II::BlockVector). Hence,
the lcc vector has a length of one. The only entry 1cc[0] is a vector of size two (in
the case of more than one control block, each block would be given a size of 2). Each
of the two entries has a specific meaning. The first entry 1cc[0] [0] = 1 tells you how
many local entries in the present block are locally constrained, here it is one local entry.
(Note that this entry will typically be one. it is not one would be if we have constraints
of the type q; + qi+1 < 1 for each even i, or similar combinations of multiple entries in
the control vector.)

The second entry 1cc[0] [1] = 2, determines the number of constraints on this local
entry. Here, we impose a lower and an upper bound, i.e., we give 2 constraints. This
information tells the SpaceTimeHandler, that the vector C(q) needs exactely twice the
amount of unknowns as the vector ¢. In general, the space needed for C(q) is given as

lcc[0][1]
lcc[0] [0]

times the unknowns for the control.

External optimization solver

The problem is solved using the optimization library IPOPT that you can obtain for free.
To use it a correct link to the ipopt library needs to be created in DOpE/ThirdPartyLibs
by the name ipopt, i.e., you should have the file DOpE/ThirdPartyLibs/ipopt pointing
to the ipopt directory. If you have not done this you can compile the example but when
running the example you will only get an error message like

Warning: During execution of ‘Reduced IpoptAlgorithm::Solve®

the following Problem occurred!

To use this algorithm you need to have IPOPT installed!

To use this set the WITH IPOPT CompilerFlag. If you receive this message and
have the ipopt installation complete, you might have overseen to add ipopt to your
LD LTIBRARY PATH:

ok ok Kk ok ok ok ok KOk ok ok ok ok KR ok ok ok kK Kk ok ok ok ok Ok ok ok ok K Ok ok ok ok ok KK sk ok ok kK ok ok ok ok ok K K Ok
Installation complete!
Add /home /..../ dopelib —2.0/ ThirdPartyLibs/ipopt/lib64
to your $LD_LIBRARY PATH variable

sk ok ok ok okok ok ok ok ook okok ok ok ok ok sk ok ok ok skok ok sk ok ok ko ok sk ok ok ok sk ok ook okok ok sk ok ok Kok ok ook ok ok ok ok ok K

Alternatively the commercial optimization library SNOPT can be used in this ex-
ample. In order to use this library you need to install SNOPT on your computer and
then generate a symlink to the snopt directory (where you have the libs and the header
files) in the DOpE/ThirdPartyLibs directory named snopt, i.e., you should have the file
DOpE/ThirdPartyLibs/snopt pointing to the snopt directory. If you have not done this
you can compile the example but when running the example you will only get an error
message like
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Warning: During execution of ‘Reduced_SnoptAlgorithm::Solve
the following Problem occurred!

To use this algorithm you need to have SNOPT installed!

To use this set the WITH_SNOPT CompilerFlag.
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6.1.7 Compliance Minimization of a variable Thickness MBB-Beam
General problem description

This example implements the minimum compliance problem for the thickness optimiza-
tion of an MBB-Beam. Using the MMA-Method of K. Svanberg together with an aug-
mented Lagrangian approach for the subproblems following M. Sting].

The implementation is done using the following three additional files:

e generalized mma algorithm.h An implementation of the MMA-Algorithm for
structural optimization using an augmented Lagrangian formulation for the sub-
problems. The subproblem is implemented using the special purpose
file augmentedlagrangianproblem.h.

e augmentedlagrangianproblem.h The problem container for the augmented La-
grangian problem.

e voidreducedproblem.h A wrapper file that eliminates « if it is not present any-
ways. This is used so that we can use the same routines to solve problems that
have no PDE constraint. This is used to fit the augmentedlagrangian problem into
our framework.

Program description

In addition to the previous Example we consider now in addition one global
constraint. To calculate the correct storrage needed we use the second argument of
constraints(lcc, 1), which is now one.

We use localconstraints.h and localconstraintaccessor.h to impose all con-
straints. First, we have again one control block with a lower and an upper bound,

Pmin < ¢ < Pmaz

with ppmin = 107% and ppae = 1 (p denotes the density of the material). These are
implemented in localconstraintaccessor.h. The global constraint is the maximum
volume of the material, which should remain constant with the value V.« = 0.5, i.e.,

/quaxdzvgo.
Q

Its implementation is provided in localconstraints.h where the global constraint is
handled as a functional, which again is normalized to be nonpositive if the control is
feasible.
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6.1.8 Topology optimization of an MBB-Beam using SNOPT
General problem description

This example implements the topology optimization of an MBB-Beam given in
OPT/StatPDE/Example7 using the SIMP method.

The solution is computed using the commercial optimization library SNOPT, similar
to OPT/StatPDE/Example6 where IPOPT is used. This Example demonstrate how global
constraints on the control variable can be included into the optimization call.

Program description

In this example, we have now some local (point) constraints, local constraints and a
global constraint. In constrast to the previous example, these constraints are all taken
care of in the localconstraints.h file. Specifically, the point constraints are handled
by the DOpE: :PointConstraints<...> function, which is also initializad in the main
file.
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6.1.9 Parameter control with a non-linear PDE from FSI dynamics
General program description

In this example we solve an optimization problem where the equations come from fluid-
structure interaction (FSI). The idea is to extend the steady FSI benchmark problem
(FSI 1, proposed by Hron/Turek) to an optimization problem where the drag is mini-
mized over the cylinder and the beam. The setting is similar to Opt Example 3. In fact,
the only novel things are to attach an elastic beam at the cylinder and to extend the
equation to fluid-structure interaction (instead of pure fluid as in Example 3).

— L =
S
- =
L — —]
Figure 6.2: Configuration of the FSI cylinder-beam-drag minimization problem. By
sucking out the fluid, the force on the cylinder is reduced. At left, the x-

velocity field is shown. In right figure, we the corresponding adjoint solution
is shown.

The state equation system reads:

Problem 6.1.2 (Stationary Fluid-Structure Interaction with STVK material). Let g
denote the control variable. Find U := {0,p,u} such that

(jpfﬁflf)'@@,sf;”) +(Jop Bt V¢”)
+(J6. P T,V§") g + (g0 - R)ry =0 Vo' €V,
(8,0"), + (auw Vé')g, =0 Vo' eV,
(div(JE ™ 05),0")q, + (9, ), =0 Ve € L,

The target functional is considered as

k(U):/ - Je(v,p)FT - dds,
Toul';

5

where I'p denotes the cylinder boundary and I'; the interface between fluid and solid,
and d is a vector in the direction of the mean flow. Moreover, J and F denote the
deformation gradient and its determinant as well known in fluid-structure interaction.
For theoretical and numerical reasons, this functional needs to be regularized, including
the control variable ¢, such that

«

where « is the Tikhonov parameter and ¢y some reference control.
The rest of the program is similar to the previous optimization problems where we
formulate the state equation in a weak form a(q, U)(¢) such that the final problem reads

K(q,U) > min s.t. a(q,U)(¢) =0.
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Program description

This example is similar to Example (both based on Example [6.1.2]), except that
we have again much more complicated (nonlinear) equations. A modification of this

example and several numerical tests are presented in [13].
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6.2 Subject to a Nonstationary PDE

6.2.1 Control of a nonlinear heat equation via the initial values
General problem description

This example is a modified version of PDE/InstatPDE/Example5. Again, we consider the
heat equation, this time with an additional nonlinear term and most important a time
derivative leading to a nonstationary optimization problem. The governing equation is

du(t, ,y) — Au(t,z,y) + ult,z,y)* = f(t,z,y),

with homogeneous Dirichlet-data. The computational domain is Q x I = [0,7]? x [0, 1].
From the known solution, we can compute the appropriate data

flt,z,y)=(3— 2t)elf’_t2 sin(x) sin(y) + e(t=%)? sin?(z) sin?(y),
UO(J:7 y) = Q(l‘, y)
With the cost functional

minJ(g.0) = 5 [ (u(1,2.)=sina) sin() d(z. )+ [ () =sine)sin(y)? d(o. )

q’u

It has the optimal solution

u(t,x,y) = el ="’ sin(z) sin(y),

q(t,z,y) = sin(x) sin(y)

and J(q,u) = 0.

Program description

The following new things differ from the PDE-Examples and the optimization examples
with stationary PDEs:

First, we need to introduce a reasonable dual time-stepping scheme in the main file since
we have to compute the adjoint equation backward in time. Next, in the file main. cc the
SpaceTimeHandler now gets an additional argument. In this case DOpEtypes: :initial
which specifies that the control is entering in the initial value.

In the file localpde.h we now have to specify the Methods Init_ElementRhs and
Init_ElementRhs_Q. They need to be adapted, since usually the InitialValue for the
PDE is auto generated from a deal.ii function in the ProblemContainer. This Value is
set in the Init_ElementRhs hence we need to change this function to use the control
instead. Correspondingly we need to implement the first derivative of this with respect
to the control. ~We don’t need the second derivative since it is zero anyways.—
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Note: In contrast to the ,,normal” Element-terms in the PDE we assume in the
program that the Init_ElementEquation is linear in the state and no other solution
variables are present. Thus no derivatives of the Init_ElementEquation need to be
implemented.
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6.2.2 Control of the heat equation via a space dependent right hand side
General problem description

This example is a modified version of OPT/InstatPDE/Examplel. Again, we consider the
heat equation, this time without an additional nonlinear term. The governing equation
is

atu(tawv y) - Au<t7x7y) = f(t) : q(a:, y)v

with homogeneous Dirichlet-data. The computational domain is  x I = [0, 7]? x [0, 1].
From the known solution, we can compute the appropriate data

ft) =2,
uo(z,y) = sin(x) sin(y).

With the cost functional

e — ?
minJ(g.0) = 5 [ <u<1,w,y> - (35 ) st sin<y>) )+ [ ol do)

It has the optimal solution

u(t, xz,y) = sin(x) sin(y),
q(x,y) = sin(z) sin(y)

together with the optimal adjoint state

e? p2(t-1)
1—e2

Z(t,x,y) = sin(z) sin(y).

and the corresponding cost functional value

L 1 et 2

Program description

In this example, we demonstrate how to implement a control that acts distributed in
space and time, but has no temporal dependence. For this, the control vector type is set
to be ControlType::stationary (the default for stationary equations). In contrast to the
case of control in the initial values, the control vector can be accessed at a all times.
Since the control has no time dependence DOpElib assumes that the control part of
the cost functional, here
% /Q ¢ dx

is evaluated at initial time (i.e., ¢ = 0 in this example).
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6.2.3 Control of the heat equation via a time dependent right hand side
General problem description

This example is a modified version of OPT/InstatPDE/Example2. The governing equa-
tion is
atu(ta'l'vy) - Au(t7$7y) = q(t) ’ f(:l:a y)v

with homogeneous Dirichlet-data. Hence, we now allow for a time dependence of the
control.

The computational domain is Q x I = [0,7]? x [0,1]. From the known solution, we
can compute the appropriate data

f(z,y) = sin(z) sin(y),
uO(xa y) =0,
ul(t, z,y) = sin(x) sin(y) (1(3 — 2t — 3e™2) + L+(1-0)5).

With the cost functional

min J(q,u) = ;/I/Q(u(t,x,y) - ud(t,m,y))zd(z,y) dt+;/q(t)2d(t).

q,u I

It has the optimal solution

u(t,x,y) = 1(3 — 2t — 3e” ') sin(z) sin(y),
1

together with the optimal adjoint state

A(t — 1)

Z(t, z,y) = sin(z) sin(y) 5

s

Additionally, we evaluate the following functionals

1—3e?
p(1,0.57, 0.5m) = Te ~ 0.148499,

[@n — @l
g, —ali7.
Program description

In this example, we demonstrate how to implement a control that acts distributed in
time. For this, the control vector type is set to be ControlType::nonstationary. Obvi-
ously one can implement space and time dependence by considering a ControlVector in
dimension # 0.
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The DOpElib test suite consists of regression tests. They are run to compare the out-
put to previous outputs. This is useful (necessary) after changing programming code
anywhere in the library.

o If a test succeeds, everything is fine in the library.

e If not, you should not check in your code into DOpE1lib. Please make sure what is
going wrong and WHY!

e Every command is computed via a Makefile in the basic example directory.

Remark 7.0.1. Please keep in mind that there are two optimization examples that need
external packages to be able to run successfully. These tests will fail if these libraries
are not installed!

7.1 Where can | find the tests

In each example directory you find a sub directory ‘Test’. Herein, you find the parameter
files for meshes (*.inp) and a param file (test.prm). Moreover, the executable is denoted
by ‘test.sh’. Please make sure, that the

set never_write_list
contains every possible output
Gradient;Hessian;Tangent;Residual;Update;Control;State

That means, no solution files are written to the output. Recall, that we are just interested
in terminal output that is of course sufficient to verify the things.
Hence, the results directory should be empty

set results_dir = ./

The rest in the param file must be identically the same as in the dope.prm file in the
parent directory.
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7.2 How to start testing?

You start testing by typing
> ./test.sh Store

in the terminal.
After the run, you have to call

> ./test.sh Test

to compare your stored output. Of course, there should be no differences.
The useful point is now the following. After implementation of new pieces of code in
the DOpE library or in the examples, you can run

> ./test.sh Test

Hereby, you compare your ‘new’ output with the previous stored output.
Attention: After changes you should NOT run again

> ./test.sh Store

In that case, you overwrite your previous output.
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